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Abstract. Predictive business process monitoring exploits event logs to
predict how ongoing (uncompleted) traces will unfold up to their com-
pletion. A predictive process monitoring framework collects a range of
techniques that allow users to get accurate predictions about the achieve-
ment of a goal for a given ongoing trace. These techniques can be com-
bined and their parameters configured in different framework instances.
Unfortunately, a unique framework instance that is general enough to
outperform others for every dataset, goal or type of prediction is elusive.
Thus, the selection and configuration of a framework instance needs to be
done for a given dataset. This paper presents a predictive process moni-
toring framework armed with a hyperparameter optimization method to
select a suitable framework instance for a given dataset.

Keywords: Predictive process monitoring · Hyperparameter optimiza-
tion · Linear temporal logic

1 Introduction

Predictive Business Process Monitoring. [10] is a family of techniques that
exploits event logs extracted from information systems in order to predict how
current (uncompleted) traces of a process will unfold up to their completion.
Based on the analysis of event logs, a runtime component continuously provides
the user with estimations of the likelihood that a goal will be achieved upon
completion of any given running trace of the process.

In previous work [4,10], we presented a customizable predictive process mon-
itoring framework comprising a set of techniques to construct models to predict
whether or not an ongoing trace will ultimately satisfy a given classification func-
tion based both on: (i) the sequence of events executed in the given trace; and
(ii) the values of data attributes associated to the events. The latter is important
as, for example, in a patient treatment process, doctors may decide whether to
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perform a surgery or not based on the age of the patient, while in a sales process,
a discount may be applied only for premium customers.

Incorporating in a single framework a range of techniques that can be com-
bined and configured in different framework instances is a necessary step in build-
ing a tool that supports predictive business process monitoring. The construc-
tion and selection of the appropriate framework instance, indeed, can greatly
impact the performance of the resulting predictions [9]. Constructing an effec-
tive instance of a predictive monitoring framework, able to maximize the perfor-
mance of the underlying techniques for a given dataset, is, however, non-trivial.
For example, this construction may imply a choice among different classification
techniques (e.g., decision trees or random forests) and clustering algorithms (e.g.,
k-means, agglomerative clustering or dbscan), as well as the hyperparameters
that these techniques require have to be tuned according to the specific dataset
and prediction problem. While these choices may be challenging even for experts,
for non-experts they often result in arbitrary (or default-case) choices [17].

The conventional way to face this problem is combining manual and exhaus-
tive search [19]. We also adopt this approach and, in particular, we perform
two specific steps: first, we run different configurations of the techniques on an
appropriate dataset used for training and validating and, second, we compare
the outcomes of the different configurations to select the one that outperforms
the others for the given domain.

While this overall strategy has the potential to ease the construction of an
effective instance of the predictive monitoring framework, its concrete realization
poses two challenges that may hamper its practical adoption. A first challenge is
given by the computational burden of running different configurations for differ-
ent combinations of techniques. A second challenge is related to the complexity
of comparing different configurations and then select the best one for a business
analyst/process owner.

The framework presented in this paper provides a predictive process moni-
toring environment armed with a hyperparameter optimization method able to
address the two challenges emphasized above. First, it enables to run an exhaus-
tive combination of different technique settings on a given dataset in an efficient
and scalable manner. This is realized through a meta-layer built on top of the
predictive process monitoring framework. Such a layer is responsible of invoking
the framework on different framework instances and to provide, for each of them,
a number of aggregated metrics (on a set of validation traces). The meta-layer is
optimized to schedule and parallelize the processing of the configurations across
different threads and reuse as much as possible the pre-processed data structures.
Second, it provides user support for the comparison of the results, thus enabling
to easily select a suitable framework instance for a given dataset. This is done by
providing the user with a set of aggregated metrics (measuring different dimen-
sions) for each configuration. These metrics can be used for opportunely ranking
the configurations according to the user’s needs and hence for supporting the
user in the parameter tuning.
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After an introductory background section (Sect. 2), Sects. 3 and 4 introduce
two motivating scenarios and the overall approach, respectively. The overall
architecture is then detailed in Sect. 5, and an evaluation presented in Sect. 6.
Sections 7 and 8 conclude with related and future works.

2 Background

In this section, we provide background notions useful in the rest of the paper.

Predictive Process Monitoring. The execution of business processes is gener-
ally subject to internal policies, norms, best practices, regulations, and laws.
For example, a doctor may only perform a certain type of surgery, if a pre-
operational screening is carried out beforehand. Meanwhile, in a sales process,
an order can be archived only after the customer has confirmed the receipt of all
ordered items. Based on an analysis of past execution traces, the idea of Predic-
tive Process Monitoring [10] is to continuously provide the user with estimations
of the likelihood of achieving a user-specified business goal in an ongoing trace.1

Such predictions generally depend both on: (i) the sequence of events executed in
the ongoing trace; and (ii) the values of data attributes associated to the events.

Linear Temporal Logic. In our approach, a business goal can be formulated in
terms of Linear Temporal Logic (LTL) rules. LTL [14] is a modal logic with
modalities devoted to describe time aspects. Classically, LTL is defined for infi-
nite traces. However, when focusing on the compliance of business processes,
we use a variant of LTL defined for finite traces (since business process are
supposed to complete eventually). We assume that events occurring during the
process execution fall in the set of atomic propositions. LTL rules are constructed
from these atoms by applying the temporal operators X (next), F (future), G
(globally), and U (until) in addition to the usual boolean connectives. Given a
formula ϕ, Xϕ means that the next time instant exists and ϕ is true in the next
time instant (strong next). Fϕ indicates that ϕ is true sometimes in the future.
Gϕ means that ϕ is true always in the future. ϕUψ indicates that ϕ has to hold
at least until ψ holds and ψ must hold in the current or in a future time instant.

Hyperparameter Optimization. Traditionally, machine learning techniques are
characterized by model parameters and by hyperparameters. While model para-
meters are learned during the training phase so as to fit the data, hyperparame-
ters are set outside the training procedure and used for controlling how flexible
the model is in fitting the data. For example, the number of clusters in the
k-means clustering procedure is a hyperparameter of the clustering technique.
The impact of hyperparameter values on the accuracy of the predictions can
be huge. Optimizing their value is hence important but it can differ based on
the dataset. The simplest approaches for hyperparameter optimization are grid
1 In line with the forward-looking nature of predictive monitoring, we use the term
business goal rather than business constraint to refer to the monitored properties.



364 C. Di Francescomarino et al.

search and random search. The former builds a grid of hyperparameter values,
evaluates each of them by exploring the whole search space, and returns the
one that provides the best result. The latter, instead of exhaustively exploring
the search space, selects a sample of values to be evaluated. Several smarter
techniques have been recently developed for the hyperparameter optimization.
For example, Sequential Model based Optimization (SMBO) [7] is an iterative
approach that constructs explicit regression models to describe the dependence
of target algorithm performance on hyperparameter settings.

3 Two Motivating Scenarios

We aim at addressing the problem of easing the task of predictive process mon-
itoring, by enabling users to easily select and configure a specific predictive
process monitoring scenario to the needs of a specific dataset. In this section,
we introduce two motivating scenarios that will be used also as a basis for the
evaluation of the Predictive Process Monitoring Framework in Sect. 6.

Scenario 1. Predicting Patient History. Let Bob be a medical director of an
oncology department of an important Hospital who is interested in predicting
the type of exams a patient, Alice, will perform. In particular, he is interested in
knowing, given the clinical record of Alice whether: (a) she will need two specific
exams named tumor marker CA − 19.9 and ca − 125 using meia, and when;
and (b) the occurrence of a particular exam (CEA−tumor marker using meia)
will be followed by another exam for the diagnosis of squamous cell carcinoma.
Since his department has started an innovative project aiming at using predictive
process monitoring techniques based on the analysis of event logs related to the
patient history, his Hospital owns a number of relevant datasets to enable the
usage of a predictive process monitoring framework. However, when ready to use
the framework, he finds out that: (i) he needs to select a number of techniques to
create an instance of the framework; (ii) for each of these techniques, he has to
set a number of hyperparameters needed for their configuration. However, being
a medical doctor he does not have the necessary knowledge to understand which
technique is better to use and the parameters to set. His knowledge only enables
him to select the predicate he wants to predict and the dataset of similar traces
relevant for the prediction. Thus, a way for helping him in understanding which
configuration works best for his dataset and specific prediction is needed.

Scenario 2. Predicting Problems in Building Permit Applications. Let John be
a clerk handling building permit applications of a Municipality. The majority of
regular building permit applications required for building, modifying or demol-
ishing houses must be accompanied with the necessary fees and documentation,
including design plans, photos and pertinent reports. They are, therefore, often
unsuccessfully checked for completeness, and the applicant has to be contacted
again for sending the missing documents. This implies extra work for John and
for the building permit applications office. In addition, many of the permit appli-
cations also require an environmental license (WABO) and getting the WABO
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license can either be fast or demand for a long extension of the building permit
procedure. This would require a rescheduling of the work of the building permit
applications office. John is, therefore, interested in knowing whether: (a) the
4 applications he has just received and for which he has acknowledged receipt
will undergo a series of actions required to retrieve missing data; and (b) these
applications will require the environmental license. As in Scenario 1, the Munic-
ipality where John works stores all the necessary datasets to enable the usage
of a predictive process monitoring framework, but the difficulty in choosing the
right technique and the need of configuring parameters may seriously hamper his
ability to use the framework. Thus, a way for helping him to set up the correct
configuration which works best for his dataset and specific prediction is needed
also in this scenario.

4 Approach

In this section, we describe the approach to provide users with a predictive
process monitoring framework equipped with methods to support them in the
selection of the framework instance that is most suitable for the dataset and the
prediction they are interested in.

The approach is based on two main components: the Predictive Process Mon-
itoring Framework , in charge of making predictions on an ongoing trace, and
the Technique and Hyperparameter Tuner , responsible of the invocation of the
Predictive Process Monitoring Framework with different configurations (frame-
work instances). Figure 1 shows the conceptual architecture of the framework.
The Predictive Process Monitoring Framework takes as input a training set, a
prediction problem and an ongoing trace, and returns as output a prediction
related to the input prediction problem for the ongoing trace. The Technique
and Hyperparameter Tuner acts as a meta-layer on top of the Predictive Process
Monitoring Framework . As well as the training set and the prediction problem,
the Technique and Hyperparameter Tuner takes as input a set of traces (valida-
tion set) and uses them to feed the Predictive Process Monitoring Framework on
a set of potentially interesting framework instances. Specifically, for each con-
sidered framework instance, the traces of the validation set are replayed and

Fig. 1. Tuning-enhanced Predictive Process Monitoring Framework architecture
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passed as a stream of events to the Predictive Process Monitoring Framework .
Once a new trace is processed by the Predictive Process Monitoring Framework
and a predicted value returned, it is compared with the actual value of the trace
in the validation set. Based on this comparison and other characteristics of the
prediction (e.g., how early along the current trace the prediction has reached
a sufficient confidence level), a set of aggregated performance metrics (e.g., the
accuracy or the failure rate) is computed. Once the set of all the interesting
framework instances has been processed, the user can compare them along the
performance dimensions.

5 Architecture

In this section, we describe in detail the two layers of the Tuning-enhanced Pre-
dictive Process Monitoring Framework . We first introduce the Predictive Process
Monitoring Framework , by providing an overview of its modules and of the tech-
niques that are currently plugged in each of them, and we then present the tuner
layer that supports users in the selection of the framework instance that best
suites with their dataset and prediction problem.

5.1 Predictive Process Monitoring Framework

As shown in Fig. 1, the Predictive Process Monitoring Framework requires as
input a set of past executions of the process. Based on the information extracted
from such execution traces, it tries to predict how current ongoing executions
will develop in the future. To this aim, before the process execution, a pre-
processing phase is carried out. In such a phase, state-of-the-art approaches
for clustering and classification are applied to the historical data in order to
(i) identify and group historical trace prefixes with a similar control flow, i.e.,
to delimit the search space on the control flow base (clustering from a control
flow perspective); and (ii) get a precise classification in terms of data of traces
with similar control flow (data-based classification). The data-structures (e.g.,
clusters and classifiers) computed at the different stages of the pre-processing
phase are stored. At runtime, the classification of the historical trace prefixes
is used to classify new traces during their execution and predict how they will
behave in the future. In particular, the new trace is matched to a cluster, and the
corresponding classifier is used to estimate the (class) probability for the trace to
achieve a certain outcome and the corresponding (class) support (that also gives
a measure of the reliability of classification algorithm outcomes). The overall
picture of the framework is illustrated in Fig. 2. Within such a framework, we
can identify three main modules: the encoding, the clustering and the supervised
classification learning module. Each of them can be instantiated with different
techniques. Figure 3 shows an overview of possible framework instances.

For example, for the trace encoding a frequency based and a sequence based
approach have been plugged in the framework. The former is realized encod-
ing each execution trace as a vector of event occurrences (on the alphabet of
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Fig. 2. Predictive Process Monitoring Framework

Fig. 3. Framework instances overview

the events), while, in the latter, the trace is encoded as a sequence of events.
These encodings can then be passed to the clustering techniques available in the
framework: the dbscan clustering, the k-means clustering and the agglomerative
clustering algorithms. For example, the euclidean distance, used by the k-means
clustering, is computed starting from the frequency based encoding, while the edit
distance, used by the dbscan clustering, is computed starting from the sequence
based encoding of the traces. Within the supervised learning module, decision
tree and random forest learning techniques have been implemented.

Each of these techniques requires, in turn, a number of hyperparameters
(specific for the technique) to be configured. Specifically, k-means and agglomer-
ative clustering take as input the number of clusters, while the dbscan technique
requires two parameters: the minimum number of points in a cluster and the
minimum cluster ray.

Moreover, the framework also allows for configuring other parameters,
such as:

• size of prefixes of historical traces to be grouped in clusters and used for
training the classifiers;
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• voting mechanism, so that the p clusters closest to the current trace are
selected, the prediction according to the corresponding classifiers estimated,
and the prediction with the highest number of votes (from the classifiers)
returned;

• when the prediction is related to a time interval, a mechanism for the def-
inition of the time interval (e.g., q intervals of the same duration, based on
q-quantiles, based on a normal distribution of the time).

The framework has been implemented as an Operational Support (OS)
provider of the OS Service 2.0 [11,18] of the ProM toolset. Specifically, an OS
service is able to interact with external workflow engines by receiving at runtime
streams of events and passing them to the OS providers.

5.2 Technique and Hyperparameter Tuning

The Tuning-enhanced Predictive Process Monitoring Framework has been
designed as a client-server architecture, where the Predictive Process Monitoring
Framework is the server, and the client is a toolset that can either be used (i) for
“replaying” a stream of events coming from a workflow engine and invoke the
server to get predictions on a specific problem; or (ii) for evaluation purposes
and, in particular, for supporting users in tuning the framework techniques and
hyperparameters according to the dataset and the input prediction problem.

Fig. 4. Logical architecture

When used for evaluation purposes, the client (the Technique and Hyperpara-
meter Tuner) evaluates the Predictive Process Monitoring Framework for each
of the techniques and hyperparameter configurations. Specifically, for each of
them, the client replays each trace of the validation set and invokes the Predic-
tive Process Monitoring Framework for getting a prediction (and the associated
class probability) at different points of the trace (evaluation points). As soon as
the class probability and support of the returned prediction are above a certain
threshold, the prediction is considered reliable enough and kept as the Predictive
Process Monitoring Framework prediction at the specific evaluation point. The
final predicted value is then compared with the actual one. With this information
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for each trace, the client is finally able to provide the users with few aggregated
metrics about the performance of the framework instance. In detail, the following
three evaluation dimensions (and corresponding metrics) are computed:

• Accuracy, which intuitively represents the proportion of correctly classified
results (both positive and negative); it is defined as:

accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Accuracy ranges between 0 and 1. High values of accuracy are preferred to
low ones.

• Failure rate, which is the percentage of traces for which a reliable prediction
cannot be given. Failure rate ranges between 0 and 1. In this case low values
are preferred to high ones.

• Earliness, which is the ratio between the index indicating the position of the
last evaluation point (the one corresponding to the reliable prediction) and
the size of the trace under examination. Earliness ranges as well between 0
and 1 and a low value of earliness indicates early predictions along the traces.

In order to speed-up the above time-consuming procedure, the client application
implements a scheduling mechanism that distributes the prediction computa-
tions across 2 or more parallel replayer threads. In addition, in the pre-processing
phase, the data structures are stored for reuse purposes. However, only some of
them can be reused. Each choice of technique (and hyperparameter) in the con-
figuration can indeed affect the Predictive Process Monitoring Framework flow at
different stages. For example, the choice of the encoding type affects the clusters
built from the historical traces; the choice of the classification learning technique
does not affect the clusters but it does affect the classifiers built on top of them.
Only the data structures of previous choices that are not affected by the current
choice can be reused.

Figure 4 shows the logical architecture of the client application (left part)
and its interactions with the OS Service. It is composed of three main parts: the
Unfolding Module, the Scheduler Module and the Replayers.

The Unfolding Module combines the sets of techniques (and their hyperpa-
rameters) provided by the user through an intuitive GUI into a set of different
configuration runs. Each configuration run is associated with an ID (Run ID),
which is used to refer such a configuration. Once the list of the interesting con-
figurations has been created, the Configuration Sender sequentially sends each
configuration to the server that uses it to encode the traces, as well as to com-
pute clusters and classifiers for that specific configuration. Once the server has
done with the pre-processing, the Configuration Sender starts sending the traces
to the Replayer Scheduler in charge of optimizing the distribution of the traces
among different replayers on different threads. Each replayer sends the trace
(and the reference to the specific configuration Run ID) to the server and waits
for the results. As soon as the results are provided by the OS Service, they are
progressively visualized in the result interface (Fig. 5). Each tab of the result
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interface refers to a specific configuration run, while the summary tab reports a
summary of all the configuration runs with the corresponding evaluation met-
rics. From this interface, the user can easily sort the configurations based on one
or more evaluation metrics.

Fig. 5. Result interface

6 Evaluation

In this section, we provide an evaluation of the Tuning-enhanced Predictive
Process Monitoring Framework . In detail, we would like to investigate if it can
be used in practice to support users in selecting a suitable configuration for
their prediction problem. Specifically, we want to see whether: (i) the Tuning-
enhanced Predictive Process Monitoring Framework is effective in returning a
set of configurations suitable for the specific dataset and prediction problem;
(ii) the configuration suggested by the Tuning-enhanced Predictive Process Mon-
itoring Framework actually provides accurate results for the specific prediction
problem; (iii) the framework does it in a reasonable amount of time.

6.1 Datasets

For the tool evaluation, we used two datasets provided for the BPI Challenges
2011 [1] and 2015 [5], respectively.

The first event log pertains to the treatment of patients diagnosed with cancer
in a large Dutch Academic Hospital. It contains 1,140 traces, 149,730 events
referring to 623 different activities. In this case, we used our framework to predict
the information that, for example, Bob is interested to know about the Alice’s
case (see Scenario 1 in Sect. 3). More formally, we used our framework to predict
the compliance of a trace with respect to the following two LTL rules:
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– ϕ11 = F(“tumor marker CA − 19.9”) ∨ F(“ca − 125 using meia”),
– ϕ12 = G(“CEA − tumor marker using meia” → F(“squamous cell carcinoma using eia”)).

The second log was provided by a Dutch Municipality. The log is composed of
1,199 traces, 52,217 events and 398 event classes. The data contains all building
permit applications over a period of approximately four years. It contains several
activities, denoted by both codes and labels, both in Dutch and in English. In this
case, we used the Tuning-enhanced Predictive Process Monitoring Framework to
investigate the configurations that are more suitable with respect to the John’s
problem (see Scenario 2 in Sect. 3). Formally, we investigate the following two
LTL rules:

– ϕ21 = (F(“start WABO procedure”) ∧ F(“extend procedure term”)),
– ϕ22 = (G(“send confirmation receipt”) → F(“retrieve missing data”)).

6.2 Experimental Procedure

In order to evaluate the technique and hyperparameter tuning of the Tuning-
enhanced Predictive Process Monitoring Framework , we adopted the following
procedure.

1. We divided both our datasets in three parts: (i) training set: 70% of the whole
dataset; (ii) validation set: 20% of the whole dataset; (iii) testing set: 10%
of the whole dataset.

2. For both the analyzed scenarios, we used the training and the validation
sets for identifying the most suitable (according to one or more evaluation
dimensions) Predictive Process Monitoring Framework configurations for the
specific dataset and prediction problem. Moreover, we computed the time
required for tuning the parameters with and without reuse of data structures
and with and without replayers working in parallel.

3. We evaluated the identified configurations on the testing set.

6.3 Experimental Results

As described in Sect. 5, the Tuning-enhanced Predictive Process Monitoring
Framework explores all the configurations of a finite set and computes for each
of them, three evaluation metrics: accuracy, failure rate and earliness. Table 1
reports, for each formula of each scenario, the descriptive statistics of these
metrics on a set of 160 different configurations, obtained by combining two algo-
rithms for the clustering step (dbscan and k-means), two algorithms for the
classifier learning step (decision tree and random forest) and varying a number
of hyperparameters (e.g., the number of clusters for k-means or the number of
trees in the random forest).

By looking at the table, we can get an idea of the distribution of the configu-
ration settings in the space of the evaluation metrics. We can observe that such a
distribution is not the same for all the rules. For example, for the rules in the first
scenario, the configurations produce values for all the three evaluation metrics
that are widely distributed (e.g., the failure rate for ϕ11 ranges from 0 to 0.98).
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Table 1. Descriptive Statistics related to the tuning phase

Rule Accuracy Failure rate Earliness Computation

Min Max Avg Std. dev Min Max Avg Std. dev Min Max Avg Std. dev Time (h)

ϕ11 0.43 1 0.73 0.15 0 0.98 0.42 0.31 0 0.48 0.13 0.13 42.68

ϕ12 0.55 0.91 0.73 0.08 0 0.93 0.27 0.3 0 0.43 0.07 0.09 32.05

ϕ21 0.87 0.91 0.87 0.006 0 0.29 0.02 0.05 0 0.09 0.008 0.02 1.87

ϕ22 0.77 1 0.95 0.06 0 0.76 0.09 0.17 0 0.35 0.06 0.08 2.93

When, like in this case, the results obtained by running different configurations
are distributed, the configuration that best fits with the user needs can be iden-
tified in the tuning phase (for example, the user could prefer earliness more than
accuracy). On the other hand, for the other two rules, and, in particular for ϕ21,
the performance of the different tested configurations do not vary significantly.
In this case, the different configuration settings are mostly restricted within a
limited area of the space of the three evaluation metrics, thus making the results
of the prediction less dependent on the choice of the configuration.

Table 2. Results related to the tuning evaluation

Rule Conf. ID Choice criterion Tuning Evaluation

Accuracy Failure rate Earliness Accuracy Failure rate Earliness

ϕ11 109 accuracy 0.92 0.46 0.074 0.86 0.57 0.056

4 fail. rate 0.6 0 0.02 0.86 0 0.009

50 earliness 0.73 0.06 0.004 0.62 0.05 0.003

108 balance 0.85 0.18 0.096 0.84 0.26 0.107

ϕ12 108 accuracy 0.89 0.43 0.016 0.95 0.46 0.129

76 fail. rate 0.75 0 0.03 0.73 0.02 0.026

149 earliness 0.64 0 0.001 0.69 0 0

154 balance 0.77 0.1 0.016 0.87 0.05 0.028

ϕ21 17 accuracy 0.91 0.29 0.033 0.92 0.12 0.013

86 fail. rate 0.87 0 0.004 0.91 0 0.002

65 earliness 0.87 0 0 0.91 0 0

65 balance 0.87 0 0 0.91 0 0

ϕ22 22 accuracy 1 0.12 0.246 1 0.26 0.335

136 fail. rate 0.98 0 0.021 1 0 0

127 earliness 0.98 0.04 0.001 1 0 0

25 balance 0.99 0.03 0.12 0.96 0.06 0.18

Among the configurations in the set, we picked the ones that a user could
be interested in a typical scenario like the ones considered in this evaluation.
We selected as choice criteria the performance of the configuration with respect
to each of the evaluation dimensions and the performance of the configuration
with respect to all the evaluation dimensions. Specifically, we selected, for each
evaluation dimension, the configuration that scores best (with respect to that
dimension), provided that the other two dimensions do not significantly under-
perform. Furthermore, we manually selected a fourth configuration that balances
the performance of the three evaluation dimensions. Table 2 (Tuning column)
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shows, for each rule, the best (in terms of accuracy, failure rate, earliness and a
mix of the three) configurations and the corresponding performance. The iden-
tified configurations differ one from another not only for the hyperparameter
values but also for the selected algorithms. For example, in configuration 109 for
rule ϕ11, identified as the one with the best accuracy, the clustering algorithm
is dbscan, while in configuration 22, i.e., the one with the best accuracy for rule
ϕ22, the clustering algorithm is k-means.

In order to evaluate whether the identified configurations could actually
answer the prediction problem in the specific domain, we evaluated them on
the testing set. Table 2 (Evaluation column) shows the results obtained in terms
of accuracy, failure rate and earliness. By comparing the results obtained with
the ones obtained in the tuning phase, we can observe that, according to our
expectations, they are aligned. Moreover, by further inspecting the table, we
have a confirmation of the trend that we observed by looking at the descriptive
statistics of the data related to the tuning phase (Table 1). The values of the three
metrics along the four selected configurations are quite similar for the rules in
Scenario 2, whereas they differ for the rules in Scenario 1. In the latter, hence,
the user (e.g., Bob) has the possibility to choose the configuration based on his
needs. If, for example, he is more interested in getting accurate predictions, he
would choose configuration 109 for ϕ11 and 108 for ϕ12. If, he is more interested
in obtaining a prediction, taking the risk that it could also be inaccurate, then
he would choose configurations 4 and 76 for the two rules, respectively. Similarly
for early predictions and predictions balancing all the three dimensions.

Finally, we looked at the time required by the Tuning-enhanced Predictive
Process Monitoring Framework for processing the configurations for each of the
four rules. The last column of Table 1 reports the overall time spent to this
purpose. Here, we can notice a difference in the computation time required by
the two datasets. This difference can be due to the difference in the length of
the traces in the two datasets. Indeed, the traces of the dataset related to the
Dutch Academic Hospital are on average longer than the ones in the Dutch
Municipality dataset. Moreover, in order to investigate the time saved with the
reuse of data structures, we performed a run in which all the data structures
had already been computed and stored in the server and we observed a time
reduction of about 20 %. Finally, we performed a further run with 8 replayers
rather than with a single replayer and we observed a further time reduction of
about 13.1 %.

Threats to Validity. Three main external threats to validity affect the results
of the evaluation: (i) the subjectivity introduced by the user; (ii) the potential
overfitting introduced during the tuning phase; and (iii) the limited number of
analyzed scenarios. Concerning the first threat, the user is involved in the process
(and hence in the evaluation) both in the initial definition of the configurations
and in the selection of the configuration. The results of the experiment could
hence be influenced by the human subjectivity in these choices. We tried to
mitigate the impact of this threat by analyzing what a user would do in “typ-
ical” scenarios. As for the second threat, the construction of the configuration
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parameters would have benefit of a cross-validation procedure, which would have
increased the stability of the results. Finally, although we only limited our eval-
uation to two datasets and to four specific rules, we defined realistic scenarios
and used real-life logs.

7 Related Work

In the literature, there are two main branches of works related to this paper:
those concerning predictive monitoring and those related to hyperparameter
optimization.

As for the first branch, there are works dealing with approaches for the gener-
ation of predictions, during process execution, focused on the time perspective.
In [2], the authors present a set of approaches in which annotated transition
systems, containing time information extracted from event logs, are used to:
(i) check time conformance; (ii) predict the remaining processing time; and (iii)
recommend appropriate activities to end users to improve the process perfor-
mance. In [6], a predictive clustering approach is presented, in which context-
related execution scenarios are discovered and modeled through state-aware per-
formance predictors. In [15], the authors use stochastic Petri nets to predict the
remaining execution time of a process. Another group of works, in the literature,
focuses on approaches that generate predictions and recommendations to reduce
risks. For example, in [3], the authors present a technique to support process par-
ticipants in making risk-informed decisions with the aim of reducing the process
risks. In [13], the authors make predictions about time-related process risks by
identifying and exploiting statistical indicators that highlight the possibility of
transgressing deadlines. In [16], an approach for Root Cause Analysis through
classification algorithms is presented.

A key difference between these approaches and the Tuning-enhanced Pre-
dictive Process Monitoring Framework approach is that they either rely on
the control-flow or on the data perspective for making predictions at runtime,
whereas the predictive process monitoring framework [4,10] takes both perspec-
tives into consideration. In addition, we provide a general, customizable frame-
work for predictive process monitoring, which is flexible and can be implemented
in different variants with different sets of techniques, and which supports users
in the tuning phase.

As for the second branch of works, several approaches in machine learning
have been proposed for the selection of learning techniques [12], for the tuning
of hyperparameters [7], and for the combined optimization of both techniques
and hyperparameters [8,17].

The problem that we address is to tune both the machine learning technique
and hyperparameter values. One of the first works that falls in this group of
approaches is Auto-WEKA [17]. The idea of this work is to map the problem
of algorithm selection to that of hyperparameter optimization and to approach
this problem based on sequential model-based optimization and a random forest
regression model. MLbase [8] also addresses the same problem as Auto-WEKA
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and approaches it using distributed data mining algorithms. Differently from
these approaches, the problem that we face in this work is more complex. In our
case, we have more than one machine learning (sub-)problem (e.g., clustering
and classification) and these sub-problems depend on each other. Hence, the
algorithm (and hyperparameter) optimization for a (sub-)problem cannot be
defined independently of the other sub-problems. This is why the solution we
propose combines manual and exhaustive search.

8 Conclusion

The contribution of this paper is a predictive process monitoring framework incor-
porating a hyperparameter optimization method that supports users in the selec-
tion of the techniques and in the tuning of the hyperparameters according to the
specific dataset and prediction problem under analysis. We evaluated the approach
on two datasets and we found that the Tuning-enhanced Predictive Process Moni-
toring Framework provides users with interesting sets of tunable configurations in
a reasonable time. This allows users to adopt configurations that generate accurate
predictions for the specific dataset and prediction problem.

In the future, we plan to further investigate: (i) how to increase the user
support; (ii) how to optimize the exhaustive search. Concerning the former, we
would like to provide users with an automatic heuristic-based approach for the
exploration of the search space. This would allow us to go beyond the exhaustive
analysis of a limited search space of the configurations by exploiting an objective
function to explore a larger search space. For example, we could use as objective
function each of the evaluation metrics considered in this work or we could use
a multi-objective function for the optimization of all three of them. As for the
latter, we would like to borrow state-of-the-art techniques for algorithm selection
and hyperparameter tuning and, if possible, to customize them for our problem.

Finally, a further interesting direction is to extend our framework to support
prescriptive process monitoring. The idea is to provide recommendations to the
user to achieve a certain goal in a given ongoing trace. Recommendations would
allow users not only to know whether a goal will be achieved but also what to
do for increasing the chances of achieving it.
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