
A Visual Approach to Spot
Statistically-Significant Differences in Event

Logs Based on Process Metrics

Alfredo Bolt(B), Massimiliano de Leoni, and Wil M.P. van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
{a.bolt,m.d.leoni,w.m.p.v.d.aalst}@tue.nl

Abstract. This paper addresses the problem of comparing different
variants of the same process. We aim to detect relevant differences
between processes based on what was recorded in event logs. We use
transition systems to model behavior and to highlight differences. Tran-
sition systems are annotated with measurements, used to compare the
behavior in the variants. The results are visualized as transitions sys-
tems, which are colored to pinpoint the significant differences. The app-
roach has been implemented in ProM, and the implementation is publicly
available. We validated our approach by performing experiments using
real-life event data. The results show how our technique is able to detect
relevant differences undetected by previous approaches while it avoids
detecting insignificant differences.

Keywords: Process variants comparison · Annotated transition
system · Statistical significance · Process mining

1 Introduction

Process mining is a relatively young research discipline that aims at discover-
ing, monitoring and improving real processes by extracting knowledge from the
behavior as recorded in the event logs readily available in today’s systems [1].
The field of process mining puts forward techniques for discovering process mod-
els from event logs, for checking the conformance of normative models against
the behavior observed in the event logs and analyzing bottlenecks and other Key
Performance Indicators (KPIs).

Traditional process-mining techniques typically rely on the assumption that,
within any organization, all executions of a certain process are characterized
by an homogenous behavior, which can be easily compared. This assumption
is often not met in reality: several variants of the same process may exist even
within the same organization. As an example, consider an organization, such
as a bank, that is composed by dozens of geographically spread branches. The
same process, e.g., the loan’s management, can be executed differently in these
branches. Even within a branch, the observed behavior can vary according to

c© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 151–166, 2016.
DOI: 10.1007/978-3-319-39696-5 10

152 A. Bolt et al.

Fig. 1. Overview of the approach: two event logs are compared, producing a single
annotated transition system, where the colors of nodes and edges represent the rele-
vance of the differences found. (Color figure online)

different criteria; for example, the behavior may change over time or depend on
the amount involved.

The comparative analysis of different process variants is obviously relevant
and through the availability of event data also possible. This paper presents a
generic technique to compare process variants by identifying statistically sig-
nificant differences. Figure 1 sketches the idea: two event logs are compared for
differences that are projected onto a transition system where states and tran-
sitions are colored to highlight differences. The thickness of the node’s borders
and arcs indicates the frequencies with which states and transitions are respec-
tively visited or occur. The portions of behavior that are rarely observed are
filtered out. Also, differences are not highlighted if they are not statistically sig-
nificant. The visual properties of these transition systems, and their meaning,
are discussed in Sec. 3.

The two event logs that are used for comparison can have actually been
extracted from different information systems, e.g. of two branches of the same
company or of different companies. Alternatively, they can be extracted from
a process cube [2,3] using the typical operations of, e.g., dicing, slicing and
filtering. In the case that more than two event logs need to be compared, they
can be grouped and merged into two event logs.

As detailed in Sect. 6, existing work mainly focuses on reporting differences
for what concerns the control flow, meaning the frequency with which activities
occur and the causal relations between activities (i.e., which activities are typ-
ically observed to follow given activities). However, differences can be regarded
from other viewpoints based on other process metrics, such as the time between
activities and the overall process performance. Our approach allows end users
to use several process metrics for detecting such differences. Figure 1 shows an
overview of the approach: two event logs are taken as input and an annotated
transition system showing the differences is produced as output.

In order to assess the practical relevance of the differences highlighted by our
technique, we used real-life event data extracted from the information system of
an Italian local police, which records the executions of the process of handling

A Visual Approach to Spot Differences in Event Logs 153

road-traffic fines. In particular, we show how the management of high fines varies
from that of low fines, including differences in the behaviors of offenders in paying
the fines.

The remainder of this paper is structured as follows. Section 2 introduces the
basic concepts that are used throughout the papers, whereas Sect. 3 details our
technique for comparing the behaviors observed in two event logs. Section 4
describes the software tool that implements this approach, whereas Sect. 5
presents the evaluation discussed above. Section 6 discusses related work; in par-
ticular, using the same dataset of an Italian local police, we illustrate how exist-
ing approaches highlight insignificant differences instead of highlighting many
of the relevant differences, which conversely, our approach can. Finally, Sect. 7
summarizes our contributions and discusses future work.

2 Transition Systems as a Process Representation

The behavior observed in an event log can be summarized as a transition sys-
tem [4]. Section 2.1 introduces the formalisms used to represent event logs.
Section 2.2 describes how transition systems are created. Sections 2.3 and 2.4
illustrate how measurements can be annotated into the states and transitions of
a transition system.

2.1 Event Log

Table 1. A fragment of an event log
represented as a table: each row cor-
responds to an event and each column
corresponds to an event attribute.
Events with the same trace id corre-
spond to the same trace (i.e., process
instance).

Trace id Activity Timestamp ...

1 A 28-12-2015:06.30 ...

1 B 28-12-2015:06.45 ...

1 C 28-12-2015:07.20 ...

1 D 28-12-2015:08.05 ...

2 A 29-12-2015:10.10 ...

2 C 29-12-2015:10.30 ...

2 B 29-12-2015:11.15 ...

2 D 29-12-2015:12.10 ...

3 A 30-12-2015:09.30 ...

3 D 30-12-2015:09.40 ...

Let E be the universe of events. Events
may have attributes (e.g., the person who
executed it, associated cost, timestamp).
Attribute values are related to events
through the function atta ∈ E → V, where
a is an attribute name and V is the set of
possible attribute values. In this paper we
do not impose a specific set of attributes.
However, given the focus of this paper,
we assume that each event has at least
the following attributes: activity name and
timestamp (denoted as attn(e) and att t(e)
respectively).

Let σ ∈ E∗ be a trace. A trace records
the execution of an instance of a process
and is a finite sequence of events. The kth

event of a trace is denoted as σ(k). The
length of a trace is denoted as |σ|. We
assume that events in traces are ordered by timestamp i.e., ∀σ ∈ E∗, 1 ≤ i < j ≤
|σ| : att t(σ(i)) ≤ att t(σ(j)). The prefix of a trace containing its first k events is
defined by the function pref k ⊆ E∗ → E∗, with the special case pref 0(σ) = 〈〉.
The set of all the prefixes of a trace σ is defined as pref �(σ) =

⋃|σ|
k=0{pref k(σ)}.

154 A. Bolt et al.

The postfix of a trace containing its last k events is defined by the function
postf k ⊆ E∗ → E∗.

Let L ∈ B(E∗) be an event log. An event log is a multiset of traces. The set
of all the prefixes of traces of an event log L is defined as PL =

⋃
σ∈L pref �(σ).

The set of all the events in an event log L is defined as EL =
⋃

σ∈L{e ∈ σ}.
Table 1 shows an example of an event log represented as a table. This event log
will be used as a running example through the remainder of this section.

2.2 Transition Systems

Transition systems are composed of states and of transitions between them. A
transition is defined by an activity being executed, triggering the current state
to move from a source to a target state. Figure 2 shows two possible transition
system representations of the event log presented in Table 1. The nodes indicate
the states and the arcs indicate the transitions between them. Prefixes of traces
can be mapped to states and transitions using representation functions that
define how these prefixes are interpreted.

Fig. 2. Examples of transition systems obtained from the event log L presented in
Table 1 using different state representation functions rs(σ), σ ∈ PL. In both cases, the
activity representation function used is ra(e) = attn(e), e ∈ EL.

The state representation function is defined as rs ∈ E∗ → Rs where E∗ is the
universe of possible traces and Rs is the set of possible representations of states.
This function relates (prefixes of) traces to states in a transition system.

The activity representation function is defined as ra ∈ E → Ra where E is the
set of possible events and Ra is the set of possible representations of activities
(e.g., activity name or event id).

When using a state representation function rs and an activity representation
function ra together, (prefixes of) traces can be related to transitions in a tran-
sition system, as the activity and the source and target states of the transition
can be identified using rs and ra. The set of all possible representations of traces
is defined as Rt ⊆ Rs ×Ra ×Rs. A transition t ∈ Rt is a triplet (s1, a, s2) where
s1, s2 ∈ Rs are the source and target states and a ∈ Ra is the activity executed.

Figure 2a shows the transition system that represents the event log L shown
in Table 1 using the state representation function rs(σ) = attn(σ(|σ|),∀σ ∈ PL

A Visual Approach to Spot Differences in Event Logs 155

and the activity representation function ra(e) = attn(e),∀e ∈ EL. In this tran-
sition system, (prefixes of) traces are mapped into states and transitions as the
activity name of their last event.

Figure 2b, shows a different representation of the same event log L. For this
transition system the state representation function used is rs(σ) = {attn(e)|e ∈
σ}, σ ∈ PL and the activity representation function used is ra(e) = attn(e), e ∈
EL. In this transition system, (prefixes of) traces are mapped into states as the
set of activity names of all their events, and into transitions as the activity name
of their last event.

Definition 1 (Transition System). Let rs be a state representation function,
ra an activity representation function and L an event log. A transition system
TS (rs,ra,L) is defined as a triplet (S,A, T) where S = {s ∈ Rs|∃σ∈PL

s = rs(σ)}
is the set of states, A = {a ∈ Ra|∃e∈EL

a = ra(e)} is the set of activities and
T = {(s1, a, s2) ∈ S × A × S|∃σ∈PL,σ �=〈〉s1 = rs(pref |σ|−1(σ)) ∧ a = ra(σ(|σ|)) ∧
s2 = rs(σ)} is the set of valid transitions between states.

Note that the structure of a transition system is affected by the state and
activity representation functions used to create it. A thorough discussion on
state and event representations in transition systems is presented in [4].

2.3 Measurements

In order to compare event logs, we need to introduce the measurements used
for comparison. Measurement functions are computed as functions of event
attributes contained in the events of a trace.

Given a state representation function rs a state measurement function smrs ∈
E∗ × Rs → B(R), is a function that relates traces σ ∈ E∗ and states s ∈ Rs

to multisets of numerical measurements. For example, it is possible to measure
whether or not a certain state s in a state representation rs is reached during
the process’ execution recorded in a trace σ:

smoccur
rs (σ, s) =

{
[1] if ∃σ′ ∈ pref�(σ) : rs(σ′) = s

[0] otherwise
(1)

It is also possible to measure the elapsed time between the beginning of a
trace σ and the visit of a state s using a state representation rs:

smelapsed
rs (σ, s) =

⊎

σ′∈pref �(σ),σ′ �=〈〉
rs(σ′)=s

[attt(σ′(|σ′|)) − attt(σ′(1)] (2)

Given a state representation function rs and an activity representation ra,
a transition measurement function tm(rs ,ra) ∈ E∗ × Rt → B(R), is a function
that relates traces σ ∈ E∗ and transitions t ∈ Rt to multisets of numerical

156 A. Bolt et al.

measurements. For example, it is possible to measure whether a certain transition
t is executed in a given trace σ:

tmoccur
(rs,ra)(σ, t) =

{
[1] if ∃σ′∈pref�(σ),σ′ �=〈〉

(
rs(pref |σ′|−1(σ′)), ra(σ′(|σ′|)), rs(σ′)

)
= t

[0] otherwise

(3)
It is also possible to measure the elapsed time of a trace until a transition is

triggered within the trace:

tmelapsed
(rs ,ra) (σ, t) =

⊎

σ′∈pref �(σ),σ′ �=〈〉(
rs(pref |σ′|−1(σ′)),ra(σ′(|σ′|)),rs(σ′)

)
=t

[attt(σ′(|σ′|)) − attt(σ′(1)]

(4)

2.4 Annotations

As mentioned before, states and transitions can be annotated with the measure-
ments obtained from an event log. Given a state measurement function sm, a
transition measurement function tm and an event log L, an annotation function
an(sm,tm,L) ∈ (Rs∪Rt) → B(R), is a function that, given a state s ∈ Rs or tran-
sition t ∈ Rt, produces a multiset of numerical measurements. The annotation
function is defined as:

an(sm,tm,L)(x) =

{⊎
σ∈L sm(σ, x) if x ∈ Rs

⊎
σ∈L tm(σ, x) if x ∈ Rt

3 Comparison and Visualization of the Differences
in Process Variants

Given two event logs L1 and L2, our approach produces comparison results (as
shown in Fig. 1) in three steps:

1. Create an annotated transition system (i.e., a transition system with multiple
annotation functions) from L1 and L2 using the state and activity representa-
tion functions rs and ra and the state and transition measurement functions
smrs and tm(rs,ra).

2. Compare the annotations of each state or transition of the annotated transi-
tion system.

3. Visualize the differences in the annotated transition system.

In order to compare process variants, we need to compare the annotations
that are produced for the states and transitions of a transition system. Hence,
we introduce annotated transition systems which allows to annotate a transition
system with multiple annotation functions.

A Visual Approach to Spot Differences in Event Logs 157

Definition 2 (Annotated Transition System). Given two event logs L1 and
L2, state and activity representation functions rs and ra, state and transition
measurement functions sm and tm, we define an annotated transition sys-
tem ATS (rs,ra,L1,L2,sm,tm) as the triplet (TS (rs,ra,L1
L2), an(smrs ,tm(rs,ra),L1),

an(smrs ,tm(rs,ra),L2)), where TS (rs,ra,L1
L2) = (S,A, T) is a transition system
and an(smrs ,tm(rs,ra),L1), an(smrs ,tm(rs,ra),L2) are annotation functions denoted
as an1 and an2 respectively.

Note that the transition system uses all the traces contained in the union
of the event logs L1 and L2. Also, note that an1 and an2 use only the traces
contained in one event log (L1 and L2 respectively).

Figure 3 shows an example of annotated transition system created using the
event log L1 and L2 are created from the event log presented in Table 1 (the
first two traces belong to L1 and the third trace belongs to L2), the state repre-
sentation function rs(σ) = {attn(e)|e ∈ σ},∀σ ∈ PL, the activity representation
function ra(e) = attn(e),∀e ∈ EL, the state measurement function smrs defined
in Eq. 1 and the transition representation function tm(rs,ra) defined in Eq. 3.
Only annotations of the function an1 are represented (i.e., as text below the
node and arc labels).

State and Transition Comparison Using Annotations. The comparison
of annotations can be abstracted as a comparison oracle that is defined as the
function diff ∈ B(R) × B(R) → Bool , which given two multi-set of numerical
measurements (i.e., annotations) decides whether there are differences between
them (i.e., true) or not (i.e., false).

Given an ATS =
(
(S,A, T), an1, an2

)
, for each element x ∈ S ∪ T we want

to detect differences by evaluating diff (an1(x), an2(x)).
In order to avoid detecting irrelevant differences between the means of the

annotations, statistical significance tests are used as the comparison oracle. We
have opted for the two-tailed “Welch’s T-test”, also known as the “two-tailed

Fig. 3. Transition system annotated with the occurrence state and transition measure-
ment functions defined in Eqs. 1 and 3. Annotations are represented as text under the
node and edge labels.

158 A. Bolt et al.

T-test with different variances” [5] because it is suited when the two sets of mea-
surements come from independent populations, such as when they are extracted
from two event logs from different branches of a company.

Visualizing Differences in Annotated Transition Systems. Annotations
and comparison results of states and transitions can be represented using visual
properties (i.e., thickness and color) of nodes and arcs.

Given an ATS =
(
(S,A, T), an1, an2

)
, for each element x ∈ S ∪ T , the

thickness of the corresponding node (if x ∈ S) or arc (if x ∈ T) is proportional
to the mean value of an1(x) � an2(x) i.e., the average value of the annotations
associated with x and computed on the merged log. The thickness property
provides insights about the overall behavior of both variants.

Figure 4 illustrates an example of this visualization using the ATS presented
in Fig. 3. In this case, the annotations obtained from an1 and an2 are represented
as thickness instead of text.

Given an ATS =
(
(S,A, T), an1, an2

)
, for each element x ∈ S ∪ T , the

corresponding node (if x ∈ S) or arc (if x ∈ T) will be colored black or white
(depending whether it is an arc or a node) if diff (an1(x), an2(x)) = false, or
it will be colored using other colors if diff (an1(x), an2(x)) = true. In the latter
case, the color used will depend on the measurement function used and on the
effect size of the difference.

The effect size oracle is defined as the function eff ∈ B(R) × B(R) → R,
which given two multisets of measurements, returns the size of the effect (i.e.,
how small or large is the difference) and the sign of the difference (+/-) in a
certain scale. In this paper, we used Cohen’s d [6] to measure effect size, which
measures the difference of sample means in terms of pooled standard deviation
units. Cohen relates ranges of d values to effect size categories: d = ±0.2 is
considered as a small effect, d = ±0.5 is considered as a medium effect and
d = ±0.8 is considered as a large effect. However, other effect size measurements
could be used instead.

Fig. 4. An example of how the annotations are translated to the thickness of the
transition’s arcs and state’s node borders using the annotated transition system shown
in Fig. 3.

A Visual Approach to Spot Differences in Event Logs 159

Currently, we support two measurement functions and, hence, two color inter-
vals are used, as shown in Fig. 51. In Fig. 5a, occurrence measurement functions
(Eqs. 1 and 3) were used. Blue-based colors mean that the occurrence of a state or
transition in a first event log is higher than in a second event log and red-based
colors mean the opposite. In Fig. 5b, elapsed time (performance) annotation
functions (Eqs. 2 and 4) were used. Green-based colors mean that the elapsed
time of reaching a state or executing a transition in a first event log is higher
than in a second event log and purple-based colors mean the opposite. Note that
within the color intervals, different colors are used according to Cohen’s d ranges
of effect size values. Colors with higher intensity (i.e., darker) represent larger
effect sizes (i.e., more relevant differences), whereas colors with low intensity
(i.e., lighter) represent smaller effect sizes (i.e., less relevant differences).

Fig. 5. Example of an annotated transition system colored with the results of statistical
significance tests and effect size oracle using different state and transition measurement
functions. (Color figure online)

1 Note that the example transition system used in this figure is different than previous
examples, and it is used for illustration purposes only.

160 A. Bolt et al.

4 Implementation

Our approach has been implemented as the Process Comparator plugin in the
ProM [7] framework. ProM allows researchers to implement process mining tech-
niques in a standardized environment, providing several functionalities that can
be used by the implementations, and also providing a distribution platform for
other researchers to use these developments. The ProM framework is considered
as the de-facto standard for process mining, and it can be freely downloaded
form http://promtools.org.

The tool takes two event logs as input. However, more than two event logs can
be compared. This is handled by requesting the user to group these event logs
into two groups. Each of these groups is then merged into a single event log and
then compared against each other. The tool also provides a “hint” functionality
for the users that do not have context knowledge or do not know which processes
to compare. This functionality suggests to compare a single process against all
the others by calculating similarity scores between each process and the union
of the n − 1 remaining processes. Similarity score is calculated based on the
percentage of elements that present statistically significant differences. Finally,
the process that has most differences with the rest is suggested to the user as a
starting point for comparative analysis.

Our tool allows the user to change state and event representation functions,
state and transition measurement functions and several useful parameters (e.g.,
the significance level of the statistical significance tests) in order to provide flex-
ible representations for the event logs, as shown in Fig. 6. Our tool also provides
frequency filtering capabilities where all the nodes and arcs with lower frequency
than a defined threshold will be hidden from the visualization. This allows to
filter out rare behavior and to produce clearer visualizations. Also, the elements
of the annotated transition system presented as result are interactive. The user
can click on any state or transition, and a data table will pop-up showing the
values of the annotations of such state or transition for both event logs (e.g.,
frequency of occurrence, elapsed time, remaining time, number of traces).

5 Evaluation

In order to show the usefulness of our approach in practice, we performed exper-
iments using multiple real-life event logs. Here we report on a log extracted from
an Italian Municipality’s information system that handled the “road fines man-
agement” process [8]. For showing the comparison capabilities of our approach,
we split the event logs into two sub logs (i.e., variants): the first one contains all
the cases where the fine amount was lower than 50 euros (i.e., low fines) and the
second contains all the cases where the amount of the fine was equal or higher
than 50 euros (i.e., high fines). The two event logs were then compared against
each other using our tool, and the differences were projected into an annotated
transition system. We performed two sets of experiments:

http://promtools.org

A Visual Approach to Spot Differences in Event Logs 161

Fig. 6. Screenshot of the Process Comparator plugin in the ProM framework. Detailed
data tables pop-up when the user clicks on states or transitions.

– The first was based on an abstraction where the last event of the trace is
considered. We used the following state and transition abstraction: given an
event log L, a trace σ ∈ PL and an event e ∈ EL, rs(σ) = attn(σ(|σ|)) and
ra(e) = attn(e). As measurement for comparison, elapsed time was used as
defined in Eqs. 2 and 4, thus comparing the time differences when activities
were executed.

– The second was based on an abstraction where the last two events were con-
sidered: rs(σ) = 〈attn(σ(|σ|)), attn(σ(|σ| − 1))〉 and ra(e) = attn(e). The
occurrence measurements for comparison were used as defined in Eqs. 1 and 3.

In both of experiments, we used a confidence level α = 0.05 for the Welch’s T
tests.

Figure 7 shows the results of the first experiment, where many relevant per-
formance differences were detected. As previously shown in Fig. 5b, green colors
are assigned to states and transitions that are reached or executed statistically
significantly earlier in low fines, whereas purple colors are assigned when the
opposite occurs. The green color assigned to state Payment indicates that pay-
ments were received significantly earlier for low fines (99 days versus 151 days)2.
Conversely, the purple-colored transition (Create Fine, Send Fine) indicates that
high fines are sent to offenders significantly earlier (72 days versus 90 days)2.
The thickness of this arc also indicates that, overall, sending the fine after cre-
ating is a more frequent behavior. The fact that the Create Fine state is white
indicates that there is no statistically significant difference in how early Create
Fine is executed.

2 This is not observable in the picture but, in the implementation, by clicking on a
state/transition, one can read this information in a popup equivalent to the two
shown in Fig. 6.

162 A. Bolt et al.

Fig. 7. Performance (elapsed time) comparison. Colored states (i.e., nodes) and tran-
sitions (i.e., edges) contain statistically significant differences between the two event
logs. Purple shades represent earlier executions of activities or reaching of states in high
fines. Green shades represent the other way around. White indicates that no significant
differences can be observed. The shades become darker and darker with increasingly
statistically significant differences. (Color figure online)

Fig. 8 illustrates the output of the second experiment. Orange shade ovals and
arcs represent states reached or transitions executed significantly more often in
low fines compared with high fines. Blue shades refer to the opposite. The first
observation is that low fines are usually immediately paid without requiring the
local police to send a copy of fine to the offender. This can be seen through
the orange-colored state [Payment,Create Fine] and the transition from [Create
Fine] to this state. Conversely, high fines are more often sent to the offender
than low fines, as one can observe through the blue-colored state [Send Fine,
Create Fine]. Similar observations can be derived by looking at the other states
and transitions. Figure 8 highlights part of the transition system (red rectangle).
It indicates that, for low fines, it happens significantly more often that offenders
perform incomplete payments, which cause a penalty to be added3, which are
subsequently followed by a second payment to probably complete the fine pay-
ment. Conversely, for high fines, it is significantly more frequent that payments
only occurs after adding the penalty. This can be seen from the blue color asso-
ciated with the transition between states [Add Penalty, Insert Fine Notification]
and [Payment,Add Penalty]. Please observe that the latter finding could not be
observed if we used an abstraction solely based on the last occurred event.

6 Related Work

Earlier work has been done on comparing process variants. The corresponding
papers can be grouped in two category: model-based and log-based comparison.
3 According to the Italian laws, if a fine is not paid in full within 90 days, a penalty

is added so that the due amount doubles.

A Visual Approach to Spot Differences in Event Logs 163

Fig. 8. Occurrence frequency comparison. Colored states (i.e., nodes) and transitions
(i.e., edges) contain statistically significant differences between the two event logs. Blue
colors represent a higher occurrence in high fines. Orange colors represent a higher
occurrence in low fines. (Color figure online)

The main difference between these two categories is that model-based approaches
require process models as inputs and log-based approaches require event logs
as inputs. Indirectly, model-based approaches can also be used starting from
event logs. Models can be discovered from logs and then used as inputs for the
approach. However, the obtained insights should be validated since the structure
of the models (hence, the detected differences) can be drastically affected by the
choice of the discovery technique or its parameters.

Model-Based Comparison. Model-based comparison techniques have been
developed in recent years [9–12]. La Rosa et al. [11] provide a complete overview
of the different ways to compare and merge models. Most of them are based
on control-flow comparison, where the structural properties of the models (rep-
resented as graphs) are compared (e.g., nodes and edges present in one of the
models, but not in the other one).

A drawback of model-based approaches is that they are unable to detect
differences in terms of frequency or any other process metrics (e.g., elapsed time).
For example, in Sect. 5, we detected a frequency difference on the payment of a
fine directly after being created (34 % of the low fines versus 15 % of the high
fines). This difference is not detected by model-based approaches, since in both
variants the activity “Create Fine” is followed by “Payment” in at least 15 %
of the cases, so this behavior would be present in the models of both variants.
A severe drawback of employing model-based comparison is related to the fact
that the variants are compared in terms of their model structure whereas we aim
to compare the behavior. This motivates why, in this paper, we have opted for a

164 A. Bolt et al.

low-level behavioral representation, i.e., transition systems, instead of high-level
process modelling languages, such as BPMN or Petri nets. For instance, they
are unable to detect that low-fine offenders perform incomplete payments that
need to be integrated after receiving a penalization.

Log-Based Comparison. The most recent approach for log-based behavior
comparison is by van Beest et al. [13]. This technique is able to identify dif-
ferences between two event logs by computing frequency-enhanced prime event
structures (FPES) from the corresponding event logs, comparing the obtained
FPES and report the results using two sets of textual statements: control-flow
differences and branching frequency differences.

This approach has some advantages, such as the handling of concurrency in
process behavior. However, it presents three main limitations described as fol-
lows. First, the technique looks at the relative frequency, only. As such, when
looking at branching frequency, it possibly returns a difference (if any), even
though the branching point is actually reached very rarely. Also, no statistical
significant tests are employed. Second, to determine branching points, they only
look at the last activity independently of what activities were previously exe-
cuted. As such - as we have verified by testing the reference implementation - it
is unable to detect differences that refer to the activities preceding the last, such
as, in the road-traffic case study, a number of low-fine offenders perform incom-
plete payments that need to be integrated after receiving a penalization. Third,
the approach considers event logs as sequences of event labels, thus ignoring all
other event attributes (e.g., timestamp, event payload). This limits the approach
to detect only frequency differences. Differences in performance or other process
metrics cannot be obtained.

Other approaches based on sequence mining such as [14–17] obtain rules that
are overcomplicated and not valuable from a business perspective (as indicated
in [13,14]).

7 Conclusion

The problem of comparing process variants is highly relevant. Many companies
are observing that the executions of their processes are not always optimal and
subject to variations. Processes may change because of the influence of several
factors, such as the year period, the geographical location of the process’ exe-
cution or the resource unit in charge. Some recent approaches aim to compare
the execution of the different process variants. Most existing approaches tend to
focus on the control-flow perspective or to detect differences that are statistically
insignificant.

To our knowledge, no current approach is able to detect the relevant behav-
ioral differences between process variants in terms of any process metric (e.g.,
performance) based on their recorded event logs. To address this issue, we devel-
oped a new technique based on annotated transition systems that detects sta-
tistically significant differences between process variants in terms of any process

A Visual Approach to Spot Differences in Event Logs 165

metric, using event logs as input. We used annotated transition systems to avoid
being mining algorithm specific.

Our implementation is provided with two concrete metrics, which are related
to the control-flow frequency (in the paper, named occurrence) and to the time
perspective (the elapsed time metric). However, the framework allows one to
easily add new measurement functions.

The evaluation and the related-work analysis has clearly shown that the app-
roach is relevant and allows one to pinpoint differences that previous approaches
fail to provide. Also, our approach excludes all differences that are in fact sta-
tistically insignificant, which are conversely returned by other approaches.

As future work, we aim to evaluate to what extent this visual approach
scales when processes get larger and more complex. In this way, we can obtain
direct feedback about whether business stakeholders can understand and benefit
from our visual approach. Also, we aim to integrate it with process cubes, thus
providing a complete suite to slice, dice, drill down, roll up and compare process
variants.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer, Heidelberg (2011)

2. Bolt, A., van der Aalst, W.M.P.: Multidimensional process mining using process
cubes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.)
BPMDS 2015 and EMMSAD 2015. LNBIP, vol. 214, pp. 102–116. Springer,
Heidelberg (2015)

3. van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up
and drilling down event data for process mining. In: Song, M., Wynn, M.T., Liu,
J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 1–22. Springer, Heidelberg (2013)

4. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011). Special Issue: Semantic Integra-
tion of Data, Multimedia, and Services

5. Welch, B.L.: The generalization of ‘student’s’ problem when several different pop-
ulation variances are involved. Biometrika 34(1–2), 28–35 (1947)

6. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, Hillsdale (1988)

7. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

8. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015).
doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

9. Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for difference
analysis of process models and instance traffic. In: Daniel, F., Wang, J., Weber, B.
(eds.) BPM 2013. LNCS, vol. 8094, pp. 219–226. Springer, Heidelberg (2013)

10. Cordes, C., Vogelgesang, T., Appelrath, H.-J.: A generic approach for calculating
and visualizing differences between process models in multidimensional process
mining. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol.
202, pp. 383–394. Springer, Heidelberg (2015)

http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

166 A. Bolt et al.

11. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging:
an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol.
22(2), 11:1–11:42 (2013)

12. Ivanov, S., Kalenkova, A., van der Aalst, W.M.P.: BPMNDiffViz: a tool for BPMN
models comparison. In: Proceedings of the BPM Demo Session 2015 Co-located
with the 13th International Conference on Business Process Management (BPM
2015), Innsbruck, Austria, 2 September 2015, pp. 35–39 (2015)

13. van Beest, N., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Log delta analysis:
interpretable differencing of business process event logs. In: Proceedings of the
13th International Conference on Business Process Management (BPM 2015), pp.
386–405 (2015)

14. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business
process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T.,
Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS,
vol. 8841, pp. 436–445. Springer, Heidelberg (2014)

15. Lakshmanan, G.T., Rozsnyai, S., Wang, F.: Investigating clinical care pathways
correlated with outcomes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 323–338. Springer, Heidelberg (2013)

16. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process
mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A.
(eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

17. Swinnen, J., Depaire, B., Jans, M.J., Vanhoof, K.: A process deviation analysis – a
case study. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011,
Part I. LNBIP, vol. 99, pp. 87–98. Springer, Heidelberg (2012)

	A Visual Approach to Spot Statistically-Significant Differences in Event Logs Based on Process Metrics
	1 Introduction
	2 Transition Systems as a Process Representation
	2.1 Event Log
	2.2 Transition Systems
	2.3 Measurements
	2.4 Annotations

	3 Comparison and Visualization of the Differences in Process Variants
	4 Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

