
View-Based Near Real-Time Collaborative
Modeling for Information Systems Engineering

Petru Nicolaescu1(B), Mario Rosenstengel1, Michael Derntl2, Ralf Klamma1,
and Matthias Jarke1,3

1 RWTH Aachen University, Lehrstuhl Informatik 5, Ahornstr. 55,
52074 Aachen, Germany

{nicolaescu,rosenst,klamma,jarke}@dbis.rwth-aachen.de
2 Eberhard Karls Universität Tübingen,

eScience-Center, Wilhelmstr. 32, 72074 Tübingen, Germany
michael.derntl@uni-tuebingen.de

3 Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

Abstract. Conceptual modeling is a creative, social process that is
driven by the views of involved stakeholders. However, few systems offer
view-based conceptual modeling on the Web using lock-free synchronous
collaborative editing mechanisms. Based on a (meta-)modeling frame-
work that supports near real-time collaborative modeling and meta-
modeling in the Web browser, this paper proposes an exploratory app-
roach for collaboratively defining views and viewpoints on conceptual
models. Viewpoints are defined on the metamodeling layer and instan-
tiated as views within a model editor instance. The approach was suc-
cessfully used for various conceptual modeling languages and it is based
on user requirements for model-based creation and generation of next-
generation community applications. An end-user evaluation showed the
usefulness, usability and limitations of view-based collaborative model-
ing. We expect that Web-based collaborative modeling powered by view
extensions will pave the way for a new generation of collaboratively and
socially engineered information systems.

Keywords: Views · Viewpoints · Collaborative conceptual modeling

1 Introduction

Conceptual modeling is a key tool for representing domain-specific information
during the requirements elicitation and design phases of information systems [16].
With the increased collaboration between stakeholders from different geograph-
ical locations and the emergence of Web technologies that enable near real-time
(NRT) communication and offer a proper medium for collaboration and infor-
mation exchange, new research opportunities emerge in the field of collabora-
tive conceptual modeling. Usually, (meta-)models are used to create abstract
representations of a system and to address different groups of stakeholders,

c© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-39696-5 1



4 P. Nicolaescu et al.

e.g. developers, project managers, customers, partners, or investors. The com-
plexity of models and metamodels representing these systems is increasing
rapidly. Thus, it is often necessary to look at a complex system or applica-
tion from different points of view. Moreover, certain stakeholders may prefer or
require a different view to express their concerns [11,17]. Views (also referred to
as viewpoints) are used to deal with this complexity in (meta-)modeling frame-
works. View-based modeling aims at creating partial metamodels and models,
each one of them reflecting a set of concerns of the modeled system [17]. Previous
research during the late ’90 s covers viewpoints and the generation of views from
metamodels, especially from a requirements engineering perspective [15,16]. The
works also explore the generation of views from metamodels, in various industry
or academia-driven information systems. However, as aforementioned, the Web
2.0 uprise has reshaped the social work behavior, making systems available for
heterogeneous communities free or at a low cost, on the Web, which is also valid
in the conceptual modeling case.

The motivation underlying this work is taken from a Model Driven Web
Engineering scenario where developers and end users collaboratively built a
Web application [4]. In this setting, a study was carried out using thirteen user
evaluation sessions in groups of two or three, with a total of 36 participants.
We observed how collaborative modeling can be leveraged by different stake-
holders during the design phase of an information system. We provided both
non-technical users and software developers with an NRT collaborative editor
for modeling and generating Web applications. Based on a common application
metamodel, they were given separate parts of a model for modeling the fron-
tend and backend of the application. In a first stage, participants were allowed
to model the backend of a given information system in NRT (services, data-
base, service interface, etc.). Then, they were asked to model in the same way
the interface for the already designed backend. The results show that many
end users perceived parts of the model as too complicated or were finding the
representation not relevant or intuitive for them. As such, they expressed the
desire to reduce complexity of a model by only being presented with relevant
aspects, which in the specific case were mostly considered to be HTML5 frontend
elements. Furthermore, many end users expressed the desire to have familiar rep-
resentations of such objects. Following these outcomes, this paper explores the
NRT collaborative definition of views through a metamodel-based approach and
their usage in NRT collaborative modeling scenarios.

We formulate three research questions:

– How can various stakeholders collaboratively define views as part of a meta-
model in NRT? (RQ1 );

– How to generate customized views based on the metamodel definition where
stakeholders can further collaboratively edit parts of a generated model?
(RQ2 );

– Do views impact NRT collaborative modeling with respect to user experience
improvement and the modeling process speed (RQ3 )?



View-Based Collaborative Modeling 5

In order to explore the collaborative work with custom-defined views, the
paper presents a view extension framework for NRT collaborative modeling in
the Web browser. The framework facilitates a collaborative, graphical definition
of views on the metamodel layer. This allows metamodelers to redefine enti-
ties (e.g. objects and relationships of a metamodel) in custom viewpoints and
then apply these viewpoints to the models. In previous work [5], we presented
SyncMeta, a Web-based NRT collaborative (meta-)modeling tool. SyncMeta
allows the collaborative creation of metamodels in NRT based on a visual lan-
guage specification (VLS) and the generation of model editors based on the
defined metamodels. The view extension was implemented on top of this frame-
work.

This paper is structured as follows. In the next section we introduce the
SyncMeta framework that offers the foundation for our collaborative view-based
modeling extension. Section 3 introduces viewpoints and views and provides a
formalization on view-based metamodeling. Section 4 then describes the archi-
tecture and implementation of the framework and discusses the limitations of
our approach. Section 5 presents an end-user evaluation of the implementation.
Section 6 shows how the view-based extension goes beyond the state of the art.
Finally, Sect. 7 concludes the paper and outlines the future work.

2 SyncMeta: Near Real-Time Collaborative
(Meta-)Modeling and the Views Extension

SyncMeta is a Web-based metamodeling framework that allows users to create
modeling languages collaboratively with NRT synchronization of edits. An illus-
tration of the concepts and roles in the SyncMeta framework is given in Fig. 1.
On the metamodeling layer metamodelers use the Meta-Model Editor for collab-
orative authoring of a metamodel, represented by a VLS. This builds the basis

Fig. 1. Concepts and roles in the SyncMeta (meta-) modeling process [5], enhanced
with views extension



6 P. Nicolaescu et al.

for a model editor for the specified modeling language. A VLS is defined visually
using a graph-based visual modeling language (VML). An arbitrary number of
model editors can be generated based on the defined VLS. The NRT collabora-
tion takes place at both metamodeling and modeling layers. The implementation
details, architecture and interface offered by SyncMeta are detailed in the pre-
vious work [5]. The gray elements in Fig. 1 depict the view extension integrated
into the SyncMeta framework. These also reflect the contributions of this work.
On the metamodeling layer metamodelers may collaboratively define viewpoints
in SyncMeta’s metamodel editor. For the definition of a viewpoint the underlying
VML was extended with additional view types. The view types define references
to classes of the metamodel and offer to define conditions on the attributes of the
referenced class (RQ1 ). Additionally the appearance and rules for each view type
can be redefined in a view. To facilitate the metamodeling process a Closed-View
Generation (CVG) algorithm based on [20] was implemented to automatically
add classes and relationships to the viewpoint when a reference to an object or
relationship is defined in the metamodel (RQ1 ).

Similar to the VLS generated for a metamodel, for each viewpoint a visual
view specification (VVS) is generated which consists of a construction plan for
the view in the modeling layer (RQ2 ). Here, an existing model can be used in
combination with a certain VVS to generate a view on the model. Modelers may
collaboratively edit any view or the model itself in NRT, with all actions being
propagated to collaborators and reflected in all views and in the model (RQ2 ).

A simple example is given by the model-based community application design.
Domain-specific experts from a certain community, software architects and soft-
ware developers can define a metamodel for the information systems which
should be developed in the respective community. For that, they create the
metamodel collaboratively on the Web in NRT. Then, more VVS are defined in
the metamodel, e.g. a view for frontend elements as modeling objects for commu-
nity end users, a backend view for developers and a communication view between
frontend and backend. Based on the defined VVS, a model editor is generated
together with corresponding views. Community end users can collaboratively
create the frontends they require on the frontend view, together with develop-
ers. Developers can give immediate feedback on the functionality required by
end users. Developers can also edit in NRT the application backend and the
communication between the backend and frontend, while architects can see in
NRT the entire model and check the integrity of the modeled system. The view
extension framework – following the same implementation policies of SyncMeta
– is Web-based and fully open source (available in GitHub1).

3 Views and Viewpoints

The terms view and viewpoint are used interchangeably in many different reports
and are often just introduced as examples. We therefore offer formal definitions
for these terms and explain the relations between the different concepts used in
1 https://github.com/rwth-acis/syncmeta

https://github.com/rwth-acis/syncmeta


View-Based Collaborative Modeling 7

the visual modeling approach (RQ1, RQ2 ). The definitions are used in Sect. 4
for explaining the implementation of the viewpoint modeling and the view gen-
eration.

As in [7] a viewpoint is defined as a language which represents a metamodel.
A viewpoint can restrict the original metamodel and it addresses a set of concerns
of one or more stakeholders.

A view is the presentation of a model by applying a specific viewpoint. Thus,
a view is a concrete instance of a viewpoint. A viewpoint is defined by a collection
of view types.

A view type is a meta-class whose instances a view can display [8]. Thus,
a view type is an object or a relationship class which comprises a set of rules.
These rules can be “selectional” or “projectional” predicates that determine the
representation of a object within the view.

In the following we introduce the formal definitions for the terms introduced
above. First we define the sets of classes, properties and types and then define
the formal concept of a metamodel.

Let P be an infinite set of properties. Each p ∈ P can be an arbitrary complex
function or a simple value from an enumeration type. We only require that each
p has a label, a type and a unique identifier.

Let T be the set of all types defined in the VML on the metamodeling
layer of SyncMeta, e.g., T = {Object, Relationship,NodeShape,Generali
zation,Association, . . . }. An overview of all types in the VML is depicted in
Fig. 3.

Let C be an infinite set of classes. Any class c ∈ C has a unique name, a type
description, and a set of properties.

We define label(c) = l for c ∈ C. Analogously, we define label(C) =
{label(c) | c ∈ C} as the set of all unique identifiers of all classes in C. Thus,
we define the signature of a class c as a triplet with c = (l, t, A), where l is the
unique name of the class, t ∈ T is the name of a type associated with the class,
and A ⊂ P a finite set of properties. We define type(c) = t as the type of class c.
Analogously, we define type(C) = {type(c) | c ∈ C}. Similar definitions can be
found in [20].

Definition 1. A metamodel is a directed graph G = (V,E) with V ⊂ C a
finite set of nodes and ∀c ∈ V : type(c) ∈ T . E is a finite set of edges with
E = {(l, t, ci, cj , A) | ci, cj ∈ V, ci �= cj , t ∈ T, l an identifier, A ⊂ P}.

We assume that a metamodel may consist of an arbitrary number of classes
and each class may consist of an arbitrary number of properties. We only require
that the type of each class belongs to the VML. Analogously we can define
a viewpoint. A viewpoint is a metamodel on its own. We just require that a
viewpoint consists of at least one view type. Thus, we formally define a view
type before we give a formal definition of a viewpoint. We define a function
ϕ that transforms an object class or a relationship class into a ViewObject
or ViewRelationship class, respectively. On other classes the function ϕ is the
identity function.



8 P. Nicolaescu et al.

Definition 2. Let V TC = {ϕ(c) | c ∈ C} and ϕ(l, t, A) = (l′, t′, A′, l) with
l′ the new unique label, t′ is ViewObject or ViewRelationship if t is Object or
Relationship, else t = t′. Obviously, A′ ⊆ A ⊂ P .

A view type class of a viewpoint consists of a reference to a class in the meta-
model. The reference is the unique name l. Thus, a viewpoint is not independent
of the metamodel.

Definition 3. A viewpoint with respect to V TC is a metamodel with G′ =
(V ′, E′), and ∃c ∈ V ′ : c ∈ V TC ∧ type(c) = ViewObject.

Based on these formal definitions of the concepts at the metamodeling layer
we can define the concept of viewpoint applied to a model of the modeling
layer of SyncMeta (RQ1 ). For the generation of the model editor instance a
VLS of the metamodel is generated. For simplicity we think of the VLS as
the metamodel described in Definition 1. First we formally define the relation
between the metamodel defined in the metamodeling layer and the model.

Definition 4. Based on graph G = (V,E) of a metamodel, a model is a directed
graph M = (V ′, E′) with ∀v ∈ V ′ : type(v) ∈ label(V ) and ∀e ∈ E′ : type(e) ∈
label(E).

We require each node and each edge of the model to be an instance of a node
type or edge type defined in the metamodel. To generate views we first need to
define a function which applies a view type to an entity within the model:

Definition 5. Let V P = (V,E) be a VVS of a viewpoint. Let φv(n) : (l, t, A) 	→
(l, type(v), A′), v ∈ V TV is a view type class of V P . A′ ⊂ P is the new set of
properties defined by view type v. Analogously, the function for edges is defined
as φv(e) : (l, t, c1, c2, A) 	→ (l, type(v), c1, c2, A′)), where A′ is generated from the
attributes defined for v.

With this helper function we can define a view as follows:

Definition 6. Let V P = (VV P , EV P ) be a VVS of a viewpoint and M =
(VM , EM ) a model. A view V = (VV , EV ) is a subgraph of M with VV = {ϕv(c) |
v ∈ VV P ∧ c ∈ VM} ⊆ VM and EV = {ϕv(e) | v ∈ VV P ∧ e ∈ EM} ⊆ EM .

The resulting view is a subgraph of the model it is applied on. Each node/edge
whose type is referenced to a view type in the VVS is part of the view (RQ2).
For the view generation we need a VVS and a existing model as input.

4 Architecture and Implementation

Widgets. Figure 2 depicts an overview of the widgets offered by SyncMeta with
the view extension. The canvas widget visualizes the current state of the model
and provides mechanisms to manipulate the model–e.g. adding nodes and edges,
drag & drop, and similar. Each edit that alters the model is propagated locally



View-Based Collaborative Modeling 9

Fig. 2. Widget components of Syncmeta with the view extension

to other widgets and remotely to other collaborators. The property editor wid-
get allows editing properties of node and edges selected in the canvas widget.
Each property modification (e.g., changing the title of a node) is propagated
back to the canvas widget. On the metamodeling layer the canvas widget saves
and retrieves all nodes and edges of the metamodel and the viewpoints. The
palette widget provides the nodes and edge types defined in the metamodel.
Additionally the palette dynamically adjusts to the types defined in a particular
VVS whenever a viewpoint is applied to a model. The activity widget tracks
and displays the edits made by all collaborators. This is mainly for awareness
purposes. SyncMeta consists of several additional widgets which serve special
purposes, for example the export widget allows to export a model in JSON or
PNG format. The view control widget allows to generate, export, and import a
viewpoint metamodel or a VVS.

Conflict Resolution. SyncMeta enables non-locking collaboration— that is,
each user can manipulate any part of the model at any time. The mechanisms
to resolve editing conflicts are achieved using the OpenCoWeb JavaScript Oper-
ational Transformation (OT) Engine API [18], which is based on a decentral-
ized peer-to-peer architecture. The details for the conflict resolution in the NRT
modeling are given in [5] and are not repeated here due to space restrictions.
The view extension uses also these mechanisms for modeling tasks and the view
definitions. All operations are propagated to all other collaborators. At each
receiving client the OT algorithms detect and resolve any occurring conflicts.
The OT engine ensures a congruent model state after processing all operations
at all client sides, following an optimistic approach (i.e. as opposed to approaches
which use locking for all or parts of the model [3], changes are propagated in
NRT andtherefore almost instantly visible at all sites).



10 P. Nicolaescu et al.

Fig. 3. Simplified extended metamodel hierarchy with view types

Metamodeling and Viewpoint Modeling(RQ1). In the previous section we
have presented the formal definitions of viewpoints, views and view types and
shown that we can apply the NRT collaborative modeling approach of SyncMeta
also to the view extension. SyncMeta implements a four-tier metamodel hierar-
chy, which is depicted in Fig. 3. Tier 3 defines the basic elements of a graph-based
modeling language. Tier 2 defines the node and edge types of the VML as well
as the view types of the viewpoint models. As stated in Sect. 3, Definition 2, a
viewpoint does not contain any Object or Relationship types. We replace them
by using the ViewObject and ViewRelationship types, which are a specialization
of Object and Relationship, respectively. These contain a reference to a node
type or an edge type in the metamodel. It is also possible to define conditions
on the attributes of the referenced class, i.e. in contrast to a simple object class
a view-object offers functionalities to customize the attributes of a view. Meta-
modelers are able to hide and rename attributes. The Conjunction attribute
determines the logical connector of the conditions. This can be either the logical
AND or OR. Thus, we can build a formula with the predicates ϕ1, .., ϕn, either
with a conjunction over all predicates ϕ1 ∧ ... ∧ ϕn or with a disjunction over all
predicates ϕ1 ∨ ... ∨ ϕn. Conditions on attributes allow metamodelers to make
simple queries on the attributes of an object class and filter the entities of this
class in the view canvas of the model editor.

With auxiliary classes it is possible to define custom node and edge shapes for
each view type. Tier 1 defines the actual metamodel or viewpoint. Metamodelers
are allowed to develop an arbitrary number of viewpoints in the same NRT



View-Based Collaborative Modeling 11

(a)

(b)

Fig. 4. (a) An i∗ model of buyer-seller relationships. (b) Applied SellerView to the
model above

collaborative fashion they are used to define metamodels. The metamodel is the
input for the model editor instantiation and each viewpoint is generated to a
VVS. Tier 0 is the actual model of the modeling layer. On Tier 0 a viewpoint is
applied to the model. The resulting view supports NRT collaborative modeling
as well. While concepts on Tiers 2 and 3 are implemented in the framework,
models on Tier 0 and 1 are defined by modelers and metamodelers, respectively.

View Generation(RQ2). On the modeling layer modelers may apply the view-
points defined on the metamodeling layer. This is done for any existing model by
selecting the desired view from a drop-down menu (see Fig. 4(b)). As described
in Sect. 3, Definitions 5 and 6 all nodes and edges of the model that are asso-
ciated with a view type in the viewpoint are then a part of the view, while all
other nodes and edges are hidden. In addition to filtering on the type level, the
framework also allows filtering nodes and edges on instance level based on the
values of their properties. The selected view applies custom styles like adjusting
the color, shape, labels or connectors. The following steps are used:

– Filter nodes/edges regarding the ViewObjects/ViewRelationships of the VVS
– Filter nodes/edges by conditions defined on their attributes
– Apply custom styles for each node/edge



12 P. Nicolaescu et al.

Figure 4(a) shows a small i∗ model [21] about buyer-seller relationships, which
was also used in the evaluation (see Sect. 5). Figure 4(b) depicts a possible view
on the model, which is called “SellerView”. It contains only nodes and edges
within the boundary of the “Seller” actor, along with their edges. For demon-
stration purposes we also defined a slightly different styling for node and edge
types. The palette widgets adapts to the view by only displaying node and edge
types defined in view.

Limitations. As described in [5], the visual-based (meta-) modeling approach
of SyncMeta has some restrictions, such as model checking functionalities on
the (meta-)modeling layer. By extension, the views do not allow the specifica-
tion of cardinalities or multiplicities with regard to the relationships and view-
relationships. Also, it is not possible to define conditions on inherited attributes
of super classes. Currently, only the definition of conditions for the attributes
of the referenced class is allowed. A simple solution for this problem is that
we define the attribute directly in the referenced class, but this is suboptimal
and fails to exploit the inheritance hierarchy. Finally, the view-based model-
ing approach requires an automatic diagram layout mechanism. In the current
implementation, a big disadvantage is that elements of a view are placed at
the same position as in the model. Solutions to these limitations are planned
to be implemented in future versions, since they are not critical for a research
prototype.

5 Evaluation

We performed an end user evaluation of the model editor. The main goal was to
evaluate the usability and usefulness of the view-based modeling approach and
monitor the NRT collaboration features (RQ3 ).

Participants. The end user evaluation comprised four sessions with four partic-
ipants each with a total of 16 participants, who were recruited from researchers
and students of our department. Their expertise in conceptual modeling, i∗

and SyncMeta was measured using seven-point Likert scale (from 1=novice to
7=expert). The results show that users had varying existing knowledge of mod-
eling. As such, expertise with graphical editors is quite high, but has a high
standard deviation (M = 4.38;SD = 2.42). The same holds for user’s general
expertise in conceptual modeling (M = 4.5;SD = 2.46). However, the level of
expertise with i∗ is rather low (M = 2.44;SD = 2.5).

Methodology. In each session, the four participants were split into two groups
(Group Alpha and Group Beta) with two people each. Both groups had to com-
plete two tasks of comparable scope. Each task comprised a list of detailed
instructions to extend a given i∗ model with additional nodes and edges. This
could be performed without any i∗ expertise. The collaborators could decide for
themselves how to complete the instructions by communicating with each other
via chat or just start modeling and let SyncMeta resolve potential conflicts. The
first task was solved by Group Alpha and consisted of a predefined view applied,



View-Based Collaborative Modeling 13

1 2 3 4 5 6 7

1.The modeling canvas was easy to use

2.The palette was easy to use

3.I quickly found the desired nodes and relationships in the palette

4.I quickly found where to put the new nodes in the model

5.I was aware of what my collaborator was doing

6.The collaboration simplifies the modeling task

7.The user interface is clean and simple

5.2

5.7

5.9

5.3

4.1

5

5.2

5.4

5.1

4.8

5.4

4.8

5.1

4.9
A
ve
ra
ge

U
se
r
R
at
in
g
(N

=
1
6
)

View-enabled Task View-disabled Task

Fig. 5. Survey results of i∗ group sessions (quantitative items).

which customized the model editor regarding the requirements of the task (see
Fig. 4(b)). Group Beta solved the same task without any view on the original
model (see Fig. 4(a)). For the second task, they switched roles: Group Beta used
a predefined view, while Group Alpha solved the task without a view.

After each task the session participants were asked to rate statements regard-
ing their experience with and without views. The ratings were made using
a seven-point Likert scale ranging from “strongly disagree” (1) to “strongly
agree” (7). During the evaluation the working times for each task and group
was recorded to determine whether the views had an impact on the time it took
modelers to complete the tasks.

Results. The mean ratings for tasks solved with and without views are plotted
as series “view-enabled task” and “view-disabled task”, respectively, in Fig. 5.
For most statements there is little difference between the ratings for view-enabled
vs. view-disabled task. We ran paired-sample t-tests for view-enabled vs. view-
disabled ratings to identify significant differences. Two statements exposed sig-
nificant differences at p < .05, namely statement 3, revealing that views helped
to find nodes and relationships quicker in the palette (p = .01), and statement 5,
revealing that the views actually hampered the awareness of the collaborator’s
edits (p = .04)

Additionally the working times for each group and task were recorded.
The average working time of Alpha groups for Task 1 without views (M =
253 s;SD = 39) was on average 82 s or 52 % longer than the average working
time for Task 2 with view enabled (M = 171 s, SD = 19). The average work-
ing time of the Beta groups for Task 2 without views (M = 191 s;SD = 22)



14 P. Nicolaescu et al.

was on average about 24 s or 15 % longer in comparison to Task 1 with views
enabled (M = 167 s;SD = 31) . The lower improvement factor for the Beta
groups compared to the Alpha groups can be explained by a learning curve.
The Alpha groups used the views during the second task, where they were more
familiar with how to work with the tool. Conversely, the Beta groups used the
views during the first task when it was the first use with the tool for most of
them. This actually shows that modeling with views speeds up the modeling
process even for users who are unfamiliar with the tool (RQ3 ).

The findings are that views can improve user experience and speed up the
modeling process; they can also be used to customize the model editor in order to
ease adoption and to improve stakeholder involvement during the collaborative
modeling process. Participants also provided some textual comments about the
view-based modeling approach. They stated that they liked switching between
views and that the reduced palette gives a better orientation, which may explain
the faster modeling times with views enabled. The NRT collaboration features
were already evaluated in SyncMeta [5], but challenges were also encountered.
In the evaluation, NRT collaboration and edits awareness were only available
between views and the entire model editor. However, the evaluation results have
shown that users require also collaboration directly between individual views
and this feature was implemented as consequence (RQ3 ).

6 Related Work

Table 1 demonstrates that views and related concepts have been successfully
used in many research fields, including object-oriented databases (OODB) [2,
20], enterprise architecture (EA) [10,22] and corresponding frameworks and in
conceptual modeling (CM) [1,6,9,12,13].

OODBs fully support general concepts of object-oriented programming lan-
guages. One of the most popular view extensions is called MultiView [2], a simple
and powerful tool for supporting multiple views in the Gemstone OODB [19].
Multiview introduced the CVG-algorithm to facilitate the definitions of view-
points. A similar approach is provided by our view extension (cf. Sect. 2).

EA frameworks are used to look at complex information systems from dif-
ferent point of view—e.g. data, function, networks, organizational, structures,
schedules and strategy. The ARIS Framework [10] provides various model edi-
tors to build complex enterprise architectures, e.g. location allocation diagram,
network diagram, technical resource model. All entities of these model editors
are integrated into one comprehensive metamodel. The Zachman Framework [22]
is a two dimensional classification schema for descriptive representations of an
organization. It is an abstract guideline which proposes perspectives on a par-
ticular system of an enterprise in different development stages.

Finally, a plethora of CM tools also provide view extensions. MetaEdit+ [9]
is a tool set to define modeling languages and generate model editors. Unlike
SyncMeta only a locking collaboration approach is used. AToM3 [12] and
ADOxxx [6] are domain-independent metamodeling frameworks with focus on



View-Based Collaborative Modeling 15

Table 1. Comparison of related tools and frameworks.

Tool/Framework Type D
o
m

a
in

-i
n
d
ep

en
d
en

t

G
ra

p
h
ic

a
l
v
ie

w
ed

it
in

g

C
o
n
d
it

io
n
a
l
fi
lt

er
s

C
o
n
d
it

io
n
a
l
st

y
le

s

C
o
ll
a
b
.
v
ie

w
p
o
in

t
d
efi

n
it

io
n

C
o
ll
a
b
.
v
ie

w
m

a
n
ip

u
la

ti
o
n

N
R
T

ed
it

in
g

Abiteboul &Bonner [2] OODB ● ●

Multiview [20] OODB ● ●

ARIS Framework [10] EA ●

Zachman Framework [22] EA ● ● - -

MetaEdit+ [9] CM ● ● ● ●

AToM3 [12] CM ● ● ●

ADOxxx [6] CM ● ●

Sirius [1] CM ● ● ● ●

CO2DE [13] CM ● ● ●

SyncMeta Views CM ● ● ● ● ● ● ●

simulation of models. AToM3 allows to transform a model expressed in a certain
formalism to an equivalent model in another formalism. ADOxxx [6] provides
a query language called AQL for the generation of views on these models. In
contrast to SyncMeta Views these frameworks do not provide any NRT collabo-
ration features. Sirius [1] uses the Eclipse Modeling Framework (EMF) as basic
infrastructure. It offers fully customizable viewpoints on complex models. Mod-
elers can define conditional styles and filters for entities based on their attributes.
It is possible to generate a subset of the available palette and define optional
layers to show additional content. Sirius lacks NRT collaboration features, but
it offers many customization options which makes the framework very powerful.
CO2DE is a desktop collaborative modeling application. Similar to SyncMeta
it provides awareness features to help users recognize edits of model elements
and a chat room. CO2DE doesn’t support metamodeling. However, it does not
automatically solve editing conflicts. It uses a locking approach for enabling col-
laboration, which is therefore not in NRT. The philosophy is that users have to
discuss about conflicts and deal with them on their own.

As this comparison shows, the views framework we implemented exhibits the
key features for view definition, editing and use found in literature. As a highly
distinguishing feature, SyncMeta Views enables non-locking NRT collaboration
during view definition and use, which is not supported in any of the existing tools.



16 P. Nicolaescu et al.

7 Conclusion and Future Work

In this work, we explored how metamodel-based view generation can be effec-
tively combined with NRT collaboration in modeling for teams with different
competences and roles. For this purpose, we presented a view extension for the
SyncMeta metamodeling framework which allows the generation of views for
focusing on particular aspects of a complete model. The views are editable and
all edits are reflected in all views and in the model. Thus, we offer a unique
approach of NRT collaboration for free conceptual model editing on the Web
using optimistic concurrency control mechanisms, combined with known tech-
niques for views definition and generation from information systems domain. The
view-based extension was evaluated in group sessions using an instance of the i∗

language generated and initialized with a simple model and views. The evalua-
tion results show that NRT collaboration for view-based authoring is possible,
that by using views the modeling speed is slightly improved and that the views
are useful for reducing complexity, especially when dealing with big models.

The view-based modeling proposed also opens many relevant new research
directions. We plan to enhance the expressiveness of the conditions on a view type
to allow more complex queries and model perspectives. Moreover, to improve the
NRT collaboration features of the framework we have replaced the OpenCoWeb
implementation and are currently evaluating SyncMeta Views with Yjs [14], a
real-time P2P shared editing framework for arbitrary data types, as it over-
comes scalability drawbacks and is much easier to use by developers. Further-
more, in order to improve the feedback during collaborative modeling and to
support end-users working with the views extension, we are currently develop-
ing an intelligent assistant system for collaborative modeling scenarios to guide
collaborators during the modeling process using different strategies like remote
support or conflict avoidance. Together with an automatic distributed approach
to deal with co-evolution of metamodels and models, these improvements will
gear the framework towards use in real-world information systems engineering
projects.

Acknowledgments. This research was co-funded by the European Commission
through the FP7 Integrated Project “Learning Layers” (grant no. 318209).

References

1. Sirius - The easiest way to get your own modeling tool: Graphical Editors for your
DSL (2014). https://www.eclipse.org/sirius/features.html

2. Abiteboul, S., Bonner, A.: Objects and Views. In: York, A.N. (ed.) ACM Inter-
national Conference On Management Of Data (SIGMOD), pp. 238–247. ACM,
New York (1991)

3. Chechik, M., Dalpiaz, F., Debreceni, C., Horkoff, J., Rath, I., Salay, R., Varro,
D.: Property-based methods for collaborative model development. In: Joint
Proceedings of the 3rd International Workshop on the Globalization Of Model-
ing Languages and the 9th International Workshop on Multi-Paradigm Modeling,
pp. 1–7 (2015)

https://www.eclipse.org/sirius/features.html


View-Based Collaborative Modeling 17

4. De Lange, P., Nicolaescu, P., Derntl, M., Jarke, M., Klamma, R.: Commu-
nity application editor: collaborative near real-time modeling and composition of
microservice-based web applications. In: Modellierung (2016)

5. Derntl, M., Nicolaescu, P., Erdtmann, S., Klamma, R., Jarke, M.: Near real-time
collaborative conceptual modeling on the web. In: Johannesson, P., et al. (eds.)
ER 2015. LNCS, vol. 9381, pp. 344–357. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25264-3 25

6. Fill, H.G., Karagiannis, D.: On the conceptualisation of modelling methods using
the ADOxx meta modelling platform. Enterp. Model. Inf. Syst. Architect. 8(1),
4–25 (2013)

7. Fischer, K., Panlenko, D., Krumeich, J., Born, M., Desfray, P.: Viewpoint-Based
Modeling - Towards Dening the Viewpoint Concept and Implications for Support-
ing Modeling Tools (2012)

8. Goldschmidt, T., Becker, S., Burger, E.: Towards a tool-oriented taxonomy of view-
based modelling. In: Sinz, E.J., Schürr, A. (eds.) Modellierung (2012)

9. Kelly, S., Lyytinen, K., Rossi, M., Tolvanen, J.P.: MetaEdit+ at the age of 20. In:
Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.)
Seminal Contributions to Information Systems Engineering, pp. 131–137. Springer,
Heidelberg (2013)

10. Kozina, M.: Evaluation of ARIS and zachman frameworks as enterprise architec-
tures. J. Inf. Organ. Sci. 30(1), 115–136 (2006)

11. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engineering. In: Reichert,
M. (ed.) Proceedings of the 2nd International Workshop on Enterprise Modelling
and Information Systems Architectures, GI-Edition/Proceedings, vol. 119, pp. 145–
158. Ges. für Informatik (2007)

12. de Lara, J., Vangheluwe, H.: AToM3 : a tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
p. 174. Springer, Heidelberg (2002)

13. Meire, A.P., Borges, M., de Araújo, R.M.: Supporting multipleviewpoints in col-
laborative graphical editing. Multimedia Tools and Appl. 32(2), 185–208 (2007)

14. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: a framework for near real-
time P2P shared editing on arbitrary data types. In: Cimiano, P., Frasincar, F.,
Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 675–678.
Springer, Heidelberg (2015)

15. Nissen, H.W., Jarke, M.: Repository support for multi-perspective requirements
engineering. Inf. Syst. 24(2), 131–158 (1999)

16. Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G., Huber, H.: Managing multi-
ple requirements perspectives with meta models. IEEE Softw. 13(2), 37–48 (1996)

17. Nuseibeh, B., Kramer, J., Finkelstein, A.: ViewPoints: meaningful relationships
are difficult!. In: Proceedings of the 25th International Conference on Software
Engineering, 2003, pp. 676–681 (2003)

18. OpenCoWeb: Open Cooperative Web Framework 1.0 Documentation
19. Rundensteiner, E.A., Kuno, H.A., Ra, Y.G., Crestana-Taube, V., Jones, M.C.,

Marron, P.J.: The MultiView project. ACM SIGMOD Rec. 25(2), 555 (1996)
20. Rundensteiner, E.A.: MultiView: a methodology for supporting multiple views in

object-oriented databases. In: Kaufmann, M. (ed.) Proceedings of the 18th VLDB
Conference, pp. 187–198. Morgan Kaufmann (1992)

21. Yu, E.: From organization models to system requirements: a ’cooperating agents’
approach. In: Cooperative Information Systems (1995)

22. Zachman, J.A.: The Zachman Framework: A Primer for Enterprise Engineering
and Manufacturing. Zachman Framework Associates, Toronto (2003)

http://dx.doi.org/10.1007/978-3-319-25264-3_25
http://dx.doi.org/10.1007/978-3-319-25264-3_25

	View-Based Near Real-Time Collaborative Modeling for Information Systems Engineering
	1 Introduction
	2 SyncMeta: Near Real-Time Collaborative (Meta-)Modeling and the Views Extension
	3 Views and Viewpoints
	4 Architecture and Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References


