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Abstract. In order to attain the promises of the Cloud Computing par-
adigm, systems need to be able to transparently adapt to environment
changes. Such behavior benefits from the ability to predict those changes
in order to handle them seamlessly. In this paper, we present a mech-
anism to accurately predict the resource usage of distributed key-value
datastores. Our mechanism requires offline training but, in contrast with
other approaches, it is sufficient to run it only once per hardware con-
figuration and subsequently use it for online prediction of database per-
formance under any circumstance. The mechanism accurately estimates
the database resource usage for any request distribution with an average
accuracy of 94 %, only by knowing two parameters: (i) cache hit ratio;
and (ii) incoming throughput. Both input values can be observed in real
time or synthesized for request allocation decisions. This novel approach
is sufficiently simple and generic, while simultaneously being suitable for
other practical applications.

1 Introduction

The ability to predict how a system will behave is critical in Cloud Comput-
ing systems. Accurate prediction would allow administrators to make better
informed decisions on resource allocation, systems configuration or even the
technology to use. Currently, this typically requires extensive testing while still
lacking the desirable accuracy levels. This is particularly true for massive scale
distributed key-value datastores (often named NoSQL databases), Notably, their
highly desirable performance, scalability and availability properties cannot be
achieved without careful resource allocation and judicious data placement, which
requires extensive testing.

In this paper we demonstrate that, for distributed key-value datastores, it
is possible to achieve accurate performance prediction, in real-world scenarios,
resorting to only a small fraction of the systems resources. NoSQL datastores
make heavy use of buffer caching, specially to improve the performance of read
requests. In this work we show that the success of such caching layer is directly
related to the datastore’s resource consumption and we leverage such relation for
resource prediction purposes. In fact, it is known that, for a given throughput, the
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higher the cache hit ratio, the lower the resource usage of the NoSQL datastore.
This is true since each cache hit avoids resource consumption stemming from
lower layer access. Moreover, contrary to relational databases, which due to
their inherent complexity require more elaborate models, in this work we show
that for distributed key-value datastores this correlation is actually enough to
accurately predict resource usage of any workload. Such accurate prediction of
resource usage then allows system optimization, preparation, and simulation
under different conditions. This is particularly important if we aim to effectively
deploy NoSQL data stores in the pay-as-you-go model, which is common in the
Cloud Computing paradigm.

Contributions. (a) We provide a mechanism to build a read operation resource
usage model and a write operation resource usage model. Both models are hard-
ware dependent, meaning they need to be rebuilt when the hardware changes,
but they are generated only once per hardware configuration and can then be
used to predict the resource usage for any workload. (b) Leveraging these models,
we are able to predict a NoSQL datastore resource usage, only by knowing two
parameters: (i) the cache hit ratio and (ii) the incoming throughput. From our
experiments using HBase, we accurately predict resource usage for any request
distribution and any throughput of read-only and a mix of read and update
operations. We achieve an average prediction accuracy of 94 %.

Roadmap. The rest of this paper is organized as follows. We begin by providing
some background about caching mechanisms and NoSQL datatores in Sect. 2.
Section 3 presents evidence on the correlation between the cache hit ratio of
NoSQL datastores and resource usage. Section4 focuses on the prediction of
resource usage for read-only operations while Sect. 5 focuses on write operations.
We validate our mechanism using HBase and mixed (read/write) workloads in
Sect. 6, present related work in Sect.7 and conclude with Sect. 8.

2 Background

Caching mechanisms. Databases make use of buffer caching to improve their
read performance. By keeping most frequently accessed data in fast access struc-
tures (either implemented by software or hardware) performance can be signifi-
cantly improved. As a result, the flow of a read request usually takes the following
path: (i) the client issues a request to read some tuple; (ii) the database veri-
fies if the requested tuple is in cache; (iiia) if it does the tuple is returned to
the client, (iiib) otherwise the database tries to fetch the tuple from secondary
memory. When using caching one of the main goals is to try to maximize the
percentage of requests that are served from cache, also known as the cache hit
ratio. A high hit cache rate means that a good number of requests are being
served exclusively by the cache, thus avoiding higher CPU and I/O costs from
using less efficient storage mediums. When the data size exceeds the cache size,
eventually, some data in the cache needs to be removed to give room to more
frequently accessed data. This is handled by cache replacement algorithms [23].
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There are several cache replacement algorithms, however one of the most widely
used algorithms is the Least Recently Used (LRU) algorithm [25]. Under this
replacement algorithm when the cache is full, the algorithm discards data that
was least recently used. This algorithm is the one typically used by distributed
key-value datastores [12,18].

Distributed key-value datastores. Distributed key-value datastores run in a
distributed setting with tenths to hundreds of nodes, usually composed of com-
modity hardware. The application data is partitioned and these partitions are
assigned to the available nodes according to a data placement strategy. Contrast-
ing with relational database management systems (RDBMS), these datastores
only provide a simple key-value interface to manipulate data by means of put,
get, delete, and scan operations and they do not offer strong consistency crite-
ria. Complex operations like joining and aggregation are not present and data
is denormalized. Considering these characteristics, the success of caching mech-
anisms is key for performance. In this paper, we focus on HBase which is one
of the most successful and widely used key-value datastores [12]. Inspired by
BigTable [4], HBase’s data model implements a variant of the entity-attribute-
value (EAV) model and can be thought of as a multi-dimensional sorted map.
This map is called HTable and is indexed by the row key, the column name
and a timestamp. HBase follows a hierarchical architecture where there is a
Master node and there is one or more slave nodes called Regionservers. The
row range of a HTable is horizontally partitioned into Regions and distributed
over different nodes. Each Region is stored as an append-only file in the Hadoop
Distributed File System (HDFS) [3], whose instances are called DataNodes. Usu-
ally, RegionServers are co-located with DataNodes to promote the locality of the
data being served by the RegionServer. HBase has a block cache implementing
the LRU replacement algorithm. Several key-values are grouped into blocks of
configurable size and these blocks are the ones used in the cache mechanism.
The block size within the block cache is a parameter but defaults to 64 KB.

3 Interdependence of Resource Usage and Cache Hit
Ratio

Let us consider a server usage metric related to the CPU waiting time on I/0O
operations (I/Oyait), the time spent on user space (CPU, s, ) and the time spent
on kernel space (CPUsystem) in the form: Serverysqge = I/Owqit + CPUyser +
CPUsgystem- In the following we show the cache hit ratio is effectively related to
server usage. To this end, we set up three experiments using a HBase deployment
and YCSB [6] as the workload generator. These experiments cover a wide spec-
trum of possible behaviors. With these we are able to show a clear and direct
relationship between the cache hit ratio and server usage in NoSQL systems,
which lays the foundation for the rest of the paper.

Experimental setting: In all experiments, one node acts as master for both
HBase and HDFS, and it also holds a Zookeeper [14] instance running in stand-
alone mode, which is required by HBase. Our HBase cluster was composed of 1
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RegionServer, configured with a heap of 4 GB, and 1 DataNode. HBase’s LRU
block cache was configured to use 55 % of the heap size, which HBase translates
into roughly 2.15 GB. The RegionServer was co-located with the DataNode. The
YCSB workload generator ran in a separate node and was configured with a
readProportion of 100 % (read-only), and with a fixed throughput of 2000 oper-
ations per second with 75 client threads. All experiments were set to run for
30 min with 150 s of ramp up time and the results are the computed average of 5
individual runs. The server usage was logged every second in the RegionServer/-
DataNode machine using the UNIX top command. The top command gives us
the CPU;q metric that is converted to our Serverysqege metric in the form:
Serverysage = 100% — CPUjqie. By the end of each experiment, we gathered
the RegionServer’s achieved cache hit ratio. All nodes used for these experiments
have an Intel i3 CPU at 3.1 GHz, 8 GB of main memory, a 7200 RPM SATA disk,
and are interconnected by a switched Gigabit network.

First Experiment: In this first experiment, a single region was populated using
the YCSB generator with 4,000,000 records (4.3 GB). This means that the region
cannot be fitted entirely into the block cache: about 1.1 millions records (1.21 GB)
remain on secondary memory and must be brought into main memory when
requested. There were four different scenarios each with a differently configured
request popularity:

1. A wuniform popularity distribution, that is all records have equal probability
of being requested (the case where the cache hit ratio is minimum);

2. A hotspot popularity distribution, where 50 % of the requests access a subset
of keys that account for 30 % of the key space;

3. A zipf scrambled popularity distribution, highly skewed, but because it is
scrambled it means the most popular keys are spread across the key space;

4. A zipf clustered popularity distribution, highly skewed, and clustered, mean-
ing the most popular keys are contiguous, which makes them fall in the same
cache block.

The results for this experiment are depicted in Table 1. As expected, the uniform
request popularity is the one that achieves the lower cache hit ratio (pp = 49 %),
and thus consumes more server resources (58.35%) while the zipf clustered
request popularity has the higher cache hit ratio (93 %). This is true because
popular keys are found in the same block, which is maintained in memory avoid-
ing cache misses.

Second experiment: We set up a second experiment, to demonstrate that the
behavior observed in the first experiment is independent of request popularities.
This experiment is identical to the first one except for the region size, which has
now 2,000,000 records (2.14 GB). As a result the region fits entirely into the block
cache, thus the expected cache hit ratio is 100 %. Table 2 depicts the results. As
all data is served only by the block cache, the different request popularities are,
as expected, irrelevant to server resource consumption and all distributions use
roughly the same resources.
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Table 1. Average Serverysage and cache hit ratio (ppi:) with a region larger than the
block cache.

Distribution DPrit | Average Serverysage | #Records
Uniform 49% | 58.35 % 4,000,000
Hotspot 56 % | 46.19 % 4,000,000
Zipf Scrambled | 68 % | 35.91 % 4,000,000
Zipf Clustered |93 % | 19.28 % 4,000,000

Table 2. Average Serverysage and cache hit ratio (ppi:) with a region that fits in block
cache.

Distribution prit | Average Serverysage | #Records
Uniform 100% | 12.29% 2,000,000
Hotspot 100% | 12.14 % 2,000,000
Zipf Scrambled | 100 % | 12.92 % 2,000,000
Zipf Clustered |100% | 12.89 % 2,000,000

Third experiment: In this experiment we show that two different distributions,
with different data sizes but with the same cache hit ratio, will have the same
server resources consumption if subject to the same fixed throughput. We used
a similar setting to the first experiment’s but changed the number of records
of the wniform distribution to 2,141,881(2.3 GB) so its cache hit ratio could
also be 93%. The throughput is again fixed at 2000 operations per second.
Table 3 depicts the results that support our claim that, for a given throughput,
an identical cache hit ratio, regardless of the data size and the distribution results
in the same resource consumption.

Correlation between server usage and cache hit ratio: A correlation
test using the Fisher’s z transformation [11] with the data from the previous
experiments, shows that in fact there is a negative correlation for p-value <
0.001, making it statistically significant. Based on these results, we argue that it
is possible to estimate the server usage given the incoming throughput and the
cache hit ratio and, in the following sections, we show how this can be done.

Table 3. Average Serverysage and cache hit ratio (ppit) results for 2 distributions with
different sizes, but with same cache hit ratio.

Distribution | pri: | Average Serverysage | #Records
Zipf Clustered | 93 % | 19.28 % 4,000,000
Uniform 93% | 19.76 % 2,141,881
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4 Estimating Resource Usage of Read Operations

Previous section demonstrated that there is an intrinsic relation between resource
usage and cache hit ratio. The cache hit ratio reflects not only the data size,
but also the underlying distribution of requests which, in combination with an
incoming throughput, corresponds to a given server usage. Furthermore, for a
fixed throughput this relation is univocal: for some throughput if two distinct
workloads consume the same amount of resources, then they must have the same
cache hit ratio. In this section, we show how the server usage of any workload can
be estimated simply by knowing its cache hit ratio and incoming throughput.
We build on the aforementioned properties to build a tridimensional model, that
models the server usage for a NoSQL datastore, when the cache hit ratio and the
throughput vary. The objective is to build a model that, for a given hardware
configuration, a given hit cache ratio and certain request throughput of an HBase
node, allows us to predict the resource consumption of such node. To achieve this
we require an initial training step, which is hardware dependent. Consequently,
each generated model is only valid for a single hardware configuration but is
required to be generated only once. Once we have the model we are able to
predict HBase node resource usage for any given workload. As shown previously,
request distribution is irrelevant in terms of the relationship between hit cache
ratio and resource consumption. Taking advantage of this observation we always
consider the uniform distribution in the generation of the prediction models. In
fact, such model will still be valid if, on runtime, a different request distribution
is observed.

In order to generate the model, our approach is to judiciously choose a num-
ber of representative combinations of cache hit ratio and throughput, test them
against the desired hardware configuration and then, by using linear interpola-
tion between the different server usage levels measured, we are able to build a
tridimensional model that correlates data size, with throughput and expected
server usage. Notably, with this approach we are able to achieve very high levels
of accuracy. At this point, it is important to note that, for a generic workload
generator, it is not possible to define the desired cache hit ratio. Instead we can
only set the data size and desired throughput. However, we can take advantage
of a simple approach proposed by Che et al. [5] that provides an estimation
without error of the cache hit ratio for the uniform distribution. This way, we
can represent the cache hit ratio by its correspondent data size when building
the model. Therefore, in the remainder of this section we will mention data sizes
implicitly mentioning their correspondent cache hit ratios. Another reason for
choosing the uniform distribution is because it allows to reduce the overall train-
ing time since it represents the worst case for LRU caches (lowest possible hit
ratio for a given data size), thereby the time it takes to populate the data in the
NoSQL database is smaller.

Regarding the process of choosing the representative measures to take, let’s
begin by looking at an illustrative example. Figure 1 shows the behavior of incom-
ing throughput when data sizes increase for a fixed server usage percentage. Note
that, if the data size is smaller than the cache size then only the throughput
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Throughput

Fig. 1. Typical relation between cache size and throughput for a fixed Serverysage.

impacts server usage. In this case, the cache hit ratio is always 100 % and the
throughput constant for all possible data sizes between 0 and cache size. For
larger data sizes, the cache hit ratio drops and cache swapping begins, which in
turn means that in order for the server usage to stay the same the throughput
must decrease. As a result, this is a boundary point (where data size equals to
the cache size). This observation allows us to reduce the number of points to
calculate for that section as we just need to build the model from that point
onwards. Then, other observations help us choosing the points to measure. For
data sizes slightly larger than the boundary point, there is a big drop on through-
put in order to resource usage to remain the same. This drop can be more or less
abrupt depending on the speed of the secondary memory. In order to capture
this behavior in the model we need to increase the number of tested combina-
tions of pairs data size and throughput immediately after the boundary point.
Conversely, when the data size is largely increased we can be confident of a long
and flat tail, thus not requiring many training points to achieve high accuracy.

The uniform distribution server usage model is automatically generated
resorting to a developed Python script and using YCSB as the workload gener-
ator!. Generally, this script has 2 main parameters: (i) a list of cache hit ratios
and (ii) a list of targeted server usage levels. Hit cache ratios are, as explained
earlier, converted to data sizes using the Che’s approximation. Then, resorting to
a binary search, the script tries to find the necessary throughput of read opera-
tions to achieve each specific percentage of server usage for each data size defined
as input. Fixing the server usage level and allowing the throughput to be exper-
imentally calculated via the script, allows us to have a representative number of
server usage levels without having to test multiple cache hit ratio and through-
put combinations in order to have a usable model. When a sufficient number of
points for a specific server usage level are found and we resort to interpolation
between those points. Namely, using the monotonic spline interpolation of the R
project? embedded into the Python script. This process is repeated for each of
the targeted server usage levels. This list does not comprehend all of the possible
values between 0 and 100 %. Instead, from our experience we noted that a few of
them is sufficient (usually 5 equally spaced). Furthermore, by again using linear
interpolation between the different server usage levels we achieve very accurate

1 All the scripts used in this work are openly available at github.com/fmcruz/suhcr/.
2 http://www.r-project.org.
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Fig. 2. Instantiation of the server model for read operations based on a uniform dis-
tribution.

results, and ultimately build a tridimensional model that correlates data size,
with throughput and expected server usage.

Model Instantiation in Our Cluster. We ran the automatic server model
generator in our cluster using the same setting as the experiments of Sect. 3. The
generated server model is as depicted in Fig. 2. There were defined 10 different
cache hit ratios: 100 %, 95 %, 90 %, 80 %, 70 %, 60 %, 50 %, 40 %, 25 %, and 15 %.
These cache hit ratios were then transformed in their data size equivalents to
be used as input in the model generator. The first point is the boundary point
corresponding to 2,000,000 of YCSB records. As previously stated, for data sizes
slightly larger than the cache size we need to increase the density of points
tested to ensure the model is more accurate. Thus, the next point is only a 5%
decrease, and the subsequent 6 points are decreases of 10% in the cache hit
ratio. On the other hand, predicting a flat long tail from that point on, we just
defined 2 points much more apart from each other, 25% and 15% of cache hit
ratio, corresponding to 8,000,000 and 12,000,000 records.

In Fig. 2 the solid lines correspond to the 5 targeted levels of server usage,
namely 80 %, 60 %, 40%, 20% and 5%. It is general practice in frameworks
for automated elasticity of NoSQL datastores [17] that the rule governing the
addition of new nodes indicate 80 % as the maximum usable CPU before a new
node is needed in the cluster. This is an empirical higher bound on usable CPU to
accommodate operating systems processes, account for possible load spikes and
compactions. Therefore, the highest defined level was 80 %. When eventually the
generator has finished searching for the throughput needed to reach the targeted
levels of server usage for the various data sizes, it then interpolates the data that
resulted in the represented continuous curves. Finally, we just need to do a final
and linear interpolation between these curves. The curves that correspond to the
linear interpolation are represented by dotted lines for the server usage levels of
70 %, 50 %, 30 % and 12.5 %, which are example levels.

Model Accuracy. Revisiting the first experiment of Sect.3, we can now use
the generated model to estimate the server usage for the different distributions.
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Table 4. Observed serverysaege and Estimated serverysage results under four different
distributions.

Distribution Observed usage | Estimated usage | Accuracy
Uniform 58.35 % 58.35% 100 %
Hotspot 46.19% 45.87% 99.31%
Zipf Scrambled | 35.91 % 36.29 % 98.94 %
Zipf Clustered |19.28% 19.15% 99.33 %

The results are depicted in Table4. As can be seen, the estimated server usage
is almost the same as the observed average server usage, despite all four dif-
ferent distributions with very different cache hit rates. It should be noted that,
as expected, the approach predicts the server usage of the uniform distribution
with accuracy of 100 % due to the similarity between the input usage levels of
the model and the ones used in the test. We can also use the generated model
to accurately estimate the server usage when the incoming throughput varies.
In that regard, we set up two different experiments using the exact same setting
as in the experiments of Sect. 3. For every data point there were 3 independent
runs, and the results presented are the computed average. In the first experi-
ment, we populated the HBase instance with 4,000,000 records (4.3 GB). The
YCSB’s client was configured to use the zipf clustered distribution with 100 %
read operations, and for a fixed throughput ranging from 250 ops/s to 10,000
ops/s. We also wanted to validate what happens when using a data size not
used in the model generator. As a result, we populated the HBase cluster with
3,000,000 records (3.15 GB), and this time using the zipf scrambled distribution,
which yields a much lower cache hit ratio (78.8%). As a result, the configured
read throughput ranged from 250 ops/s to 7,000 ops/s. The results for each
experiment are depicted in Fig.3(a) and in Fig. 3(b). They show the estimated
server usage compared to the observed one. The estimated results are drawn
from our approach using the generated model for read operations, and observ-
ing the cache hit ratio as provided by HBase exported metrics. As expected,
the estimated server usage in both experiments is very similar to the observed
counterpart.

Discussion. The approach described in this section allows to accurately esti-
mate the server usage resorting to an offline trained model based on the uniform
distribution. Using the cache hit ratio and the incoming throughput as the only
parameters that affect resource utilization may appear oversimplifying. Specially,
when taking account related approaches to usage prediction in RDBMS. How-
ever, key-value datastores are fundamentally different from relational databases.
In order to attain high scalability, high throughput and high availability, these
datastores offer a simple key-value interface based on put and get operations
without providing multi record atomic operations nor complex operations like
joins and aggregations. On the other hand, RDBMS must cope with a large
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Fig. 3. Experiments for read-only operations.

number of concurrent and lock-prone ACID transactions and need different more
complex models for resources, such as CPU, RAM, disk I/O and database locks.
These differences allow our simple but effective technique to work. The empir-
ical intuition of why other parameters, such as the I/O costs, do not need to
be considered separately is because they are already concealed in the training
model. Taking a closer look into the behavior of each distribution in the first
experiment, and decomposing the overall throughput into operations hitting and
missing the cache, we have:

— Uniform - 49 % of cache hit ratio; thus 980 ops/s are cache hits, the remaining
1020 ops/s miss the block cache;

— Hotspot - 56 % of cache hit ratio; thus 1120 ops/s are cache hits, the remaining
880 ops/s miss the block cache;

— Zipf Scrambled - 68 % of cache hit ratio; thus 1360 ops/s are cache hits, the
remaining 640 ops/s miss the block cache;

— Zipf Clustered - 93% of cache hit ratio; thus 1860 ops/s are cache hits, the
remaining 140 ops/s miss the block cache.

By looking at the average resource usage for each distribution, it is obvious that
the cost of a cache miss is greater than the cost of accessing the block cache.
This implies that the server usage for read operations can be decomposed as the
sum of two costs: Usage,eqq = Usagenis + Usagemiss.- The Usagep;: is the cost
of only accessing the cache, while the Usage,,;ss represents the cost of a miss in
the cache. It covers not only the cost of bringing a block into the cache (either
from main memory or disk), but also the cost of discarding the least recently
used data to make room for the new data block. Thus, when two workloads have
identical cache hit ratios and identical incoming throughputs, it means that both
workloads have the same number of operations hitting the cache and the same
number of operations missing the cache. As a result, once two workloads exhibit
the same Usagep;; and Usagenss, ultimately exhibit the same server usage.

5 Estimating the Resource Usage of Update Operations

Although workloads are generally dominated by reads, most applications also
have updates. We apply a similar approach to update operations. Updates and
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writes can be used interchangeable, because in key-value datastores, such as
HBase and Cassandra, updates and new writes are append-only, so they fol-
low the same write path. Updates in these datastores are first written to main
memory before being flushed to disk. Therefore, the resource cost of an update
is essentially related with the operation of writing the update to main mem-
ory and, from time to time flushing it to secondary memory. As a consequence,
contrary to read requests, updates are mostly independent of the request dis-
tribution and current data size. In addition, because the write path and the
read path in a NoSQL datastore are substantially separated, the overall server
usage can be defined as the sum of the usage related with read operations and the
usage related with update operations: ServerUsage perqn = ServerUsagereqq +
ServerUsageypdate. As updates are independent of the request distribution and
the data size, creating a model to predict the server usage of update operations is
simpler than the read model counterpart. The only variable affecting the server
utilization is, thus the write throughput.

Analogous to the model generator for read operations, we used a Python
developed script to generate the server usage model for update operations. It also
uses YCSB as the workload generator, but this time configured for updates. As
the update model only depends on the throughput, the script has only one main
parameter: a list of targeted update throughput points to test. For every element
of targeted update throughput there are 3 independent runs, and the server
utilization is logged every second in the remote machine where the datastore
node is running. When all the defined points are finished, we also resort to
interpolation between those points. Like the server model of read operations,
the automatic server model generator was used on our own cluster, using the
exact same setting. The generated server model for updates is depicted in Fig. 4.
There were defined 28 different targeted update throughputs from 5 updates
per second to 10,000 updates per second. For increased accuracy, the first 10
targeted throughputs fall within the interval of 5 to 1000 updates per second.
From that point on, there were 500 increments until 10,000 updates per second,
which is the point where the server usage reaches 80 %. As can be seen the server
utilization for update operations grows linearly with the increased throughput.

1 2 7 8 9 10

3 4 5 6
Throughput (ops/s x 10%)

Fig. 4. Instantiation of the model for update operations.
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6 Resource Estimation for Read-Write Workloads

Along this section we validate our approach using HBase showing that we can
accurately predict resource consumption for any given workload even if there is a
mix between read and update operations. In the experiments we used the exact
same setting as in the experiments of Sect. 3. For every data point there were 3
independent runs, and the results presented are the computed average. By using
both the read and the update model, we are able to estimate the server usage for
read operations and update operations independently. However, as described in
Sect. 5 the write path and the read path are mostly separated, thus we are able
to estimate the overall server usage just by adding both estimations. In order
to validate this assumption, we set up an experiment configured with different
read and update mixes, namely: 90 % read and 10 % update; 80 % read and 20 %
update; 50 % read and 50 % update; 20 % read and 80 % update; 10 % read and
90 % update. The region was populated with 4,000,000 records (4.3 GB) and the
requests followed the uniform distribution with a fixed throughput of 118 ops/s,
562 ops/s, 1250 ops/s, 1958 ops/s and 2921 ops/s. These tested throughputs cor-
respond to 5%, 20 %, 40 %, 60 % and 80 % server usage levels, as generated by
the server model for the uniform distribution. In Fig. 5 is depicted the results for
this experiment. It shows that our approach is valid and it accurately predicts
the server usage even when there are read and update operations simultane-
ously. However, as seen in Fig.5(c) and (d) for the higher values of throughput
the observed server usage is higher than the estimated one. These differences can
be explained by compactions occurring during the test period that disrupt the
readers of records stored on disk. Figure 6 shows the server usage along the entire
30 min run for the 20 % read and 80 % update mix (Fig.5(d)) for the 2912 ops/s
throughput. Until the compaction process starts (at 1277s) the observed server

~ Observed
~ Estimated

o o
2000 2500 3000 500 1000 ' 1500 2000 2500 3000 500 1000 ' 1500 2000 2500 3000

07 500 1000 ' 1500 0
Throughput (ops/s) Throughput (ops/s) Throughput (ops/s)

(a) 90% read and 10% up- (b) 80% read and 20% up- (c) 50% read and 50% up-
date. date. date.

2000 2500 3000 o' 806 1000 ' 1500 2000 2500 3000

o' s0 1000 ' 1500
Throughput (opss) Throughput (ops/s)

(d) 20% read and 80% up- (e) 10% read and 90% up-
date. date.

Fig. 5. Read and update operations mix experiments in HBase.



156 F. Cruz et al.

150 1277 1596 1800
ramp up compaction  compaction
started finishe
time (s)

Fig. 6. Observed server usage along a 30 min run for the 20 % read and 80 % update
mix for 2912 ops/s throughput.

usage average is the same as the estimated one (44 %). Then, the compaction
process greatly increases server usage to levels near 100 %. When compaction
ends regular behavior is resumed. This process greatly impacts the overall server
usage average, but even at this point our estimated server usage is only off by
12 %, which is the greatest difference observed. It is worth noting, however, that
while more powerful hardware and particularly SSDs would attenuate the prob-
lem and help improve the estimation, in [2] it is proposed to offload compactions
to a dedicated compaction server to prevent the significantly degraded read per-
formance during compactions.

7 Related Work

A significative group of approaches aims at predicting the resource usage of
generic systems such as, virtual machines, thus requiring complex models that
must take into account many parameters [26,27]. As mentioned in the literature,
in order to obtain accurate models with fewer variables, it is key to focus on spe-
cific applications [15]. This is the case of performance prediction for RDBMS
focused on online transaction processing (OLTP) [21,22]. Although our work
has similarities with the previous approaches, such as resorting to off-line model
training, it has different assumptions from RDBMS. These differences signifi-
cantly change the required approach to accurately predict the performance of
key-value datastores. A single resource model is also not achievable for related
work that predicts the performance of SQL queries by using models for each
database operator (e.g., Sort, Merge Join), which are not present in NoSQL
datastores [19]. It is worth mentioning the work on performance prediction for
database consolidation, where several database instances are running in the same
server and processing different types of workloads and, in many cases, even dis-
tinct schemas [1,8]. Once again, this work needs to deal with the added com-
plexity of RDBMS.

Regarding the techniques used to predict systems’ performance, machine
learning and analytical modeling are the most commonly used [20]. These can
be used exclusively or in combination, by resorting to time-series analysis [13,16],
regression models [9,28], and clustering [24]. These approaches require lengthy
training phases to estimate accurately different workload distributions. It is
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however possible to reduce the duration of this initial phase by using a less
accurate model and then refine it, in runtime, with other machine learning algo-
rithms [10]. Because we target a specific type of system, we are able to reduce
our model to only two parameters, the cache hit ratio and incoming throughput.
Our approach achieves high accuracy without needing runtime improvements for
the model. To the best of our knowledge our approach is the only work that can
accurately predict the performance of a NoSQL datastore with a single model.
Even if our solution needs offline training, it does not require system traces or
runtime mechanisms to improve the precision of the estimation.

8 Conclusion

Along this paper we focused on a mechanism for distributed key-value datas-
tores resource usage prediction. Our mechanism is able to accurately predict the
resource utilization for every data size, request distribution and throughput com-
bination. In contrast with previous approaches on prediction systems for cloud
environments, we take advantage of focusing on a specific cloud component to
improve prediction accuracy and its applicability. In particular, we observed that
the majority of the NoSQL systems make use of buffer caching mechanisms to
improve performance. Moreover, the effectiveness of such mechanisms is directly
related with the performance and, as a consequence, to the resource utilization
of the database. This effectiveness can be measured in terms of the hit ratio
that the caching mechanism exhibits. The higher the cache hit ratio the more
effective the cache mechanism is, and thus more efficient is the database. In this
work, we show that a NoSQL workload can be characterized by the incoming
throughput and by its cache hit ratio, as the latter is a reflection of the data size
and of the distribution of requests. From such observation, we can use the cache
hit ratio and the throughput to build a server usage model, that can then be
used to predict the resource utilization of any workload only by knowing those
two parameters. In our experiments the average prediction accuracy achieved is
94 % with a standard deviation of 5.6. Notably, our approach can be effectively
used for several practical applications. Examples are automated online load bal-
ancing systems, automated resource allocation and even cost-benefit assessment
of hardware upgrades to mention a few. In effect, we are currently implementing
this mechanism in an automated elasticity tool (MET [7]) aiming at improving
its load balancing capabilities.
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