
Multiple Mutation Testing from FSM

Alexandre Petrenko1, Omer Nguena Timo1(&), and S. Ramesh2

1 Computer Research Institute of Montreal, CRIM, Montreal, Canada
{petrenko,omer.nguena}@crim.ca

2 GM Global R&D, Warren, MI, USA
ramesh.s@gm.com

Abstract. Fault model based testing receives constantly growing interest of
both, researchers and test practitioners. A fault model is typically a tuple of a
specification, fault domain, and conformance relation. In the context of testing
from finite state machines, the specification is an FSM of a certain type. Con-
formance relation is specific to the type of FSM and for complete deterministic
machines it is equivalence relation. Fault domain is a set of implementation
machines each of which models some faults, such as output, transfer or tran-
sition faults. In the traditional checking experiment theory the fault domain is
the universe of all machines with a given number of states and input and output
sets of the specification. Another way of defining fault domains similar to the
one used in classical program mutation is to list a number of FSM mutants
obtained by changing transitions of the specification. We follow in this paper the
approach of defining fault domain as a set of all possible deterministic sub-
machines of a given nondeterministic FSM, called a mutation machine, pro-
posed in our previous work. The mutation machine contains a specification
machine and extends it with a number of mutated transitions modelling potential
faults. Thus, a single mutant represents multiple mutations and mutation
machine represents numerous mutants. We propose a method for analyzing
mutation coverage of tests which we cast as a constraint satisfaction problem.
The approach is based on logical encoding and SMT-solving, it avoids enu-
meration of mutants while still offering a possibility to estimate the test ade-
quacy (mutation score). The preliminary experiments performed on an industrial
controller indicate that the approach scales sufficiently well.

Keywords: FSM � Conformance testing � Mutation testing � Fault modelling �
Fault model-based test generation � Test coverage � Fault coverage analysis

1 Introduction

In the area of model based testing, one of the key questions concerns a termination rule
for test generation procedures. It seems to us that there are two main schools of thought
considering this rule. One of them follows a traditional approach of covering a spec-
ification model [19]. In terms of the Finite State Machine (FSM) model, one could
consider for coverage various features of an FSM, such as transitions or sequences of
them which model test purposes often used to guide and terminate test generation.
Another school focuses on fault coverage and thus follows fault model based testing,
see, e.g., [15, 16, 20–22, 26].

© IFIP International Federation for Information Processing 2016
E. Albert and I. Lanese (Eds.): FORTE 2016, LNCS 9688, pp. 222–238, 2016.
DOI: 10.1007/978-3-319-39570-8_15

Fault model based testing receives constantly growing interests of both, researchers
and test practitioners. Fault models are defined in the literature in a variety of ways [26].
In [11], we propose to define a fault model as a tuple of a specification, a fault domain,
and a conformance relation. In the context of testing from finite state machines, the
specification is a certain type of an FSM. A conformance relation is specific to the FSM
type and for complete deterministic machines it is equivalence relation. A fault domain
is a set of implementation machines, aka mutants, each of which models some faults,
such as output, transfer and transition faults.

In the traditional checking experiment theory the fault domain is the universe of all
machines with a given number of states and input and output alphabets of the speci-
fication, see, e.g., [6, 8, 9, 12–14, 23]. While this theory offers clear understanding what
does it mean to have sound and exhaustive, i.e., complete tests, it leads to tests whose
number grows in the worst case exponentially with the FSM parameters. To us, this is a
price to pay for considering the universe of all FSMs. Intuitively, choosing a reasonable
subset of this fault domain might be the way to mitigate the test explosion effect. As an
example, if one considers the fault domain of mutants that model output faults, a test
complete for this fault model is simply a transition tour. The space between these two
extreme fault models has received in our opinion insufficient attention. In what follows,
we present a brief account of what has been done in this respect.

In the area of program mutation testing, mutants are generated by modifying
programs. The number of tests is limited by the number of mutants, which usually need
to be compared one by one with the original program to determine tests that kill them
[3, 4]. Test minimization could then be achieved via explicit enumeration of all the
mutants in the fault domain followed then by solving a set cover problem.

Mutation testing in hardware area seems to predate program mutation. An early
work of Poage and McCluskey in 1964 [2] focuses on hardware faults in FSM
implementations and builds a fault domain by extracting FSM mutants from modified
circuits. The idea of this approach is to consolidate the comparisons of individual
mutants aiming at reduction of the number of tests, however, mutants still need to be
analyzed one by one. The approach in [1] focuses on detection of single FSM muta-
tions with the same test, but provides no guarantees that mutants with multiple
mutations (higher order mutants) can always be killed.

Explicit mutant enumeration can be avoided by defining a fault domain as a set of
all possible submachines of a given nondeterministic FSM, called a mutation machine,
proposed in our previous work [5, 7, 10]. The mutation machine contains a specifi-
cation machine and extends it with a number of mutated transitions modelling potential
faults. Mutated transitions might be viewed as faults injected in the specification
machine, see, e.g., [25]. Thus, a single mutant represents multiple mutations and
mutation machine represents numerous mutants. In our previous work, methods were
developed for test generation using this fault model [5, 7, 10]. The main idea was to
adjust classical checking experiments for a fault domain smaller than the universe of all
FSMs. A checking experiment once obtained is in fact a complete test suite, however,
this approach does not offer a means of analyzing mutation coverage of an arbitrary test
suite or individual tests.

Traditional program mutation testing uses explicit mutant enumeration to determine
test adequacy or mutation score. It is a ratio of the number of dead mutants to the number

Multiple Mutation Testing from FSM 223

of non-equivalent mutants. We are not aware of any attempt to characterize a fault
detection power of tests considering multiple mutants that avoids their enumeration.

The paper aims at solving this problem. We propose a method for analyzing
mutation coverage of tests which we cast as a constraint satisfaction problem. The
approach is based on logical encoding and SMT-solving, it avoids enumeration of
mutants while still offering a possibility to estimate the test adequacy (mutation score).
The analysis procedure can be used for test prioritization and test minimization, and
could eventually lead to an incremental test generation.

The remaining of this paper is organized as follows. Section 2 defines a specifi-
cation model as well as a fault model. In Sect. 3, we develop a method for mutation
coverage analysis. Section 4 reports on our preliminary experiments performed on an
industrial controller. Section 5 summarizes our contributions and indicates future work.

2 Background

2.1 Finite State Machines

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite set of
states with initial state s0; I and O are finite non-empty disjoint sets of inputs and
outputs, respectively; T is a transition relation T � S � I � O � S, (s, i, o, s′) is a
transition.

M is completely specified (complete FSM) if for each tuple (s, x) 2 S � I there
exists transition (s, x, o, s′) 2 T. It is deterministic (DFSM) if for each (s, x) 2
S � I there exists at most one transition (s, x, o, s′) 2 T; if there are several transitions
for some (s, x) 2 S � I then it is nondeterministic (NFSM); M is observable if for each
tuple (s, x, o) 2 S � I � O there exists at most one transition; if there are several
transitions for some (s, x, o) 2 S � I � O then it is non-observable.

An execution of M from state s is a sequence of transitions forming a path from s in
the state transition diagram of M. The machine M is initially connected, if for any state
s 2 S there exists an execution from s0 to s. An execution is deterministic if each
transition (s, x, o, s′) in it is the only transition for (s, x) 2 S � I; otherwise, i.e., if for
some transition (s, x, o, s′) in the execution there exists in it a transition (s, x, o′, s′′)
such that o 6¼ o′ or s′ 6¼ s′′, the execution is nondeterministic. Clearly, a DFSM has
only deterministic executions, while an NFSM can have both.

A trace of M in state s is a string of input-output pairs which label an execution
from s. Let TrM(s) denote the set of all traces of M in state s and TrM denote the set of
traces of M in the initial state. Given sequence b 2 (IO)*, the input (output) projection
of b, denoted b#I (b#O), is a sequence obtained from b by erasing symbols in O (I).

We say that an input sequence triggers an execution of M (in state s) if it is the
input projection of a trace of an execution of M (in state s).

Given input sequence a, let outM(s, a) denote the set of all output sequences which
can be produced by M in response to a at state s, that is outM(s, a) = {b#O| b 2
TrM(s) and b#I = a}.

We define several relations between states in terms of traces of a complete FSM.

224 A. Petrenko et al.

Given states s1, s2 of a complete FSM M = (S, s0, I, O, T), s1 and s2 are (trace-)
equivalent, s1 ’ s2, if TrM(s1) = TrM(s2); s1 and s2 are distinguishable, s1 ≄ s2, if
TrM(s1) 6¼ TrM(s2); s2 is trace-included into (is a reduction of) s1, s2 � s1, if
TrM(s2) � TrM(s1). M is reduced if any pair of its states is distinguishable, i.e., for
every s1, s2 2 S there exists a 2 I* such that outM(s1, a) 6¼ outM(s2, a), a is called a
distinguishing sequence for states s1 and s2, this is denoted s1 ≄a s2.

We also use relations between machines. Given FSMs M = (S, s0, I, O, T) and
N = (P, p0, I, O, N), N � M if s0 � p0; N ’ M if s0 ’ p0; N ≄ M if s0 ≄ p0. In this
paper, we use equivalence relation between machines as a conformance relation
between implementation and specification machines.

Given a complete initially connected NFSM M = (S, s0, I, O, T), a complete ini-
tially connected machine N = (S′, s0, I, O, N) is a submachine of M if S′ � S and
N � T. The set of all complete deterministic submachines of M is denoted Sub(M).
Obviously, each machine in Sub(M) is a reduction ofM; moreover, ifM is deterministic
then Sub(M) contains just M.

2.2 Fault Model

Let A = (S, s0, I, O, N) be a complete initially connected DFSM, called the specifi-
cation machine.

Definition 1. A complete initially connected NFSM M = (S, s0, I, O, T) is a mutation
machine of A = (S, s0, I, O, N), if N � T, i.e., if A is a submachine of M.

We assume that all possible implementation machines for the specification machine
A constitute the fault domain Sub(M), the set of all deterministic submachines of the
mutation machine M of A. A submachine B 2 Sub(M), B 6¼ A is called a mutant.
Transitions of M that are also transitions of A are called unaltered, while others, in the
set T\N, are mutated transitions. Given (s, x) 2 S � I, we let T(s, x) denote a set of
transitions from state s and input x in M. If T(s, x) is a singleton then its transition is
called a trusted transition. The set T(s, x) is called a suspicious set of transitions if it is
not a singleton, transitions in a suspicious set are called suspicious. Trusted transitions
are present in all mutants, but suspicious transitions in each set T(s, x) are alternative
and only one can be present in a deterministic mutant.

A mutant B is nonconforming if it is not equivalent to A, otherwise, it is called a
conforming mutant. We say that input sequence a 2 I* such that B ≄a A detects or kills
the mutant B.

The tuple < A, ’, Sub(M) > is a fault model following [11]. For a given specifi-
cation machine A the equivalence partitions the set Sub(M) into conforming imple-
mentations and faulty ones. In this paper, we do not require the FSM A to be reduced,
this implies that a conforming mutant may have fewer states than the specification A; on
the other hand, we assume that no fault creates new states in implementations, hence
mutants with more states than the specification FSM are not in the fault domain Sub(M).

Multiple Mutation Testing from FSM 225

Consider the following example.

The mutation machine M contains six suspicious transitions, one mutated transition
represents output fault and the other two transfer faults. M contains eight deterministic
submachines, the specification machine and seven mutants which share the same five
trusted transitions.

As discussed in previous work [5, 7, 10], the mutation machine formally models
test hypotheses about potential implementation faults. The mutation machine M allows
compact representation of numerous mutants in the fault domain Sub(M). More pre-
cisely, their number is given by the following formula:

In the extreme case, considered in classical checking experiments a fault domain is
the universe of all machines with a given number of states and fixed alphabets. The
corresponding mutation machine becomes in this case a chaos machine with all pos-
sible transitions between each pair of states. The number of FSMs it represents is the
product of the numbers of states and outputs to the power of the product of the numbers
of states and inputs.

3 Mutation Testing

A finite set E � I* of finite input sequences is a test suite for A. A test suite is said to be
complete w.r.t. the fault model <A, ’, Sub(M)> if for each nonconforming mutant
B 2 Sub(M) it contains a test detecting B.

In the domain of program mutation testing, such a test suite is often called adequate
for a program (in our case, a specification machine) relative to a finite collection of
programs (in our case the set of mutants), see, e.g., [4].

Differently from the classical program mutation testing, where the mutant killing
tests are constructed mostly manually, in case of deterministic FSMs, tests that kill a

Fig. 1. A mutation machine with the specification machine as its submachine, where mutated
transitions are depicted with dash lines, state 1 is the initial state.

226 A. Petrenko et al.

given mutant FSM can be obtained from the product of the two machines, see, e.g.,
[1, 2, 27]. The problem can also be cast as model checking for a reachability property,
considered in several work, see, e.g., [18]. This approach can also be used to check
whether a given test kills mutants, but it requires mutant enumeration.

In this work, we develop an analysis approach that avoids mutant enumeration
while still offering a possibility to estimate the test adequacy (mutation score).

3.1 Distinguishing Automaton

Tests detecting mutants of the specification are presented in a product of the specifi-
cation and mutation machines obtained by composing their transitions as follows.

Definition 2. Given a complete deterministic specification machine A = (S, s0, I, O,
N) and a mutation machineM = (S, s0, I, O, T), a finite automaton D = (C [{∇}, c0, I,
D, ∇), where C � S � S, and ∇ is an accepting (sink) state is the distinguishing
automaton for A and M, if it holds that

• c0 = (s0, s0)
• For any (s, t) 2 C and x 2 I, ((s, t), x, (s′, t′)) 2 D, if there exist (s, x, o, s′) 2 N, (t, x,

o′, t′) 2 T, such that o = o′ and ((s, t), x, ∇) 2 D, if there exist (s, x, o, s′) 2 N, (t, x,
o′, t′) 2 T, such that o 6¼ o′

• (∇, x, ∇) 2 D for all x 2 I.

We illustrate the definition using the specification and mutation machines in Fig. 1.
Figure 2 presents the distinguishing automaton for A and M.

The accepting state defines the language LD of the distinguishing automaton D for
A and M and possesses the following properties. First, all input sequences detecting
each and every mutant belong to this language.

Theorem 1. Given the distinguishing automaton D for A and M, if B ≄a A, B 2 Sub
(M), then a 2 LD.

Notice that for any nonconforming mutant there exists an input sequence of length
at most n2, where n is the number of states of the specification machine, since dis-
tinguishing automaton has no more than n2 states.

At the same time, not each and every word of the language detects a mutant. An
input sequence a 2 LD triggers several executions in the distinguishing automaton
D which are defined by a single execution in the specification machine A and some
execution in the mutation machine M both triggered by a. The latter to represent a
mutant must be deterministic. Such a deterministic execution of the mutation machine
M defining (together with the execution of A) an execution of the distinguishing
automaton D to the sink state is called a-revealing. Input sequences triggering
revealing executions enjoy a nice property of being able to detect mutants.

Theorem 2. Given an input sequence a 2 I* such that a 2 LD, an a-revealing exe-
cution includes at least one mutated transition, moreover, each mutant which has this
execution is detected by the input sequence a.

Multiple Mutation Testing from FSM 227

Given an input sequence a 2 LD, the question arises how all the mutants (un)
detected by this input sequence can be characterized. We address this question in the
next section.

3.2 Mutation Coverage Analysis

Consider an input sequence a 2 I* which detects a nonconforming mutant by triggering
a-revealing executions. Analyzing these executions we can determine all mutated
transitions involved in each of them. This analysis can performed by using a distin-
guishing automaton constrained to a given input sequence.

Let a 2 I* and Pref(a) be the set of all prefixes of a. We define a linear automaton
(Pref(a), e, I,Da), such that each prefix of a is a state, and (b, x, bx) 2Da if bx 2 Pref(a).

11 22 33

12 44 43

2413 23

b
a

a
b a

b
b

a
b

a

a

b

a

a b

a

b

bb

a
a

b

b

a a

∇a,b

b

a

Fig. 2. The distinguishing automaton D for the specification A and mutation M machines in
Fig. 1, state 11 is the initial state.

228 A. Petrenko et al.

Definition 3. Given input sequence a 2 I*, a specification machine A = (S, s0, I,
O, N) and a mutation machine M = (S, s0, I, O, T), a finite automaton Da = (Ca [{∇},
c0, I, Da, ∇), where Ca � Pref(a) � S � S, and ∇ is a designated sink state is the
a-distinguishing automaton for A and M, if it holds that

• c0 = (e, s0, p0)
• For any (b, s, t) 2 Ca and x 2 I, such that bx 2 Pref(a), ((b, s, t), x, (bx, s′, t′)) 2 Da,

if there exist (s, x, o, s′) 2 N, (t, x, o′, t′) 2 T, such that o = o′ and ((b, s, t), x, ∇) 2
D, if there exist (s, x, o, s′) 2 N, (t, x, o′, t′) 2 T, such that o 6¼ o′.

We illustrate the definition using the input sequence a = baaba for the specification
and mutation machines in Fig. 1. Notice that the sequence hits all the mutated tran-
sitions in the mutation machine. The resulting a-distinguishing automaton for A and
M is shown in Fig. 3.

Notice that the input sequence baaba and its prefix baa trigger two executions
which end up in the sink state ∇. These are

1. (1, b, 0, 2)(2, a, 0, 3)(3, a, 1, 3)
2. (1, b, 0, 2)(2, a, 0, 3)(3, a, 0, 3)(3, b, 0, 3)(3, a, 0, 3).

The suspicious transitions are in bold. The executions are deterministic and include
two mutated transitions (3, a, 1, 3) and (3, b, 0, 3). The third mutated transition (4, a, 1, 2)
is in the execution that does not lead to the sink state ∇. Hence, the input sequence baaba
detects any mutant with two out of three mutated transitions.

The example indicates that a-distinguishing automata for the specification and
mutation machines provide a suitable means for mutation analysis of a given test suite.
Before we formulate a method for such an analysis, we consider yet another example of
a-distinguishing automata with a = babaaba.

Fig. 3. The a-distinguishing automaton Da for the specification A machine and mutation
machine M in Fig. 1, where a = baaba.

Multiple Mutation Testing from FSM 229

The executions of the automaton in Fig. 4 leading to the sink state define the
following executions of the mutation machine:

1. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 0, 3)
2. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 1, 3)
3. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 0, 3)(3, b, 0, 4)(4, a, 1, 1)
4. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)
5. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 1)
6. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 0, 3)(3, a, 1, 3)
7. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)(2, a, 0, 3)(3, a, 1, 3)
8. (1, b, 0, 2)(2, a, 0, 3)(3, b, 0, 3)(3, a, 1, 3)(3, a, 0, 3)(3, b, 0, 4)(4, a, 1, 2)

The executions 3, 5, 6 and 8 are nondeterministic in the mutation machine, since
each of them has both unaltered and mutated transitions for the same pair of state and
input.

Consider the first execution, it involves two suspicious transitions, mutated tran-
sition (3, b, 0, 3) and unaltered transition (3, a, 0, 3). The prefix baba of the input
sequence babaaba detects any mutant in which unaltered transition (3, b, 0, 4) is
replaced by the mutated one (3, b, 0, 3) and the suspicious transition (3, a, 0, 3) is left
unaltered. Let B be a set of transitions of a mutant B 2 Sub(M).

A mutant B is then detected by the input sequence babaaba or its prefix if its set of
transitions B satisfies at least one of the following constraints on suspicious transitions:

1. (3, b, 0, 3), (3, a, 0, 3) 2 B
2. (3, b, 0, 3), (3, a, 1, 3) 2 B
3. (3, b, 0, 3), (3, a, 1, 3), (3, a, 0, 3), (3, b, 0, 4), (4, a, 1, 1) 2 B
4. (3, b, 0, 4), (4, a, 1, 2) 2 B
5. (3, b, 0, 4), (4, a, 1, 2), (4, a, 1, 1) 2 B

Fig. 4. A fragment of a-distinguishing automaton Da for the specification A machine and
mutation machine M in Fig. 1, where a = babaaba; executions missing the sink state are not
shown.

230 A. Petrenko et al.

6. (3, b, 0, 3), (3, a, 1, 3), (3, a, 0, 3) 2 B
7. (3, b, 0, 4), (4, a, 1, 2), (3, a, 1, 3) 2 B
8. (3, b, 0, 3), (3, a, 1, 3), (3, a, 0, 3), (3, b, 0, 4), (4, a, 1, 2) 2 B

Clearly nondeterministic executions 3, 5, 6 and 8 have unsatisfiable constraints
since they require, e.g., that suspicious transition (3, b, 0, 4) is unaltered and replaced
by the mutated transition (3, b, 0, 3) in the same mutant.

As stated above any mutant with the transition relation satisfying one of these
constraints is detected by the input sequence babaaba or its prefix, since a wrong
output sequence should be produced by such a mutant. On the other hand, a mutant that
does not satisfy any of them escapes detection by this input sequence. To characterize
these mutants, we formulate constraints which exclude all the executions of detected
mutants by considering the negation of the disjunction of the constraints for all the
triggered revealing executions. The resulting constraint becomes a conjunction of
negated constraints of the executions.

For instance, the negated first constraint is (3, b, 0, 3) 62 B or (3, a, 0, 3) 62 B. This
reads that the unaltered transition (3, b, 0, 4) or mutated transition (3, a, 1, 3) must be
present. The constraint (3, b, 0, 3) 62 B is equivalent to (3, b, 0, 4) 2 B; similarly,
(3, a, 0, 3) 62 B is equivalent to (3, a, 1, 3) 2 B. We have that the negated constraint is
(3, b, 0, 4) 2 B or (3, a, 1, 3) 2 B.

To formalize the above discussions we cast the execution analysis as a constraint
satisfaction problem by using auxiliary variables to specify the choices between sus-
picious transitions. Let T1, T2, …, Tm be the sets of suspicious transitions, where
unaltered transitions are the first elements and the remaining elements of each set are
lexicographically ordered. We introduce auxiliary variables z1, z2, …, zm, such that
variable zi represents the suspicious set Ti. For the variable zi the domain is Di = {1, 2,
…, |Ti|}, such that zi = 1 represents the unaltered transition in the set Ti and the other
values correspond to mutated transitions. We use conditional operators {= , 6¼} and
logical operators AND (^) and OR (_) for constraint formulas.

Each execution of a mutation machine that involves suspicious transitions yields
assignments on variables representing these transitions, which expresses a constraint
formula as the conjunction of individual assignments (zi = c), where c 2 Di. Then the
negated constraint formula becomes the disjunction of individual constraints (zi 6¼ c).

A set of revealing executions triggered by one or more input sequences is then the
conjunction of disjunctions of individual constraints.

In our example, the sets of suspicious transitions are

T1(3, a) = {(3, a, 0, 3), (3, a, 1, 3)},
T2(3, b) = {(3, b, 0, 4), (3, b, 0, 3)} and
T3(4, a) = {(4, a, 1, 1), (4, a, 1, 2)}.

Each of these sets define two values of variables z1, z2 and z3, where the value 1 of
each variable represents a corresponding unaltered transition.

Multiple Mutation Testing from FSM 231

The constraint formula becomes:

((z2 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1) _
(z2 6¼ 1) _ (z3 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z3 6¼ 1)) ^
((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _
(z1 6¼ 2) _ (z1 6¼ 1) _ (z2 6¼ 1) _ (z3 6¼ 2)).

Clearly, the formula always has a solution where values of variables determine
unaltered transitions representing a specification machine, but we need a solution if it
exists which has at least one mutated transition. To this end, we add the constraint
(z1 6¼ 1)_ (z2 6¼ 1)_ (z3 6¼ 1) excluding the solution defining the specificationmachine.

The final constraint formula is

((z2 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1) _
(z2 6¼ 1) _ (z3 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z3 6¼ 1)) ^
((z2 6¼ 2) _ (z1 6¼ 2) _ (z1 6¼ 1)) ^ ((z2 6¼ 1) _ (z3 6¼ 2) _ (z1 6¼ 2)) ^ ((z2 6¼ 2) _
(z1 6¼ 2) _ (z1 6¼ 1) _ (z2 6¼ 1) _ (z3 6¼ 2)) ^ ((z1 6¼ 1) _ (z2 6¼ 1) _ (z3 6¼ 1)).

To solve it, we use the SMT solver Yices [23] which finds the solution (z1 = 2),
(z2 = 1), (z3 = 1). The solution defines a mutant with the single mutated transition (3, a,
1, 3). The mutant is nonconforming, which can be verified with the help of a distin-
guishing automaton obtained for the specification machine and the mutant. This means
that the input sequence babaaba does not detect the mutant defined by the solution. To
ensure its detection we have two options, to add a new input sequence or to try to
extend the input sequence babaaba until it detects the remaining mutant. The latter
option avoids using the reset operation in testing, required in the former option.

Following the first option we notice that the input sequence which detects the
escaped mutant is baa already obtained in the example of the a-distinguishing
automaton in Fig. 3, where a = baaba. Considering the revealing execution (1, b, 0, 2)
(2, a, 0, 3)(3, a, 1, 3) triggered by its prefix baa, we generate an additional constraint
(z1 6¼ 2) which prevents the suspicious transition (3, a, 1, 3) to be chosen and add it to
the final constraint formula which has no solution. The set {babaaba, baa} is therefore
a complete test suite for the specification machine A and mutation machine M in Fig. 1.

Following the second option, we find that it is possible to extend the input sequence
babaaba which leaves the specification machine in state 3 with the input a to detect the
mutated transition (3, a, 1, 3). As before, we add constraint (z1 6¼ 2) and the final
constraint has no solution. The set {babaabaa} is also a complete test suite.

This example indicates that various test generation strategies could be investigated,
complementing checking experiments and checking sequences approaches. The latter
allows one to avoid using multiple resets in testing. Notice that a classical checking
experiment for this example derived by using, e.g., the W-method [12, 13], contains
many more input sequences, moreover, the specification machine in Fig. 1 has no
distinguishing sequence, which is usually required to generate a checking sequence. By
this reason the existing methods cannot construct a single test, however, the example
indicates that the mutation analysis allows us to do so. We leave the detailed elabo-
ration of a test generation method for future work and formulate in this paper a
procedure for mutant coverage analysis.

232 A. Petrenko et al.

The procedure uses as inputs a test suite TS for a specification machine A and
mutation machine M and consists of the following steps:

1. For each input sequence a 2 TS
(a) Determine the a-distinguishing automaton
(b) Find all executions leading to the sink state
(c) Determine a-revealing executions of the mutation machine
(d) Build the disjunction of constraints excluding the a-revealing executions

2. Build the conjunction of the obtained disjunctions and add the constraint that
excludes the solution defining the specification machine

3. Solve the constraint formula by calling a solver
4. If it finds no solution terminate with the message “TS is complete”, otherwise check

whether the mutant defined by a solution is conforming
5. If it is nonconforming terminate with the message “TS is incomplete”, otherwise

add the constraint that excludes the solution defining the conforming mutant and go
to Step 3.

The main steps of the procedure have already been discussed and illustrated on the
examples, except of the last two steps which deserve more explanation. Constraint
solvers normally provide a single solution if it exists. An extra constraint prevents the
solution to point to just the specification machine, but the found solution may corre-
spond to a conforming mutant. In the domain of general mutation testing the problem
of dealing with mutants equivalent, i.e., conforming, to the specification is well
understood. In testing from an FSM, most approaches assume that the specification
machine is reduced, so conforming mutants are isomorphic machines. Checking FSM
equivalence is based on an FSM product. Notice that the proposed approach does not
require the specification machine be reduced.

The complexity of the proposed method is defined by the number of constraints.
We expect that the method scales well, since the recent advances in solving techniques
drastically improve their scalability [23, 24]. The number of constraints for a single
execution is limited by the number of states of a mutation machine, but the number of
executions increases with the number of mutated transitions. On the other hand, the
number of executions of the distinguishing automaton which do not end up in the sink
state grows with the number of mutated transitions, as faults may compensate each
other. These executions are not revealing and do not contribute to the number of
constraints. In Sect. 4 we present the results of our preliminary experiments performed
on an industrial controller to assess the scalability of the approach.

3.3 Applications

The proposed mutation coverage analysis approach allows one to check if a given test
suite is a complete test suite. A logical formula constructed by the proposed method
represents the coverage of the test suite for a given fault model. If the test suite is found
to be incomplete the question arises on how its quality in terms of fault coverage can be
characterized. In the traditional software mutation testing, the fault detection power of
tests is characterized by mutation score. It is a ratio of the number of killed mutants to
the number of non-equivalent mutants. Note that the number of all possible mutants

Multiple Mutation Testing from FSM 233

remains unknown and the mutation score is determined based on a limited set of
generated mutants. As opposed to this approach, in our approach the total number of
mutants can always be determined using the formula given in Sect. 2.2. Moreover,
while the mutation analysis method avoids complete mutant enumeration, it does
generate conforming mutants while searching for nonconforming ones. The enumer-
ation of conforming mutants is achieved by adding constraints to a logical formula
excluding repeated generation of already found mutants.

In the same vain, our method can be enhanced to generate and enumerate (at least
partially) undetected nonconforming mutants. Once a nonconforming mutant is given
by a solution found by a SMT solver and the method terminates declaring the test suite
to be incomplete, we may continue this process by adding a constraint excluding its
repeated generation. As a result a list of nonconforming mutants can be obtained. Two
extreme cases of incomplete tests are worth to be discussed here.

First, a given test suite may have no detection capability at all. This property is in
fact detected very early by the method; in this case all the a-distinguishing automata
have no sink state reachable from the initial states, tests generate no constraints, the
method can terminate at this step since there is no need to call a solver. No mutant in
Sub(M) is killed, the score is zero.

Second, a given test suite is “almost” complete and kills most of the mutants in Sub
(M). In this case, the process of nonconforming mutant generation does not takemuch time
and once terminated yields the number of conforming mutants c as well as the number of
survived nonconforming ones n. Then the mutation score is computed as follows:

It is worth to note that the way the mutation score is determined is completely
different from that in software mutation testing, as our method generates mutants based
on a given test suite and not the other way around.

When a given test suite is “far” from being complete the number of survived
nonconforming mutants can explode especially when a mutation machine is close to a
complete chaos machine which represents the complete universe of FSMs. In this
situation one possible solution to cope with the mutant explosion problem is to ter-
minate generating nonconforming mutants once their number reaches a predefined
maximum, e.g., a percentage of |Sub(M)| or the time period allocated for mutation
analysis ends. The obtained score is an (optimistic) estimation of an upper bound of the
actual mutation score.

The proposed procedure could also be used for test minimization by defining a
subsume relation between tests based on comparison of the logical formulas generated
from them. Tests subsumed by other tests can always be removed from the original test
suite. Similarly the generated formulas can be used to prioritize tests when needed, see,
e.g., [28].

4 Experimental Results

In this section we report on a prototype tool implementing the proposed approach and
its use on a case study of an FSM model of an automotive controller of industrial size.

234 A. Petrenko et al.

4.1 Prototype Tool

The prototype tool takes as inputs a mutation machine and a test suite, both described
in text format. The inputs are parsed with an ANTLR-based module [30] to build an
internal representation of the two objects. The mutation analysis algorithm manipulates
these representations to build a-distinguishing automata, determine revealing execu-
tions of the mutation machine and generate constraints for the Yices SMT solver [23].
The solver is used as a backend to decide the satisfiability of the constraints. The tool
parses the outputs from Yices to extract a solution if it is found to build a mutant. The
prototype can also be used with other SMT solvers compatible with the SMT-LIB 2.0.

4.2 Case Study

In our experiments, we use as a case study an automotive controller of the air quality
system, which we also used in our previous work [29]. The functionality of the con-
troller is to set an air source position depending on its current state and a current input
from the environment.

The controller is initially specified as a hierarchical Simulink Stateflow model.
Figure 5 gives an overview of the model which is composed of three super-states s1, s2
and s23 and 13 simple states. Each super-state is composed of states and transitions.
The initial state is the simple state s3. To obtain an FSM we introduced an input
alphabet replacing transitions guards and flattened the hierarchical machine. We have
identified 24 abstract inputs and two outputs. The resulting FSM has 14 states, since we
added (for modeling of a branching behavior implemented with C code in the original
state) one extra state to the given 13 simple states. It has 24 � 14 = 336 transitions.

The mutation machine was constructed from the following assumption about
potential implementation faults. These faults may occur in outgoing transitions from any
of the simple states in two super-states, namely s2 and s23 and four inputs, as Table 1
shows. The obtained mutation machine has 46 mutated transitions. The formula in
Sect. 2 gives the number of mutants being equal to 312 � 217 = 69,657,034,752
including the specification machine.

Fig. 5. An overview of the Simulink/Stateflow model in the controller

Multiple Mutation Testing from FSM 235

4.3 Mutation Analysis

To perform the mutation analysis, we needed a test suite, which could be generated
randomly, however, we find it difficult to obtain tests that hit suspicious transitions in
this case study, since 26 out of 336 transitions of the specification machine become
suspicious in the mutation machine. We decided to use an early prototype of a test
generation tool (which is work in progress) as an input for the mutation analysis tool.
The tool generates test cases one by one, so that the mutation analysis tool processes a
test suite of an increasing size. The process terminates once a current test suite is found
to be complete. In this experiment, the test suite completeness was determined when it
had 31 test cases. The length of the test cases varies from 4 to 25 and the number of
revealing executions triggered by each of them varies from 1 to 13. In the last, 31st

execution of Yices, it was given the formula of 69 clauses, for which it found no
solution, meaning that the test suite is complete for the given mutation machine. The
mutation analysis process took less than one minute on a desktop computer with the
following settings: 3.4 Ghz Intel Core i7-3770 CPU, 16.0 GB of RAM, Yices 2.4.1,
and ANTLR 4.5.1.

The fact that the tool was able to determine that the given test suite kills each
nonconforming mutant out of 69,657,034,752 possible mutants indicates that the
approach scales sufficiently well on a typical automotive controller even when the
number of mutants is big. In this experiment, we varied only the number of tests (from
1 to 31), hence more experiments by varying the specification as well as mutation
machines are needed to assess the tool scalability.

5 Conclusions

In this paper we focused on fault model based testing, assuming that a fault model is
given as a tuple of a specification FSM, equivalence as a conformance relation and a
fault domain. A fault domain is a set of implementation machines, aka mutants, each of
which models some faults, such as output, transfer or transition faults. Avoiding their
enumeration we define the fault domain as a set of all possible submachines of a given
nondeterministic FSM, called a mutation machine, as we did in our previous work. The
mutation machine contains a specification machine and extends it with a number of
mutated transitions, modelling potential faults. Thus a single mutant represents multiple
mutations and mutation machine represents numerous mutants. In the area of mutation

Tab. 1. The numbers of transitions for some pairs of states and inputs in the mutation machine
(for the remaining pairs no mutated transitions were added).

s21 s22 s231 s232 s233 s234 s235

a2 3 3 3 3 3 3 3
a4 2 2 2 2 2 2 2
a14 1 1 3 3 3 3 3
a16 1 1 4 4 4 4 4

236 A. Petrenko et al.

testing we could not find any attempt to analyze fault detection power of tests con-
sidering multiple mutants that avoids their enumeration.

We proposed a method for analyzing mutation coverage of tests which we cast as a
constraint satisfaction problem. The method relies on the notion of a distinguishing
automaton that is a product of the specification and mutation machines. To analyze
mutation coverage of a single input sequence we define a distinguishing automaton
constrained by this sequence. This allows us to determine all mutants revealing exe-
cutions that are triggered by the input sequence. The executions are then used to build
constraint formulas to be solved by an existing solver, Yices, in our experiments. The
approach avoids enumeration of mutants while still offering a possibility to estimate the
test adequacy (mutation score).

The preliminary experiments performed on an industrial controller indicate that the
approach scales sufficiently well. We are planning to further enhance the approach to
Extended FSMs [17] using mutation operators already defined for this type of FSMs.

Acknowledgements. This work is supported in part by GM R&D and the MEIE of Gou-
vernement du Québec. The authors would like to thank the reviewers for their useful comments.

References

1. Pomeranz, I., Sudhakar, M.R.: Test generation for multiple state-table faults in finite-state
machines. IEEE Trans. Comput. 46(7), 783–794 (1997)

2. Poage, J.F., McCluskey, Jr., E.J.: Derivation of optimal test sequences for sequential
machines. In: Proceedings of the IEEE 5th Symposium on Switching Circuits Theory and
Logical Design, pp. 121–132 (1964)

3. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the
practicing programmer. IEEE Comput. 11(4), 34–41 (1978)

4. DeMilli, R.A., Offutt, J.A.: Constraint-based automatic test data generation. IEEE Trans.
Softw. Eng. 17(9), 900–910 (1991)

5. Grunsky, I.S., Petrenko, A.: Design of checking experiments with automata describing
protocols. Automatic Control and Computer Sciences. Allerton Press Inc. USA.
No. 4 (1988)

6. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings of the IEEE
5th Annual Symposium on Switching Circuits Theory and Logical Design, pp. 95–110.
Princeton (1964)

7. Koufareva, I., Petrenko, A., Yevtushenko, N.: Test generation driven by user-defined fault
models. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) Testing of Communicating Systems.
IFIP — The International Federation for Information Processing, vol. 21, pp. 215–233.
Springer, New York (1999)

8. Lee, D., Yannakakis, M.: Principles and methods of testing finite-state machines - a survey.
Proc. IEEE 84(8), 1090–1123 (1996)

9. Moore, E.F.: Gedanken - Experiments on sequential machines. In: Automata Studies.
Princeton University Press, pp. 129–153 (1956)

10. Petrenko, A., Yevtushenko, N.: Test suite generation for a FSM with a given type of
implementation errors. In: Proceedings of IFIP 12th International Symposium on Protocol
Specification, Testing, and Verification, pp. 229–243 (1992)

Multiple Mutation Testing from FSM 237

11. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Fault models for testing in context. In:
Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX, pp. 163–178.
Springer, USA (1996)

12. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 4, 653–665 (1973). Plenum
Publishing Corporation. New York

13. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng. 4(3), 178–187 (1978)

14. Vuong, S.T., Ko, K.C.: A novel approach to protocol test sequence generation. In: Global
Telecommunications Conference, vol. 3, pp. 2–5. IEEE (1990)

15. Godskesen, J.C.: Fault models for embedded systems. In: Pierre, L., Kropf, T. (eds.)
CHARME 1999. LNCS, vol. 1703, pp. 354–359. Springer, Heidelberg (1999)

16. Cheng, K.T., Jou, J.Y.: A functional fault model for sequential machines. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 11(9), 1065–1073 (1992)

17. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE
Trans. Softw. Eng. 30(1), 29–42 (2004)

18. Gordon, F., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. Softw. Test.
Verification Reliab. 19(3), 215–261 (2009)

19. Anand, S., et al.: An orchestrated survey of methodologies for automated software test case
generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

20. Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated
bibliography. Modeling and verification of parallel processes, pp. 196–205. Springer,
Heidelberg (2001)

21. Petrenko, A., Bochmann, G.V., Yao, M.: On fault coverage of tests for finite state
specifications. Comput. Netw. ISDN Syst. 29(1), 81–106 (1996)

22. Simao, A., Petrenko, A., Maldonado, J.C.: Comparing finite state machine test coverage
criteria. IET Softw. 3(2), 91–105 (2009)

23. De Moura, L., Dutertre B.: Yices 1.0: An efficient SMT solver. In: The Satisfiability Modulo
Theories Competition (SMT-COMP) (2006)

24. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

25. Rӧsch, S., Ulewicz, S., Provost, J., Vogel-Heuser, B.: Review of model-based testing
approaches in production automation and adjacent domains - current challenges and research
gaps. J. Softw. Eng. Appl. 8, 499–519 (2015)

26. Bochmann, G.V., et al.: Fault models in testing. In: Proceedings of the IFIP TC6/WG6.
1 Fourth International Workshop on Protocol Test Systems, pp. 17–30. North-Holland
Publishing Co. (1991)

27. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifications. IEEE
Trans. Comput. 54(9), 1154–1165 (2005)

28. Korel, B., Tahat, L.H., Harman M.: Test prioritization using system models. In: Proceedings
of the 21st IEEE International Conference on Software Maintenance, pp. 559–568 (2005)

29. Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test optimization for
automotive controllers. In: ICST Workshops, pp. 198–207 (2013)

30. Parr, T.: The Definitive ANTLR 4 Reference, vol. 2. Pragmatic Bookshelf, Raleigh (2013)

238 A. Petrenko et al.

	Multiple Mutation Testing from FSM
	Abstract
	1 Introduction
	2 Background
	2.1 Finite State Machines
	2.2 Fault Model

	3 Mutation Testing
	3.1 Distinguishing Automaton
	3.2 Mutation Coverage Analysis
	3.3 Applications

	4 Experimental Results
	4.1 Prototype Tool
	4.2 Case Study
	4.3 Mutation Analysis

	5 Conclusions
	Acknowledgements
	References

