
Design of Capability Delivery Adjustments

Jānis Grabis and Jānis Kampars(&)

Institute of Information Technology,
Riga Technical University, Kalku 1, Riga, Latvia

{grabis,janis.kampars}@rtu.lv

Abstract. Capabilities are designed for ensuring that business services can be
delivered to satisfy business performance objectives in different circumstances.
Run-time adjustments are used to adapt capability delivery to these specific
circumstances. The paper elaborates the concept of the capability delivery
adjustments on the basis of capability meta-model proposed as a part of the
Capability Driven Development approach. The types of adjustments are iden-
tified as their specifications are provided. An example of adjustments modeling
is developed.

Keywords: Capability � Adaptation � Run-time � Context

1 Introduction

Capabilities specify an ability and capacity to deliver business services to meet specific
business performance objectives in different circumstances [1]. They are delivered in
ever-changing contextual situations. The purpose of capability delivery adjustments is
to alter capability delivery in response to the changing context and delivery perfor-
mance without the need for redesigning the capability and underlying information
systems. The run-time delivery adjustments specified in this paper support this
objective by: (1) enabling specification of complex contextual data processing logics;
(2) providing reconfigurable data bindings; and (3) separating contextual dependencies
from business logic.

The adjustments provide a uniform way of defining computations associated with
the concepts defined in the capability model and primarily of those associated with
context elements (represents any information that can be used to characterize the
situation of an entity) and context indicators (a property of the context relevant to the
capability design and used for monitoring capability delivery). These computations can
be specified by a capability designer, and they are decoupled from the rest of capability
delivery logics. That allows to make changes in context processing without changing
the rest of the capability delivery application. Algorithms for context aware capability
delivery adjustment are defined as capability adjustments and provide decision-making
logics for capability delivery variations.

The reconfigurable data bindings are important to incorporate new context element
in the capability design. The new context elements need to be incorporated because all
context elements affecting capability delivery are not known in advance during the
capability delivery. Adjustments use constants that can be changed during run-time,

© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 52–62, 2016.
DOI: 10.1007/978-3-319-39564-7_5



allowing to alter the way capability reacts to context without stopping the underlying
systems and redeploying solution.

The paper elaborates technical aspects of designing adjustments. The adjustments
are executed using a technical platform for capability design delivery as described in
[2]. The platform consists of the (1) Capability Delivery Application (CDA), which is
responsive for the execution of the business logic with no regard to contextual
dependencies; (2) Capability Navigation Application, which processes the context
information and provides context awareness to CDA as-a-service; (3) Capability
Context Platform, which integrates the context information and notifies CNA of con-
text information changes.

The rest of the paper is organized as follows. Section 2 introduces types of
adjustments. These adjustments are further elaborated in Sect. 3. The adjustment
modeling is illustrated in Sects. 4 and 5 concludes.

2 Capability Adjustment

Adjustments are developed as a technical addition to the capability meta-model to
represent processing of context and indicator data as well as to adapt capability
delivery.

2.1 Background

The methodological foundation of capability design and delivery is provided by the
core capability meta-model (CMM) in Fig. 1 (more details in [1]). In brief, the
meta-model has three main sections: (a) Enterprise model, representing organizational
designs with Goals, KPIs, Processes (with concretizations as Process Variants) and
Resources; (b) Context, represented with Context Set for which a Capability is
designed and Context Situation at runtime that is monitored and according to which the
deployed solutions should be adjusted. Context Indicators are used for high level
overview of the contextual situation; and (c) Patterns, for delivering Capability by
reusable solutions for reaching Goals under different Context Situations.

2.2 Types of Adjustments

Adjustments are used for adjusting the capability based on important factors like
context or KPIs. They are also used for monitoring the capability in run-time, by
interpreting raw context data (Measurable Properties) in a more comprehensible way
and to calculate the KPI current and target values. Two adjustment groups can be
distinguished (Fig. 2):

1. Calculation, used for calculating KPI and ContextElement values. Results
from Calculation instances can be used as input data for Capabil-
ityAdjusment instances.

Design of Capability Delivery Adjustments 53



2. CapabilityAdjustment, that alter the capability based on context and other
factors (e.g. if the average load time of a website is greater than 4 s, a new web
server node is deployed in the cloud).

Calculation is further divided into ContextCalculation and KPICal-
culation. ContextCalculation is used for interpreting measurable properties
and calculating the value of a ContextElement. KPICalculation is responsible
for calculating target and current values of KPI based on various input data. The KPI
values can be visualized using a set of predefined widgets in CNA during run-time or
used as an input data for other adjustments. EventBasedAdjustment is exposed as
a REST web service from CNA and is used for enabling process-based capabilities. In
cases when CDA requires to choose an exit for a business process gateway based on
the current contextual situation, it can query the CNA web service for making the right
decision. ScheduledAdjustment allows to implement schedule based, in-code
adjustments. ScheduledAdjustment is execute periodically and can trigger a
change in the CDA based on the current contextual situation by calling a web service
exposed by the CDA. In most cases CapabilityAdjustment instances rely on
results received from Calculation instances.

Adjustment variables are used to implement the adjustment logic and they are
accessible in the scope of the adjustment code. Optionally input parameters can be used
for initializing the adjustment variable values. Adjustment variables are also initialized
using Input Data Associations (IDA), which allow to bind adjustment constants or
other global available data to local adjustment variables.

There are multiple alternatives for implementing adjustments among which are Java
(in-code adjustments) and MathML (implemented using a visual tool with no need to
write code manually). The Adjustment engine is responsible for execution of the
adjustment code.

Fig. 1. A core meta-model for supporting capability driven development.

54 J. Grabis and J. Kampars



CapabilityAdjusment supports decision making for invoking an appropriate
process variant for dealing with specific context situations It can use Con-
textElement value, KPI values and adjustment constants. Two subtypes of
CapabilityAdjustment exist – EventBasedCalculation and Sched-
uledAdjustment. ScheduledAdjustment is executed based on a predefined
schedule and it cannot be called through a web service. EventBasedAdjustment
is deployed as a web service. It can be called whenever it is required to make a decision
based on the current context.

3 Elaboration of Adjustments

This section briefly describes a procedure for adjustment modeling in the Capability
Design Tool (an Eclipse based modeling tool which is part of the Capability Driven
Development environment) consisting of three main activities (Fig. 3).

The Add ContextCalculation activity identifies all ContextElement class
instances needed for adjusting the capability, creates a ContextCalculation
instance for each of them and connects the ContextCalculation instance to the
corresponding ContextElement instance (Fig. 4). Similarly, the Add KPICal-
culation specifies calculations for KPIs.

The Add EventBasedAdjustment activity specifies uses of adjustments for selecting
the process execution variants. When using EventBasedAdjustment together
with process gateways, their associations are used to specify what process instance
specific values are passed to the EventBasedAdjustment and how the adjustment
result is used to choose the desired process variant (Fig. 5).

Adjustment

- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

CapabilityAdjustment

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

ScheduledAdjustment

- schedule

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

Ev entBasedAdjustment

- invocation_url

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

Calculation

- invocation_url

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

KPICalculation

::Calculation
- invocation_url

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

ContextCalculation

::Calculation
- invocation_url

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

Fig. 2. Groups of adjustment

Design of Capability Delivery Adjustments 55



The IDA for ContextCalculation activity specifies data bindings for Con-
textCalculation instances. A ContextCalculation instance can be linked
to instances of AdjustmentConstant and MeasurableProperty. The value
of AdjustmentConstant can be changed during run-time by the designer, while
the value of a MeasurableProperty is received from the CCP.

4 Example

An example illustrating usage of scheduled adjustments considers on-demand scaling
of computational resources in the cloud. Different methods and computational plat-
forms have been proposed to address this issue (e.g., [3, 4]). The methods differ by
scaling algorithms used, performance measures used and contextual factors considered.
The proposed application of capability modeling and run-time adjustments allows for

Fig. 3. Adjustment modelling procedure

ContextElement

- name
- value
- parameter[]

Calculation

ContextCalculation

::Calculation
- invocation_url

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

1..

calculates
value1

Fig. 4. Linking a ContextElement to a ContextCalculation

56 J. Grabis and J. Kampars



flexibility to use these different algorithms, performance measures and contextual
factors within a single framework.

The adjustment model in Fig. 6 shows context elements affecting the scaling
decisions and KPIs used to monitor the cloud performance. The scheduled adjustment
continuously monitors the cloud platform and if necessary increases the number of
computational nodes available.

Context elements webServerLoad (the current average load of webservers),
webServerResponseTime (the current average response time of webservers) and
nodeCount (the current web server node count in the cloud) are used to describe the
contextual situation. A KPI of avgResponseTime is defined to use it as an overall
quality measure of the cloud-based solution. Two KPICalculation instances are
used to calculate the target and current values of the KPI. The scaling process is limited
by adjustment constants maxNodes and minNodes which represent the maximum
and minimum number of web server in the cloud. These constants can be changed
during run-time for adding more resources to the web application and reaching KPI
target value. In order to use the context element values, adjustments constants and KPI
values in the cloudScales adjustment IDAs need to be established. For each
ContextCalculator an instance a MeasurablePropertyIDA is created and
linked to the corresponding MeasurableProperty. To set the server type Mea-
surablePropertyIDA relies on the serverType adjustment constant.

CapabilityAdjustment

Ev entBasedAdjustment

- invocation_url

::Adjustment
- name: string
- type = [mathml, java]
- input_parameter[]
- adjustment_variable[]
- code

ProcessVariantVariationPoint

- exit = [1,2]
- process_variable = [pv1,pv2]

VariationPointBinding

- ap_value[] = [ap1=>pv1,ap2=>pv2]
- exit_condition[] = [ExitID=1 if ar...

ExitID=1

ExitID=2

ExitId=3

Start

ProcessVariantVariationPoint

Value specification 
(enter pv1, pv2)

1 1

1

supports decision
making at

0..*
1

provides ar value
0..*

Fig. 5. Linking an EventBasedAdjustment to process variants

Design of Capability Delivery Adjustments 57



Two ContextElementValueIDA instances are added to the model for using the
contex element values. For using values of AdjustmenConstant instances,
AdjustmentConstantIDA elements are created.

A simplified version of cloudScaler implementation is given in Fig. 7.
Based on the current load, current number of nodes and constants the cloudS-

caler can choose whether to scale up or down. cloudApi represents the cloud
native API of the corresponding cloud computing platform.

5 Related Work

New business needs and requirements arise during service and software delivery and
some of them might be introduced without interrupting the service and shutting down
the software. These changes are variously described in literature as runtime adaptation,
dynamic reconfiguration, autonomic computing, self-adaptation, dynamic evolution,
runtime adjustment and others. The modern research on delivery and runtime modi-
fication originates from the vision of autonomic computing [5]. The vision was for-
mulated in response to the software complexity, and it primarily focuses on technical
aspects of running complex integrated software systems. The four main aspects of

wsResponseTimeCalculator: 
ContextCalculation

adjustment_variable[] = [ws_response_time]
input_parameter[] = []
name = WS response time calculator
type = Java

webServ erResponseTime: 
ContextElement

parameter[] = []
name = Web server response time

cloudScaler: ScheduledAdjustment

adjustment_variable[] = [ws_avg_load, current_node_count, min_nodes, max_nodes]
type = Java
input_parameter[] = []

changesInWebServ erLoad: 
CapabilityDeliv eryVariationPoint

webServ erLoadCalculator: 
ContextCalculation

adjustment_variable[] = [ws_avg_load]
input_parameter[] = []
name = Web server load calculator
type = Java

webServ erLoad: ContextElement

parameter[] = []
name = Web server load

av erageResponseTime: KPI

name = Web server response time

av gResponseTimeCurrent: 
KPICalculation

adjustment_variable[] = [ws_response]
type = Java
input_parameter[] = []

targetResponseTime: KPICalculation

adjustment_variable[] = [target_response_time]
type = Java
input_parameter[] = []

minNodes: AdjustmentConstant

name = Min number of nodes
value = 2

maxNodes: AdjustmentConstant

name = Max number of nodes
value = 40

serv erType: 
AdjustmentConstant

name = Server type
value = web_server

targetResponseTime: 
AdjustmentConstant

name = Target response time
value = 2

nodeCount: ContextElement

parameter[] = []
name = Web server node count

nodeCount: ContextCalculation

adjustment_variable[] = [node_count]
input_parameter[] = []
name = Current node count
type = Java

target value calculation

supports implementing

current value calculation

Fig. 6. ScheduledAdjustment example

58 J. Grabis and J. Kampars



self-management in autonomic computing are self-configuration, self-optimization,
self-healing and self-protection.

There are different types of adaptive systems. The common features of the adaptive
systems are monitoring of changes, goal driven adjustment of the system and a feed-
back loop measuring the success of the adjustment [6]. Self-adaptive systems recently
have attracted the most attention in computer science. The self-adaptive systems are
able to modify their behavior and/or structure in response to their perception of the
environment and the system itself, and their goals [7].

Weyns et al. [8] elaborate a formal reference model of the self-adaptive systems.
The model is represented using both UML diagrams and Z language what allows
reasoning about behaviour of adaptive systems. Multiple case studies are provided. The
literature review on self-adaptive systems [9] shows that researchers focus on software
design issues of self-adaptive systems and single MAPE feedback loops.

Their self-adaptive software life-cycle model includes the offline and online
activities [10]. Dynamic reconfiguration is a mechanism that allows the modification of
a software system during the execution time without shutting it down or restarting it
[11]. Methods used for dynamic reconfiguration make changes at the code level or at
the component level. In the era of cloud computing, many aspects of dynamic
reconfiguration are addressed by dynamic provisioning of cloud computing resources,
where intelligent algorithms are used to make provisioning decisions during the service
delivery (e.g., [12]). Mori [13] talks of software evolution as a software engineering
process to design context-aware adaptive applications resilient to context and user
needs variations. Oreizy et al. [14] claim that runtime adaption consists of two inter-
linked cycles of evolution management and adaptation management. The evolution

Fig. 7. Adjustment implementation

Design of Capability Delivery Adjustments 59



management deals with changing the application on the basis of interrelated models
including code as a model.

The adjustment can be considered as a looser term compared to adaptation, which
requires the adaptation goal and the feedback loop, and reconfiguration, which deals
with structural properties of the system. Montani and Leonardi [15] use the term
“run-time adjustment” in relation to agile workflow technologies. More importantly,
the term is applied to modification of business processes rather than to modification of
technical aspects of systems. User interface and underlying business logics also can be
adapted using information provided in goal models [16]. Process adaption has been an
active research area with initial emphasis on adaptive workflows, followed by QoS
driven BPEL adaptation and lately on general business processes since BPMN has
become executable. Change patterns are at the heart for the workflow adaptation [17].
The AGENTWORK [18] is one of the best know adaptive workflow management
systems. The workflow can be automatically adapted either reactively or proactively.
Alferez el al. [19] investigate dynamic adaption of service composition. They refer to
dynamic adaption as opposite to static adaption, which requires shutting down the
system for manual modification.

Business process variants currently is one of the most frequently used methods for
supporting adjustment of business processes for specific conditions and requirements.
These variants can be constructed either by configuration or adaptation [20]. That can
be done in design time as well as in runtime. In the case of adaption, the variants are
designed by applying business process change operations such as insertion, deletion of
tasks or other process flow elements. Hallerbach et al. [21] elaborate a Provop approach
to developing process variants. Their process variant life-cycle consists of four phases,
namely, modelling, configuration, execution and optimization. The context-based
configuration of the variants is supported. In the execution phase, switching between
the process variants is possible to deal with dynamic context changes. A system is
context-aware if it uses context to provide relevant information and/or services to the
user, where relevancy depends on the user’s task [22]. The context awareness does not
necessarily involve adaption and reconfiguration. It is inherently dynamic since
majority of context values are known only during the systems execution. Context
awareness is also used in workflow adaptation. Smanchat et al. [23] show that majority
of the surveyed context aware workflow solutions deal with workflow instance
adaption.

6 Conclusion

The paper has described an approach for modeling capability delivery adjustments,
which are used for context information processing and capability delivery adaptation in
response to changing contextual situations during capability delivery. Capability
delivery adjustment enable maintaining the desired level of delivery performance. The
adjustments are specified as an extension of the capability meta-model.

The paper focused only on the adjustment modeling part. The adjustment
deployment environment and adjustment execution activities are also essential for
application of adjustments.

60 J. Grabis and J. Kampars



References

1. Bērziša, S., Bravos, G., González, T., Czubayko, U., España, S., Grabis, J., Henkel, M., Jokste,
L., Kampars, J., Koç, H., Kuhr, J., Llorca, C., Loucopoulos, P., Pascual, R.J., Pastor, O.,
Sandkuhl, K., Simic, H., Stirna, J., Giromé, F.V., Zdravkovic, J.: Capability driven
development: an approach to designing digital enterprises. Bus. Inf. Syst. Eng. 57, 15–25
(2015)

2. Zdravkovic, J., Stirna, J., Henkel, M., Grabis, J.: Modeling business capabilities and context
dependent delivery by cloud services. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE
2013. LNCS, vol. 7908, pp. 369–383. Springer, Heidelberg (2013)

3. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for cloud
applications. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 644–651 (2012)

4. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for
elastic applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)

5. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36, 41–50
(2003)

6. Heylighen, F.: Web dictionary of cybernetics and systems; principia cybernetica web (2004).
http://pespmc1.vub.ac.be. Accessed 27 Dec 2013

7. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research
roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)

8. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7(1),
8–61 (2012)

9. Weyns, D., Ahmad, T.: Claims and evidence for architecture-based self-adaptation: a
systematic literature review. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 249–265.
Springer, Heidelberg (2013)

10. Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P., Vogel, T.:
Software engineering processes for self-adaptive systems. In: de Lemos, R., Giese, H.,
Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol.
7475, pp. 51–75. Springer, Heidelberg (2013)

11. Eddin, M.C.: Towards a taxonomy of dynamic reconfiguration approaches. J. Softw. 8(9),
2202–2207 (2013)

12. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource
provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012)

13. Mori, M.: A software lifecycle process for context-aware adaptive systems. In: Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European conference on Foundations
of Software Engineering, pp. 412–415 (2011)

14. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Proceedings of ICSE Companion 2008, Companion of the 30th
International Conference on Software Engineering, pp. 899–910 (2008)

15. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process
adjustment and analysis. Inf. Syst. 40, 128–141 (2014)

16. Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin, V., Mylopoulos, J.:
Behavioral adaptation of information systems through goal models. Inf. Syst. 37, 767–783
(2012)

Design of Capability Delivery Adjustments 61

http://pespmc1.vub.ac.be


17. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features -
enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66, 438–466
(2008)

18. Muller, R., Greiner, U., Rahm, E.: AGENT WORK: a workflow system supporting
rule-based workflow adaptation. Data Knowl. Eng. 51, 223–256 (2004)

19. Alférez, G.H., Pelechano, V., Mazo, R., Salinesi, C., Diaz, D.: Dynamic adaptation of
service compositions with variability models. J. Syst. Softw. 91, 24–47 (2014)

20. Döhring, M., Reijers, H.A., Smirnov, S.: Configuration vs. adaptation for business process
variant maintenance: an empirical study. Inf. Syst. 39, 108–133 (2014)

21. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models:
The Provop approach. J. Softw. Maint. Evol. 22(6–7), 519–546 (2010)

22. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness.
In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg
(1999)

23. Smanchat, S., Ling, S., Indrawan, M.: A survey on context-aware workflow adaptations. In:
Proceedings of MoMM 2008, pp. 414–417 (2008)

62 J. Grabis and J. Kampars


	Design of Capability Delivery Adjustments
	Abstract
	1 Introduction
	2 Capability Adjustment
	2.1 Background
	2.2 Types of Adjustments

	3 Elaboration of Adjustments
	4 Example
	5 Related Work
	6 Conclusion
	References


