Extending Capabilities with Context
Awareness

Martin Henkel' ™, Christina Stratigaki®, Janis Stirna',
Pericles Loucopoulos?, Yannis Zorgios>, and Antonis Migiakis®

! Stockholm University, Stockholm, Sweden
{martinh, js}@dsv. su. se
2 CLMS Ltd, London, UK
xristinastrathgakh@gmail. com,
{yz,a.migiakis}@clmsuk. com

Abstract. Organizations have the need to continuously adjust their capabilities
to changes in the business context. If existing IT systems and associated
development methods does not support this adjustment they need to be changed
to do so. However, there exist specialized methods and tools that allow the
design, and run-time monitoring of context information. In this paper an
approach that allows existing systems to be extended with the management of
context information is presented. The approach allows organizations to analyze
the potential effect and effort of combing existing systems and tools with spe-
cialized tools that handle context information. The purpose of providing means
for the integrated use of existing systems and specialized tools is to leverage the
strength of both. The approach in grounded in and illustrated by a case of
industrial symbiosis.

Keywords: Context analysis + Context monitoring - Capability modelling -
Capability management

1 Introduction

Organizations work in changing environments, their capabilities need to be adjusted to
meet the changes and in order to increase efficiency. Failure to adapt to changing
environments can endeavour organizations profitability or even its existence [1]. The
pace at which organizations need to adapt to changes is not slowing down. On the
contrary, organizations that have a competitive advantage tend to keep that advantage
for a shorter time [2]. Thus, organisations need to be aware of changes in their context
and adapt accordingly. Central to being able to perform this adaptation is to know the
context of the business, and to be able to measure and monitor it.

In this paper we present an approach that allows organisations to extend their
existing IT systems and development tools with tools and methods that allow the
analysis, design and monitoring of capabilities and their contexts. The approach makes
use of the Capability Driven Development (CDD) [3] methods and associated design
and run-time tools. The scope of this approach is (a) to make it possible to, on a
case-by-case basis, outline the benefits and effects of extending existing systems and

© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 40-51, 2016.
DOI: 10.1007/978-3-319-39564-7_4



Extending Capabilities with Context Awareness 41

tools with the ability to design and monitor context information, (b) to make it possible
to discern which method and software integrations that needs to be in place for such an
extension, (c) to have a basis for the implementation of software components that are
needed to perform changes to existing development tools and operational IT systems.

The approach is generic, but is specialized to make use of the CDD approach for
capability and context analysis. A key component of CDD is the use of graphical
models. The models used in CDD have a focus on describing organisational capabil-
ities, their contexts and goals. CDD does not include specific methods and tools for the
detailed creation of information systems. However it does provide tools that allow the
analysis, design and run-time monitoring of context information. This can be put in
contrast with traditional development tools that focus on components of software
systems, such as, data objects, information management procedures, user interface
components etc. Thus, combining the CDD approach with other development tools and
systems gives the possibility to have support for capability analysis and monitoring
(provided by CDD, or similar methods and tools) and the detailed implementation of
information systems (provided by existing systems).

The generic approach presented is applied in an industrial symbiosis platform
implemented by CLMS Limited. Industrial Symbiosis is an association between two or
more industrial actors in which the wastes or by-products of one become the raw
materials for another. This collaboration between two or more companies is called a
synergy.

Traditionally, experts and consultants, involving highly complex, labour-intensive
and error-prone tasks, performed the industrial symbiosis mediation process for the
matching between producers and consumers manually. However, the company CLMS
has implemented an industrial symbiosis platform that is improving industrial sym-
biosis by automating the process of mixing and matching the interests of different
actors in the waste resource chain, and by providing knowledge-based support for
managing resources and finding compatible ones. The platform suggests compatible
matches to a company and facilitates the creation of synergies for these matches. The
symbiosis platform is implemented using the state-of art model driven development
tool zAppDev. As each step of the approach is described in subsequent section, we also
describe its application in the symbiosis case.

In order to combine capability and context analysis with existing systems and
development tools, both design-time and run-time options for integration need to be
considered. We here outline four steps that can be followed to have a structured
approach for selecting integration options, these are described in the following sections:

Perform capability and context analysis.
Select design time integration options.
Select run-time integration options.
Summarize tool support needed.

NS

The rest of the paper is structured as follows. Section 2 is giving the theoretical
background and the related work. Section 3 introduces the first step of the approach,
capability and context analysis. Sections 3 and 4 describes subsequent steps in the
approach, focusing on design and run-time options when combining existing systems
with context aware design tools. Sections 6 and 7 contains summary and conclusions.



42 M. Henkel et al.

2 Related Work

In this paper we use the concepts of capabilities and context. These concepts have been
described in the field of strategic management, enterprise modelling and in research on
contextual systems.

In strategic management the notion of dynamic capability [4] can be used to
describe the ability on an organisation to evolve and thrive in changing environments.
The definition of the concept of capability has fluctuated somewhat in the area of
strategic management; however there is a tendency to associate it with the organisation
of resources and their allocation [5]. In this paper we use this interpretation of capa-
bility, that is, we view resources and their use as an integral part of capabilities. We
define a capability as the ability and capacity that enable an enterprise to achieve a
business goal in a certain context [3].

In the area of enterprise modelling and enterprise architecture, the concept of
capability has been used as a mean to analyse organisations [6, 7]. It has also been used
to describe an organizations ability to use enterprise architecture. This is most notable
in the open groups TOGAF framework [8], where capability frequently refers the
readiness of an organization to use enterprise architecture. Regarding strategic man-
agement and enterprise modelling, the contribution of this paper is to show how the
notions of capability and context can be realised, rather than adding to the existing
methods and conceptual foundation of capability analysis and architecture.

Examining the research in contextual systems, it can be said that a focus has been
on both to provide extensive and formal descriptions of the context, as well as on
development of context aware systems. Generally a context can be defined as infor-
mation that can be used to characterize a situation of an entity [9], we elaborate this
definition in Sect. 3. The relationships of an entity (such as an organisation, or an
organisational capability) to its environment are a part of the context. Ontologies have
been proposed by several authors as a mean to formally describe contextual infor-
mation. For example, in [10, 11] the use of ontologies for context descriptions is
central. There is also a class of systems referred to as context-aware systems that make
context information an integral part of the IT systems. For example, [12] propose a
system that in run-time replaces (software) services with adapted versions. Similarly,
there have been proposals on how to design systems architectures for context aware
systems, see for example [13, 14]. What these context aware systems have in common
is that they replaces existing systems, or requires substantial modification of existing
systems. In contrast to this, the approach presented in this paper provides a light-weight
approach to extend existing systems with context awareness.

3 Capability and Context Analysis

This section provides a brief overview of how capability and context analysis was
performed in the symbiosis case. This follows the CDD approach, as defined in [3].
For the purpose of improving the industrial symbiosis case an identification of the
capabilities within the business was done. Capability identification is the process of
finding the capabilities that the business relies on to function. Identification can be done



Extending Capabilities with Context Awareness 43

in several ways. For example, an identification based on recursive capability refinement
is described in our earlier paper [6]. Moreover the identification can be based on
concept models, process models or goal models [15].

A small excerpt of the capability model is shown in Fig. 1. Central to the business
was in this case the capability to enable web industrial symbiosis (Capability 1 in
Fig. 1). This capability relies on that a relevance rating can be determined for each
symbiosis (Capability 1.1), that the resources can be described properly (Capabil-
ity 1.2) and that the symbiosis is compliant with regulations (Capability 1.3). One
example of the need for compliance with regulations is that the transport of hazardous
goods is regulated. Capability 1 is dependent on the other capabilities, this are shown
by using rhombs in Fig. 1.

Capability 1

Enabler of web industrial
symbiosis

Capability 1.1 Capability 1.2 Capability 13

Resource description and

Determine relevance rating dassification

Compliance with regulations

Fig. 1. Excerpt from the capability model for the symbiosis case

Given the identified capabilities their operational context could be analysed. We
here start with the definition that context is any information that can be used to
characterize the situation [9], in which the capability can be provided. Procedures for
defining the context can be found in [15]. From an analysis perspective the identifi-
cation of the context for a capability are based on questioning the assumptions under
which the capability is working. More simply put, the context can be identified by
asking questions such as “What external conditions affects the performance of the
capability?”. “External” in this case means that the organisation should not be able to
control the capability context. Typical contexts that are clearly out of control for the
organisation are legislation, weather and even to some extent the behaviour of cus-
tomers or external (IT) systems. Moreover it is of interest to focus on external con-
ditions that affect the capability as a whole, rather than a single instance of a capability.
For example, the context in form of legislation may affect all ongoing work and future
outcomes of a capability, while a change in how a single customer is sending their
orders may only affect a limited part of ongoing work. Based on this discussion we
specialize the definition in [9] so that the context of a capability is external information
that affects the ability or capacity. This more specialized definition allows an analyst to
focus on issues that may go undetected if only examining the regular flow of infor-
mation that is used in a capability.

Figure 2 contains a small part of the context model for the capabilities in the
symbiosis case. In the figure we apply the CDD context model syntax to describe the



44 M. Henkel et al.

context. A context element denotes the context, while a measurable property denotes a
specific way to measure the context. A context set is used to group potential ranges of
context element values, these ranges are the expected values under which the capability
can work. In Fig. 2, it is shown that the resource description capability is affected by
the context in form of matching health (a context element), measured by the amount of
relative matches in the system (a measurable property).

Context Set 2

Context Element Range 2.1 Capability 1.2

Measurable Property 6 Context Element 4

measured by~ [Poor (0-20%), Stable (20-50%), is affected by—

Relative amount of successful Matching health Good (50-65%),Very Good (65-
matches 100%)]

Resource description
and classification

Fig. 2. Excerpt from the CDD model depicting context information

The context model shown in Fig. 2 can be extended by also introducing means to
cope with changing contexts. For example, variation aspects could be described that
each can define how to handle certain context values.

The CDD approach is supported by a set of tools, covering both design time and
run-time needs:

e Capability Design Tool (CDT): This is the design time environment for creating
capability and context models. For example, diagrams such as those shown in
Figs. 1 and 2 can be drawn using the CDT.

e Capability Navigation Application (CNA). This is a run-time tool used to monitor
the context of a capability. Essentially the current values of each context element
are shown. The CNA can also signal if the capability needs to be adjusted to
accommodate changes in the context.

e Capability Context Platform (CCP). This run-time tool work as a message broker
that enable the monitoring of complex measurable properties from several context
providers. The CCP continuously sends context information to the CNA.

The CDD approach also uses the concept of Capability Delivery Application (CDA) to
denote the operational IT support system that a capability have. For example, the CDA
can be in the form of an ERP system, or a more specialised system that are a part of a
capability. In our case the symbiosis platform is the CDA.

Note that even though these tools are defined in the context of CDD, the concepts
of context provider (CCP), context display/navigation (CNA) and operational IT sys-
tem (CDA) are generic. Thus the approach is generic, even though it is described in
terms of CDD.

4 Selecting Design Time Integration

The objective of this step is to decide how to integrate the design time tools of CDD
and other tools that is currently in use. The design time tool of CDD is the CDT.



Extending Capabilities with Context Awareness 45

At design time, the components of the CDT environment and existing tools can be
combined in several different ways. Likely, the CDT contains models, such as goal
models, that may be on a higher level of abstraction compared to the tool currently in
use. However, there may also be an overlap in the tools models, meaning that the
concepts used during design are the same. In general, tools with this kind of overlap
can be integrated in several ways. Depending on the overlap of the tools, and the
desired design time functionality we have identified the following three options for
performing design-time integration:

a. Side-by-side. Consider using the CDT as a side-by-side analysis tool that comple-
ments the existing tools. Essentially this means that the CDT and the existing tools
are used in parallel, and no integration is performed. On a general level this option
is useful if there is no overlap in the concepts used by the tools. This option is
suitable when the CDD tools are just used for analysis purposes, and there is no
need or desire to directly implement the CDD models in an IT system. The effect of
choosing this option is that CDD is used as a side-by-side tool without any inte-
gration with the existing tools.

b. CDT as a starting point for using the existing tools. Using this option means that
the models in CDT are used as input to create the initial solutions in the existing
tools. A CDT model can be transformed into a model in an existing Model-driven
Development (MDD) tool, or be used to generate code or configurations that can
be further edited in existing tools. For example, the context models (Fig. 2) could
be the base for creating an information model in a MDD tool, or an initial database
schema in a DBMS. This option is useful if there is some form of overlap of the
models, since some conceptual resemblance is needed to generate code or models
from CDT. The effect of using this option is that initial models, code or configu-
rations will be generated. However, the connection between CDD tools and the
existing tools is one-way.

c. Two-way integration between CDD and existing tools. This is similar to the option
of using the CDD as a starting point. However, here there is also a two-way
integration, meaning that when changes are performed in the existing tool they
should automatically be propagated to the CDD as well. The effect of using this
option is that designers can work in an iterative fashion, performing updates in both
the CDD and existing tools.

Table 1 can help in picking the desirable design time integration option. Note that
the actual choice can be a combination of the above options, since each type of model
in the CDT may use its own form of integration. An application of the options is
described below.

4.1 Design Time Options in the Symbiosis Case

In the symbiosis case CLMS use an advanced model driven tool named zAppDev to
develop the symbiosis platform. The model driven tool zAppDev contains several types
of models, of which some have an overlap with the models used in CDT. For example,



46 M. Henkel et al.

Table 1. Design time integration options.

Option

When to use

Integration effort

Effect

Side-by-side

CDD as starting

point

Two way
integration

No or little
conceptual overlap
between CDD and
existing tools

Clear overlap
between CDD and
existing tools.
CDD models
commonly more
abstract

Clear overlap
between CDD and
existing tools.
CDD models and
existing tools on
the same level of

A model
transformation
from CDD model
to a models, code
or configurations
in the existing tool
is needed

Both existing tools
and CDD tools
need to be
extended with
synchronisation

CDD is used
side-by-side with
the existing tools

The use of the
existing tools is
guided by an initial
input from the
CDD design. The
existing tool is
used to refine the
models

The designer can use
both CDD and
existing tools,
models are
synchronized both
ways

abstraction

the zAppdev tool employs information models referred to as domain models, and also
has the ability to express dynamic behaviour using IDEFO process models. We here
describe two cases of how the CDT and zAppDev tools can be integrated at design time
using the CDD as starting point for existing tools option.

CDD Context model to zAppDev domain model. Comparing CDD and zAppDev a
conceptual overlap can be found the CDD context models and zAppDevs domain
models. A domain model in zZAppDev depicts the information that the system is pro-
cessing. By model transformations built into zAppDev the domain models becomes a
relational database schema. The context models in CDD contain the concepts used for
describing the context of a capability. If desired, the context model could be used as the
basis for generating a domain model. By importing the CDD model into zAppDev, a
solution engineer can get a draft of the context concepts needed in the domain model.

CDD variation aspect to zZAppDev IDEFO controls. A variation aspect in CDD
describes a set of context elements that affect the execution of a capability. In essence,
there can be variations of the execution of the capability that are affected by the
variation aspect. If a capability is implemented as a process, the variation may be in the
form of execution of different control flows in the process. zAppDev does not directly
have the concept of variation aspect. However, the IDEFO diagram in zAppDev has the
notion of control flow. A control flow in this case works as a variable that is
enabling/disabling a function in the IDEF0. Thus, the control flow could be generated
from the CDD variation aspects. This would enable a change in context to enable a
function as defined In the IDEFO.



Extending Capabilities with Context Awareness 47

5 Selecting Run-Time Integration

The purpose of this step is to decide how to integrate the run time tools of CDD and the
IT system currently supporting the capability under study.

At run time the CDD tools, namely CNA and CCP, can provide a valuable addition
to an existing IT system, or a system that is being designed. Using the CDD nomen-
clature such a system is denoted CDA - Capability Delivery Application. The CDA can
be implemented using a model driven tool, or using a traditional development envi-
ronment. While CDD can be used as a design-time aid, there are additional benefits
using it in run time to extend the existing systems. We here distinguish between two
options of run time use; as a monitoring tool and as an adjustment tool. The two
options and sub-options are discussed below.

5.1 Monitoring Tool Extension

Using the CPP and CNA as monitoring tools entails making use of the CNA to monitor
the context of capabilities. That is, existing system can be extended by allowing the
users to monitor the context using the CNA. For this purpose two variants can be
selected:

a. Side-by-side monitoring. In this option, the CDD is treated as an add-on to existing
systems, and no run-time integration is performed. CDD is simply used to monitor
how the context changes. For this option to be useful, the context must be defined
so that it is not a part of the CDA. Otherwise an integration is needed to extract the
context information from the CDA. Typically, side-by-side monitoring can be used
for context elements that are affecting several instances of a capability, while
context elements that are bound to a single instance are commonly an integral part
of a CDA.

b. Integrated monitoring. This option can be used when the context information is
held within the CDA. Typically the context information is local, that is describes the
context of a single capability instance as it is executing. For this option, there is a
need to implement a data provider in the CDA that sends information to the
CCP. Since the CNA are designed for handling global context, there is also a need
to perform data aggregation.

Table 2 provides an overview of the monitoring options, and the effect and integration
effort they comes with.

5.2 Adjustment Tool Extension

The CDD environment has support for adjusting capabilities to match changes in the
context. This is performed by the CNA, that based on current context values can
propagate adjustments to the CDA. In an ideal case the adjustments can be designed
and implemented, and then used at run time when the context changes. However, this
fully automatic handling is not realistic in many cases. For example, some adjustments



48

M. Henkel et al.

Table 2. Summary of run time monitoring options

Option When to use Integration effort Effect
Side-by-side Context information is - The CNA is used as
monitoring not a part of the CDA. a stand-alone tool
Typically the context for monitoring
element is global
Integrated The CDA hold context CNA and CDA need CNA can be used to
monitoring information. Typically to be integrated, the show context
the context element is CDA need to information from
local provide context data the CDA system

may need to be manually designed and applied when the context changes. An example

of

this kind of adjustment is changes needed to comply with new regulations - changed

regulations may have a complex impact on the system, which may be impossible to
foresee. For each context element there is thus a need to discern if a fully automatic
adjustment can be made, or if a manual adjustment is a better option. To guide the
adjustment selection, we below describe three options ranging from fully automatic to
manual.

a.

C.

Fully automatic. This option allows the run-time discovery of context changes, and
the triggering of adjustment running capabilities to cope with these changes. This
requires that (1) the CNA has access to the context element, (2) that the CDA is able
to receive information about needed changes and (3) that the CNA is able to notify
the CDA when changes should occur. The effect of implementing this option is that
the system can perform changes.

Semi-automatic. In this option, the system can detect changes in the context and
suggest adaptations that are manually implemented. For example, this is a useful
option if the changes needed are in the form of manual routines. This option
requires that (1) the CNA has access to context elements, (2) that manual adapta-
tions are defined. One options for defining manual adaptations is in the form of
patterns. For example, in a help-desk there may be two different manual routines for
answering questions under a high load compared a low load situation (in this
example the current load is considered a part of the context). The effect of using this
option is that the system can suggest changes.

Manual. Some context changes may be difficult to adapt to automatically, or even
suggest how to address them. An example of this mentioned earlier is the adaptation
to new legislation. However, in this case the context can be monitored with the help
of CDD tools, and when a change occurs it can be handled manually. For example,
a change in legislation may be monitored in order to start a manual analysis of the
impact of the change when it occurs. This option requires no run-time integration
with the CDA. The effect of using this option is that the system can discover
changes.

Table 3 gives and overview of the effects, integration effort and recommendation of
when to use each of the run time adaptations options.



Extending Capabilities with Context Awareness 49

Table 3. Summary of run time adaptation options

Option When to use Integration effort Effect
Fully automatic | It is possible to The CDA and CNA The system
implement fully need to be (CDA + CNA)

Semi-automatic

Manual

automated
adaptations that can
be triggered at
run-time based on
context information
It is possible to design
a set of adaptations,
such as process
variants, but these
cannot be activated
automatically

The need for changes
can be detected, but
the change in itself is
too complex to
implement

integrated, the CNA
need to be able to
receive adaptation
advice

The adaptation need to
be defined, for
example as a pattern,
but not implemented.
CNA and CDA do
not need to be
integrated

The CNA only needs
to monitor the
context. No
integration with the
CDA needed

detects the need
for, and perform
changes

The system
suggests changes

The system
discovers change
needs

5.3 Run Time Options in the Symbiosis Case

The i-Symbiosis platform is built using the zAppDev MDD tool and it can be inte-
grated with the CDD runtime tools CCP and CNA. As an example, consider the context
as shown in Fig. 2. The measurable property “Relative amount of successful matches”
is a part of the CDA constructed by using zAppDev. By using the guidelines in
Table 3, we select the monitoring option integrated monitoring. The reason for this
selection is that the information is held within the CDA. This choice has the implication
(see Table 3) that the CDA needs to relay the changes of the measurable property to the
CCP, which in turn sends it to the CNA. This is done by implementing a CCP data
provider. The CNA is then used to monitor the context element (this means that the
CNA will display values from the context element range such as “Poor”, “Stable” etc.,
see Fig. 2).

6 Summarize Tool Support Needed

In this step an overview of the integration need is created, to enable the planning of the
integration implementation. Essentially the options selected in step 2 and 3 can be
summarized in one large list. This list will include the types of integration options that
are needed for a case. If there is a need to perform one single type of integration several
times this may be the impetus to implement a generic and reusable solution. For
example, there might be several context elements that have been selected for the option
integration monitoring at runtime. In this case it is beneficial to implement a generic
integration that allows the existing development tool to create the needed integrations



50 M. Henkel et al.

for all these elements. On the other hand, if only one context element need integration
monitoring at runtime it may be more cost-effective to perform the integration without
having to change the existing development tool or implement generic integrations.

For a tool vendor the run time and design time options selected will have an impact
on the type of integration that the tool need to support.

Table 4 summarizes the integration needs per option. Note that some options do not
affect the existing tool at all. For a tool to have a full support of CDD most, or all, of the
integration options should be supported.

Table 4. Summary of integration needs

Type Option Development tool support needed
Design time Side-by-side -
CDD as starting A model transformation from CDD model to a
point for existing model in the tool is needed
tools

Two way integration | Both existing tools and CDD tools need to be
extended with synchronisation

Run-time Side-by-side -
monitoring monitoring
Integrated The existing tool needs to be able to create a CCP
monitoring data provider so that the CDA can provide
context data
Run-time Fully automatic The existing tool needs to be able to implement an
adaptation interface such that the CDA can receive

adaptation advice from the CDA

The existing tool needs to enable the definition of
adaptations, and map them into the created
interface

Semi-automatic -

Manual -

7 Conclusions

In this paper we have presented an approach for the combined use of existing systems
with tools for capability context design and run-time monitoring. The approach consist
of four steps, the first being the analysis of capabilities and their context. Secondly the
design-time options are selected such that a potential system analyst and/or developer
can work with both context design and system design using existing development tools.
The third step includes selecting run-time options, enabling the potential intercon-
nection of context measurements with adaptation in existing systems. The last step
involves making an overview of the potential changes that need to be made to existing
development tools.

The approach has been used to analyse, and implement IT system support for the
case of industrial symbiosis. The implementation shows that it is a viable approach.
However possible future work entails applying the approach on more cases.



Extending Capabilities with Context Awareness 51

The approach has been described using the nomenclature of CDD, an approach for

capability analysis and design. However, the approach is generic enough to be applied
to other methods and tools as well.

Acknowledgments. This work has been performed as part of the EU-FP7 funded project no:
611351 CaaS - Capability as a Service in Digital Enterprises.

References

10.

11.

12.

13.

14.

15.

Audia, P.G., Locke, E.A., Smith, K.G.: The paradox of success: an archival and a laboratory
study of strategic persistence following radical environmental change. Acad. Manag. J.
43(5), 837-853 (2000)

Wiggins, R.R., Ruefli, T.W.: Schumpeter’s ghost: is hypercompetition making the best of
times shorter? Strateg. Manag. J. 26(10), 887-911 (2005)

BeérziSa, S., et al.: Capability driven development: an approach to designing digital
enterprises. Bus. Inf. Syst. Eng. 57(1), 15-25 (2015)

Teece, D.J.: Explicating dynamic capabilities: the nature and microfoundations of
(sustainable) enterprise performance. Strateg. Manag. J. 28(13), 1319-1350 (2007)
Schreyogg, G., Kliesch-Eberl, M.: How dynamic can organizational capabilities be? towards
a dual-process model of capability dynamization. Strateg. Manag. J. 28(9), 913-933 (2007)
Henkel, M., Bider, I., Perjons, E.: Capability-based business model transformation. In:
Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE Workshops 2014. LNBIP, vol. 178,
pp- 88-99. Springer, Heidelberg (2014)

Stirna, J., Grabis, J., Henkel, M., Zdravkovic, J.: Capability driven development — an
approach to support evolving organizations. In: Sandkuhl, K., Seigerroth, U., Stirna, J. (eds.)
PoEM 2012. LNBIP, vol. 134, pp. 117-131. Springer, Heidelberg (2012)

Open Group Standard, TOGAF - Enterprise Architecture Methodology, Version 9.1 (2011).
http://www.opengroup.org/togaf/. Accessed 07 Mar 2016

Dey, A.: Understanding and Using Context. J. Pers. Ubiquit. Comput. Springer 5(1), 4-7
(2001)

Hervas, R., Bravo, J., Fontecha, J.A.: Context model based on ontological languages: a
proposal for information visualization. J. Univ. Comput. Sci. 16(12), 1539-1555 (2010)
Moore, P., Hu, B., Wan, J.: Smart-context: a context ontology for pervasive mobile
computing. Comput. J. 53(2), 191-207 (2010)

Chaari, T., Ejigu, D., Laforest, F., Scuturici, V.M.: A comprehensive approach to model and
use context for adapting applications in pervasive environments. J. Syst. Softw. 80(12),
1973-1992 (2007)

Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc
Ubiquit. Comput. 2(4), 263-277 (2007)

Vale, S., Hammoudi, S.: COMODE: a framework for the development of context-aware
applications in the context of MDE. In: Proceedings of the 2009 4th International
Conference on Internet and Web Applications and Services (ICIW 2009), pp. 261-266
(2009)

Sandkuhl, K., Kog, H., Stirna, J.: Context-aware business services: technological support for
business and IT-alignment. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014 Workshops.
LNBIP, vol. 183, pp. 190-201. Springer, Heidelberg (2014)


http://www.opengroup.org/togaf/

	Extending Capabilities with Context Awareness
	Abstract
	1 Introduction
	2 Related Work
	3 Capability and Context Analysis
	4 Selecting Design Time Integration
	4.1 Design Time Options in the Symbiosis Case

	5 Selecting Run-Time Integration
	5.1 Monitoring Tool Extension
	5.2 Adjustment Tool Extension
	5.3 Run Time Options in the Symbiosis Case

	6 Summarize Tool Support Needed
	7 Conclusions
	Acknowledgments
	References


