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Abstract. Cloud computing has important impacts on the environ-
ment: data centers – that represent the physical infrastructure where
the cloud resources run – are not always designed as green entities, as
they consume large amounts of energy (in form of electric power or fuel)
often producing significant amounts of CO2 emissions. Such emissions
depend on the energy sources used by the data centers and may vary
over time with respect to the location in which the data center is operat-
ing. To decrease the carbon footprint of cloud computing, the selection
of the site where to deploy an application, along with the decision of
when to start the execution of the application, should be based not only
on the satisfaction of the traditional QoS requirements but also on the
energy-related constraints and their dynamics over time.

Goal of this paper is to propose a CO2 emission model able to sup-
port emission forecasting, especially for data centers that are based on
electricity from the national grid. The proposed emission model can be
used to improve the decisions on where and when to deploy applications
on data centers in order to minimize CO2 emissions.
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1 Introduction

A substantial part of the energy demand of the IT sector is associated with the
functioning of data centers: facilities responsible for the storage and processing
of information which constitute the infrastructural basis of cloud computing.
Due to the increasing adoption of cloud-based solutions, the role of data centers
is becoming more and more crucial. Consequently, the energy required by data
centers is now so high that it has been estimated to be comparable with the
overall energy consumption of countries like Japan and India, and would rank
5th among world countries [6].

Several approaches have been proposed in the last years with the goal of
reducing the energy consumption of data centers. As a significant fraction of the
energy consumed in a data center is not consumed for running servers and net-
work devices needed to execute the deployed application, but goes to supplemen-
tary elements (e.g., cooling system, lightning), most of the proposed approaches
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have focused on reducing this fraction of energy. Some other approaches have
focused on optimizing the design, the deployment, and the execution of cloud
applications [5] in order to minimize the waste of resources, find the servers
with the lowest energy consumption, or distributing the workload looking at the
amount of energy consumed by the different servers.

In this work we want to adopt a different perspective by looking at CO2

emissions instead of at the pure energy consumption. Indeed, the actual envi-
ronmental impact of energy usage very much depends on the specific energy mix
used to generate electric power. In fact, as the ability of different power gen-
eration technologies to follow daily, weekly and seasonal fluctuations of power
demand varies widely (with large nuclear or coal-fueled plants requiring hours,
if not days, to change their power output, and natural gas turbines or hydro-
electric plants being able to respond in minutes), the composition of the energy
mix is subject to important variation over different time horizons. CO2 emission
factors hence change consequently, according to the different power generation
sources running in different moments of the day and in different seasons. For
this reason, the optimization of cloud applications requires appropriate tools to
forecast the dynamics of the energy mix and the relevant emission factors over
time, and to identify the best schedule to deploy cloud applications.

The goal of this paper is to propose a modeling framework to predict short
and medium-term fluctuations of (i) electric energy consumption at the national
scale, (ii) the composition of the energy production mix by energy source, and
(iii) the consequent CO2 emission factor. We demonstrate the framework by
applying it to the assessment of a federated cloud infrastructure. We use data
from two European countries, i.e., France and the United Kingdom, for which
time series of energy production (disaggregated by generation source) and con-
sumption are available in real time at high temporal resolution. We eventually
show how the availability of accurate CO2 emission forecasts can support IT
systems managers in pursuing a greener deployment of cloud applications.

The paper is structured as follows. Section 2 reviews the state of the art of
the literature on the topic to highlight the novelty of the proposed approach.
Section 3 illustrates the modeling framework and demonstrates it through the
application to the two case studies (France and the UK). Section 4 describes how
the models developed in Sect. 3 can be used to select the most appropriate site
for application deployment on the basis of predicted CO2 emissions.

2 Related Work

Assessment, measurement and improvement of energy efficiency in data centers
and clouds have been important mainstreams in research in recent years [16].
The work proposed in this paper also focuses on the improvement of the sus-
tainability of data centers, but it aims to reduce the CO2 emissions by adapting
the applications running on federated cloud environments. The importance of
CO2 emissions has been already considered in the literature. Some contributions
focus on how to use efficiently available renewable resources, while avoiding
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peak demand of energy from electricity providers. In [1], authors propose the
usage of Geographical Load Balancing (GLB) to shift workloads and avoid peak
power demands. This requires to predict both the incoming workload and the
peak demand to the network. The algorithm is implemented as a network flow
optimization problem. A similar approach is discussed in [11], which uses both
workload shifting and local power generation for avoiding peak load demands on
the energy network. The importance of considering the type of energy sources
has been addressed also in [2], which proposes an integrated framework for sus-
tainable clouds where information on data centers, communication networks and
energy sources is considered. In [15], the authors focus on the optimization of
power generation with respect to carbon emissions. Also [13] focuses on assess-
ing the carbon footprint of cloud computing services. In this paper we aim to
provide a tool to forecast carbon emissions and/or to suggest the most suitable
deployment time to improve the sustainability of cloud applications. Mathemat-
ical models to forecast electric power demand over time horizons spanning from
few minutes ahead (very short-term forecasts) up to a decade ahead (long-term
forecasts) are key to support operations and planning of power systems, and
have been the subject of research since the late 1960 [12]. In the early 2000s,
Alfarez and Nazeeruddin [4] carried out an exhaustive review of the vast range
of literature produced on the subject in the previous fifty years, and identified
nine major categories of load forecasting techniques: multiple regression; expo-
nential smoothing; iterative reweighted least-squares; adaptive load forecasting;
stochastic time series; ARMAX models based on genetic algorithms; fuzzy logic;
neural networks; and knowledge-based expert systems. In the last decade, other
methods have been developed and tested (see, e.g., [9,10]), further improving
forecasting reliability.

3 Energy Mix Analysis

Greener choices in the deployment of cloud applications should be performed by
considering not only the typical quality aspects (e.g., response time, availability,
security) but also green requirements which involve both energy consumption
and CO2 emissions. Focusing on the latter, evaluation of CO2 emissions is based
on emission factors (gCO2e/kWh) provided by national grids. Emission factors
largely vary from country to country. For example, if we consider France and
the United Kingdom, technical reports describe that the country with the lowest
carbon intensity is France, whose power generation is mainly based on nuclear
plants. Estimated emission factors for France range between 62 [3] and 146 [8]
gCO2e/kWh. In contrast, United Kingdom energy is more carbon-intensive, with
emission factors estimated to range between 567 [7] and 658 [8] gCO2e/kWh.

As our goal is to deploy an application in a federated cloud environment,
calculating and predicting emission factors for each of the sites included in the
federation are crucial aspects in our approach. Indeed, knowing in advance which
will be the emission factors of the countries in which the data centers belonging
to the federation are established would allow us to calculate how CO2 emissions
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may vary with respect to the location in which the application will be deployed
and the time at which it will be executed. To this aim, we started from histor-
ical values about power generation disaggregated by energy source that some
countries publish via public web sites. In particular, the French energy mix can
be retrieved through the information service éCO2mix available on the RTE
website1. Such service shows electricity demand, electricity generation classified
by source and cross-border commercial exchanges (imports/exports). Data are
automatically updated every 15 min. Similar information is available for the UK.
Real-time and historic data about the energy generation in the UK are available
through the BMRS (Balancing Mechanism Reporting System) website2. For this
web site data are updated every 5 min.

Having the values from these two web sites, we constructed a model that
reproduces in a simplified, but sufficiently precise way the analyzed systems,
providing a tool to forecast CO2 emissions and taking greneer decisions when
deploying cloud-based applications.

To build the model, we adopted a traditional approach and went trough the
following sequential phases:

– Analysis of the problem: it is necessary to observe the problem in order to
understand the goals of the model and the data that have to be retrieved.

– Conceptualization: a model aims to provide a representation of a real world
scenario. This phase focuses on guaranteeing the accuracy and completeness
of the model. In fact, the model should be a simple, concise and correct view of
the reality and should include all the elements that are considered as relevant.
However, the model should not be too complex: complexity often implies a
higher computational cost (i.e., longer execution time).

– Calibration: after gathering a sufficient amount of data, the calibration phase
aims to estimate the parameters included in the model. For this reason, such
phase is also called parameterization and can be performed by using several
methods. We used the most common one: the Least Squares Method that
minimizes the sum of the squares of the errors.

– Validation: the goal of the validation is to consider a new dataset and verify
that the calibrated model is able to explain data trends and characteristics.
If the results of the validation are not satisfactory, it is possible to enrich the
dataset used for the calibration or go back to the conceptualization phase and
change the model.

3.1 Analysis of the Problem

As already mentioned, the model to estimate CO2 emissions has been designed
by observing the available data on power production of France and the UK for
two years: 2013 and 2014. As depicted in Fig. 1, the French energy mix is mainly
composed of nuclear sources, while hydroelectric plants are the second most

1 http://www.rte-france.com/fr/.
2 http://www.bmreports.com/.

http://www.rte-france.com/fr/
http://www.bmreports.com/
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Fig. 1. Energy mix in France and the UK in 2013

Fig. 2. Energy consumption in France and UK in 2013

important energy source, mainly used to dampen the fluctuations of nuclear
production. The UK has a more diversified energy mix: 91 % of the energy pro-
duction comes from coal, nuclear and gas. With respect to renewable sources,
it is worth to notice that the UK relies on wind for 6 % of the whole energy
production. This is due to the fact that the typical English weather is mainly
windy especially in the cities close to the sea. Comparing the total production
of the two countries (see Fig. 2), it is immediately apparent that, on average, the
production of France is higher. This is not only due to the difference in popu-
lation (nearly 67 millions in France against 60 millions in the UK), but also to
the high production of thermonuclear energy in France, a considerable portion
of which is exported to the neighboring countries.

3.2 Conceptualization

Based on the data gathered from the already mentioned web sites, Fig. 2 shows a
comparison between energy consumption patterns in France and the UK during
2013. Regardless of the country, it is clear that some patterns occur periodically
at different levels: from hour to hour, from day to day, from season to season.
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To find a rationale behind this behavior, we analysed the data and we took into
account the following time-variant elements that may be correlated with the
energy consumption:

– Temperature (T): considering the climate of the two countries, we assumed
that higher consumption levels are related to lower temperatures (e.g., for
heating).

– Daylight Hours (DH): the electricity consumption raises in the periods char-
acterized by a smaller number of hours of light.

– Average seasonal Trends (Avg): we observed regular seasonal trends in week-
days data.

– Power generation of close instants of time (P): we observed a clear autocor-
relation between subsequent weekdays and among the same days of different
weeks (e.g., every Monday or every Sunday).

On the basis of these considerations, we drafted a general model as:

P (t+1) = a ·f(P )+b ·f1(T )+c ·f2(DH)+d ·f3(Avg)+e ·f4(error)+error(t+1)

Analyzing such a model it is possible to notice that it can be formally represented
by using a PARMAX model that is composed of the following parts:

– The P (Periodic) part : it is related to the time-variant parameters, that are
parameters that have different values depending on the time in which they are
considered. In the model this part includes the daily and seasonal parameters
that vary on the basis of the day and season of the year.

– The AR (Auto Regressive) part : it links the estimated value with the previous
values. In this case this part considers the emissions of the day and of one
week before.

– The MA (Moving Average) part : is associated with the residual information
that is the prediction error at previous time steps.

– The X (eXogenous) part : it is used to model the information contained in
external variables (e.g., temperature and daylight hours)

For each energy source (e.g., nuclear, hydroelectric, coal) used by the two
countries, a model has been defined. Due to space limitations, we do not list here
all the models defined, but we present only the models of the most important
sources for the two countries.

Model for Nuclear in France. French power production mainly relies on
nuclear plants. Looking at the power production of this energy source over the
year (i.e., 2013), it is possible to notice that there are recurrent seasonal and
daily patterns: the production is higher in winter and lower in summer, and also
during the day there is an oscillatory behaviour, which shows that the production
is higher during the daytime while it decreases at nighttime. Note that the
seasonal trend mainly depends on temperature, which is clearly correlated to
power production as shown in Fig. 3.
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Fig. 3. Correlation between nuclear production and average daily temperature

Considering that time is expressed in hours, the formal model that we have
defined to estimate the nuclear power consumption (N ) of the next hour is:

N(t + 1) = α1 · N∗
t+1 + α2 · N∗

t−5 + α3 · Nt−23 + α4 · ζN∗
t−23

+ α5εt−167 + εt+1

where:
Nt−23 = nuclear power consumption one day before (same time)
εt−167 = error of the model one week before (same day and same time)
α1...5 = coefficients to be estimated
ζN∗

t−23
= error produced by N∗ at the time instant t− 23 (the same time of the

day before)
N∗ is the estimation of the value that has been formalized as:

N∗
t = (τ1 · T 2

t−24 + τ2 · Tt−24 + μ1) + Ωh
t + Ωh,s

t + Ωwd
t

Tt−24 = average temperature of the day before
τ1 = 26.351, τ2 = −1332.1, μ1 = 56422 = fixed coefficients that have been esti-
mated through correlation
Ωh

t = coefficient that is dependent on the time
Ωh,s

t = coefficient that is dependent on the time and season
Ωwd

t = coefficient that is dependent on the weekday
In our model the estimation N∗

t has to be calculated considered as parameters
t + 1 and t − 5.

Model for Coal in the UK. Power production in the UK mainly relies on
coal. Looking at the power production of such energy source over the year (i.e.,
2013), it is possible to notice also in this case daily and seasonal trends and a
correlation with temperature. The formal model obtained for this source is:

C(t + 1) = α1 · C∗
t+1 + α2 · Ct−23 + α3 · Ct−167 + α4 · εt−23 + εt+1
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where:
Ct−23 = coal power consumption one day before (same time)
Ct−167 = coal power consumption one week before (same day and same time)
εt−23 = error of the model one day before (same time)
α1...4 = coefficients to be estimated
C∗ is the estimation of the value that has been formalized as:

C∗
t+1 = (β1 · D2

t + β2 · Dt + μ1) + (τ · Tt−23 + μT ) + Ωh,s
t + Ωwd

t

Dt = number of days from the beginning of the year
Tt−23 = average temperature of the day before
β1, β2, τ, μ1, μT fixed coefficients that have been estimated through correlation
Ωh,s

t+1 = coefficient that is dependent on the time and season
Ωwd

t+1 = coefficient that is dependent on the weekday.

3.3 Calibration

The calibration of the defined models has been perfomed with the Least Squares
Method. Figure 4 shows calibration results for the two models presented above.
Considering the French model, it is possible to notice that the more relevant
variable is the value of the power production recorded 24 h earlier. In the British
scenario, three variables have a significant role in the model and, in particular,
the values recorded 24 h and a week earlier and the estimation of coal production
based on the season and temperature.

Fig. 4. Calibration for the French nuclear and British coal models

3.4 Validation

The validation phase focuses on two steps: (i) the comparison between the esti-
mated and real values for 2014, (ii) the aggregation of the different models for
each country and (iii) the validation of the aggregated model on data for 2014.

Figure 5 shows the performances of the calibrated models of nuclear power
production in reconstructing data from 2014. In fact, the correlation between
observed data and model predictions is 0.945 (and thus R2=0.893).
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Fig. 5. Validation of the French nuclear model with 2014 data

Good results have been obtained also for the UK: the model for coal has a
correlation with the real data R=0.944 and R2=0.891.

In order to estimate CO2 emissions coefficients for each country, it is neces-
sary to aggregate the different models defined for the different energy sources.
The aggregated model has been also validated. Results for France and the UK
are reported in the following:

– France: Correlation model - real data= 0.971, R2=0.942
– UK : Correlation model - real data= 0.940, R2=0.884

4 CO2-Driven Site Selection

To demonstrate how the approach presented in this paper can be applied to the
estimation of CO2 emissions, we refer to a scenario involving a federated cloud
infrastructure. More in detail, we assume that several cloud platforms established
in different countries around the world constitute a federation. This means that
agreements between the owners of these platforms exist in order to optimize the
usage of the installed resources (e.g., VMs, storage). As a result, migration of
VMs among the sites, as well as the possibility to control the execution of the
applications on top of them are all possible actions.

From the application perspective, we consider a real HPC application in the
ecology domain [14] shown in Fig. 6 adopting BPMN notation. Without entering
into details, the application starts with an initial setup (activity A1). The work
is then split into several instances composed of two activities: data loading (A2)
and computation (A3). Once all the instances are terminated, the partial results
are aggregated (A4) to provide the result to the final user. We assume that one
VM is required for A1 and A4, while for A2 and A3 the number of VMs may
change according to the number of iterations required.
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Initial setup
(A1)

One year simulation task

Result 
aggregation

(A4)

Data loading
(A2)

Trajectories
Computation

(A3)

Oceanographic Data

Number 
of years

Fig. 6. Running example.

Along with the usual constraints about the VMs expressed in terms of number
of cores, amount of memory, or storage, developers can also specify constraints
on VM locations. Such constraints can be justified by legal issues (e.g., the data
managed during A4 must not be moved to the USA) or to increase performances
(e.g., A1 and A2 communicate very frequently and exchange a significant amount
of data so it is better to put them at the same location).

Starting from this example, we want to show how the CO2 emission model
described in the previous sections can be exploited to decide when and where it
is preferable – to minimize CO2 emissions – to deploy and run the application.
Since the only countries for which the CO2 emission model has been produced in
this paper are France and the UK, the following discussion refers to deployments
that can occur on such locations. Similarly, as the data used to validate the CO2

models refers to the year 2014, all the examples refer to this period.
As we are considering an HPC application, it is reasonable to assume that

the same application has been already executed in the past. For this reason,
we can also assume that some information about the energy consumed and the
response time of the application when running in the UK or in France is already
available. Based on our real experiments, we have the following situation [5]:

– UK: Response time = 17.07 h; Energy = 197.87 Wh.
– France: Response time = 13.50 h; Energy = 30.645 Wh.

These numbers refer to the scenario in which one VM is assigned to each
of the activities and there is no concurrent iterations of activities A2 and A3.
This assumption does not hamper the validity of our approach as having more
instances of A2 and A3 simply reduces the response time regardless of the site
in which the applications is running. The difference in response time and the
energy consumed by the application depends on the characteristic of the physical
machine installed on the two locations. More precisely, the British data center
is equipped with less recent machines, so they are less performant and do not
have low-power processors installed. Conversely, the French data center has been
established more recently, with physical servers implementing several techniques
to reduce power consumption.
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Fig. 7. Analysis of CO2 emissions related to the considered application in the UK and
France

Assuming that today is March 1st, 2014 and the application needs to run in
30 days, we use the proposed models to estimate the energy mix and, based on
the energy consumed by the application, the related CO2 emissions.

Figure 7 shows the result of this computation considering the two possible
deployments: i.e., on the UK or on France. These CO2 emission trends can be
used to figure out if it is better to deploy the VMs on France or the UK, and when
the application has to start, with the final goal of reducing the CO2 emissions.
Based on them, it is easy to understand that deploying the application in France
is always the best choice: CO2 emissions are always lower (about 4 gCO2e)
than in case the application run in the UK (about 110 gCO2e). Stated this, the
best time to run the application is on March 10th at 4 am, as the estimated
CO2 emissions are predicted to be 3.42 gCO2e. In case, for some reason, the
deployment must be done on the UK, then the lowest CO2 emission is expected
to occur on March 11th at 6 am or on March 25th at 5 am.

5 Concluding Remarks

This paper highlights the importance of CO2 emissions in the deployment of
applications. In particular, we show the way in which it is possible to build
models to estimate future trends in emissions in order to suggest the most suit-
able deployment time able to improve the sustainability of the application. The
validation scenario based on real data publicly available on the energy mix in
France and UK shows how energy savings can be obtained by following a par-
ticular deployment strategy.
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