
Selection and Evolutionary Development
of Software-Service Bundles:
A Capability Based Method

Jānis Grabis1(&) and Kurt Sandkuhl2

1 Institute of Information Technology, Riga Technical University,
Kalku 1, Riga, Latvia
grabis@rtu.lv

2 Chair of Business Information Systems, University of Rostock,
Albert-Einstein-Straße 22, Rostock, Germany
kurt.sandkuhl@uni-rostock.de

Abstract. Software-service bundles are combinations of software products and
services offered by their vendors to clients. The clients select a combination of
software product and associated service best suited to their specific circum-
stances. The paper proposes an information sharing based method helping cli-
ents to select the most appropriate combination or configuration and also
supporting the continuous improvement of the solution in response to changing
circumstances. The method utilizes principles of the Capability Driven Devel-
opment to characterize performance objectives and contextual factors affecting
delivery of a software-service bundle. Application of the method is demon-
strated using an illustrative example of data processing.

Keywords: Software selection � Capability � Evolutionary development �
Software-service bundle

1 Introduction

Software-service bundles are combinations of software products and services aimed at
providing packaged offerings for specific applications. Software vendors provide these
solutions to their clients. These services have different configurations with regards to
functionality provided. Software product line engineering [1] investigates the problem
of creating the solutions efficiently from the vendor perspective. Clients on the other
hand are looking for the most feasible solution meeting their specific requirements.
This problem is addressed in software selection research [2] though these investigations
mainly take into account only information available to a client. However, vendors have
a wealth of information about their software used by other clients [3]. That could
include contextual information describing unique operating circumstances of the client
as well as information about performance achieved by using specific configurations of
the solutions. It is argued that vendors and clients can collaborate for finding the right
configuration for every client on the basis of sharing historical context and performance
data. This way every client would receive a configuration appropriate for its operating
context as well as some estimates of expected performance of the solution. From a

© Springer International Publishing Switzerland 2016
J. Krogstie et al. (Eds.): CAiSE 2016, LNBIP 249, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-39564-7_1



service science perspective, the colla-boration between vendor and client is considered
as a precondition for successfully implementing the service part of software-service
bundles (i.e. co-creation of value).

In order to enable aforementioned approach, a framework for defining contextual
information and performance objectives is required. Recently, capability driven
development (CDD) has been proposed as an approach for ensuring that solutions can
be delivered in different contexts at the desired level of performance [4]. The approach
presumes that rather than providing a simple business solution the vendor possesses
certain capabilities and is able to provide such a capability to its clients facing different
operating circumstances. It is a model based approach and encompasses three devel-
opment phases: (1) capability design explicitly defines performance goals, context
factors affecting capability delivery and context-dependent capability delivery solu-
tions; (2) capability delivery phase concerns monitoring of context and performance
data and adjusting the solution in response to changes in these data; and (3) feedback
phase provides information for updating of the initial design.

The objective of this paper is to elaborate a CDD based method allowing
colla-boration between vendor and client in selection of the right configuration of
software- service bundles and continuous improvement of the selected configuration. It
is assumed that a vendor has multiple clients. The clients share usage information about
the software-service bundle. In case of preparing a bundle for a new client, this
information is used to create a decision-making matrix for selecting an appropriate
configuration for this new client. The new client usually starts with a minimum sat-
isfactory configuration; performance of this configuration is continuously monitored
and if necessary the client upgrades its configuration which here is referred to as
evolutionary development in analogy to evolutionary software development [5].

The main contributions of the paper are: (1) combination of vendor and client
perspectives in an information sharing based method for selection of software–service
bundles; and (2) selection of software-service bundle as an interplay among contextual
data and performance objectives (i.e., selection is made in a context-aware performance
driven fashion). The rest of the paper is organized as follows. Section 2 provides
overview of the method. Section 3 elaborates stages of the evolutionary development.
The application example is provided in Sect. 4. Related work is reviewed in Sect. 5.
Section 6 summarizes findings and future work.

2 Method Overview

The evolutionary development method for software-service bundles is based on the
CDD approach and uses the capability model underlying the software-service bundle as
a starting point for providing appropriate configurations to clients.

2.1 Problem Statement

The vendor offers its clients a software-service bundle S. The software-service bundle
consists of a software product, know-how and supporting services ranging from

4 J. Grabis and K. Sandkuhl



helpdesk to business process outsourcing. S is designed in a way to deliver desired
performance in different contextual situations, i.e., the vendor possesses the capability
of providing the software-service bundle.

S is provided in one of N configurations Oi,…,ON and the configurations differ by
their price (they are ordered ascendingly starting with the lowest costs configuration).
Delivery of S depends on M context factors C1,…,CM and its performance is measured
by L key performance indicators K1,…,KL. Combinations of values of the context
factors yield a context situation describing specific solution delivery circumstances. It
is assumed that certain configurations provide better performance for specific context
situations than other, i.e., they are better suited for these context situations. For
instance, a configuration including an outsourcing service works better in the case of
highly variable demand for troubleshooting services.

There are P clients using one of the configurations. It is assumed that existing
clients have an incentive to share anonymized values of context factors and key per-
formance indicators (KPI) during operations of the software-service bundle.

Two decision-making challenges are: (1) to select appropriate configuration for a
new client; and (2) to upgrade configurations used by existing clients in the case of
changing circumstance or unsatisfactory performance. In the former case, selection is
performed by matching a context situation of the new client with context situations
supported by the vendor of the software-service bundle. In the latter case, an existing
client switches from one configuration to another to adapt to changing circumstances.

2.2 Evolutionary Development Process

The aforementioned challenges are addressed following an evolutionary development
process (Fig. 1). A vendor uses the CDD approach [4] to develop a capability model.
The model specifies capability delivery goals, delivery context and solutions (i.e.
software-service bundles and their appropriate configuration) for capability delivery
offered to clients (see Sect. 2.3 for further discussion). The capability model covers
all configurations supported by the vendor. Relationships among context situations and
configurations are described in a capability support matrix (CSM). The matrix indicates
configurations suitable for a particular context situation. It is used by the vendor and
clients to find appropriate solution for clients’ needs. CSM is developed on the basis of
historical data analysis or according to judgement of the vendor.

Upon engaging a new client, its typical context situation is assessed and the least
expensive configuration supporting this context situation is selected. The selected
configuration is provided to the client. It is used for capability delivery and delivery
performance is monitored using the indicators defined in the capability model. If
performance targets are not achieved or context values venture outside the defined
context element range, the capability delivery solution is adjusted. Potential adjust-
ments are: (1) selection of a more appropriate configuration; or (2) designing a new
solution. The capability monitoring and adjustment are performed cyclically and the
capability delivery solution evolves according to the business requirements of the
client. The vendor accumulates capability delivery performance and context data from
multiple clients and uses this information to update the capability delivery solution and
validate CSM.

Selection and Evolutionary Development of Software-Service Bundles 5



2.3 Capability Modeling

The capability model defines vendor’s ability and capacity to provide a solution to
clients facing specific circumstances. Figure 2 provides a simplified overview of the
key elements used in capability modeling as well as their relation to the configuration
concept used in this paper. Goals are business objectives the capability allows to
achieve. They are measured by KPI. The capability is designed for delivery in a
specific context as defined using context elements. The context elements name factors
affecting the capability delivery while context situations refer to combinations of
context element values. The process element specifies a capability delivery solution.
Process variants describe the capability delivery process for a specific context situation
while the associated configuration of the solution encompasses all technical, human
and knowledge resources necessary to execute the process.

A configuration can include multiple process variants. The client can switch from
one process variant to another or invoke them simultaneously during solution delivery
depending on context situation.

From the evolutionary development perspective, the key aspects are that: (1) ca-
pability can be delivered in different context situations while each individual client
faces just some of these context situations; (2) process variants specify a solution for
dealing with one or several context situations. For software-service bundle these
variants cover both, different process variants in the software product if this product has
a process-oriented architecture and different variants for the service bundled with the
software product as a part of configurations; and (3) relationships among context
situations, performance and process variants are not necessarily know in advance and
can be induced from the solution’s usage data.

Fig. 1. The evolutionary capability development process

Capability

Context Element Context Situation

Process Process VariantGoal

KPI Configuration

1..*

1..*

1..*

1..*

0..* 1..* 1..*1

*

*

1..* *

1..* *

* 0..*

Fig. 2. Key concepts of capability modeling

6 J. Grabis and K. Sandkuhl



3 Evolutionary Development Stages

The evolutionary development process includes two distinctive phases: (1) design stage –
when the initial configuration of the software-service bundle is selected and deployed for
a new client; and (2) delivery stage – when the software-service bundle is used by the
client and it is adjusted according to changing circumstances.

3.1 Design Stage

At the beginning of the design stage the vendor develops a capability model corre-
sponding to the software-service bundle to be provided to clients. Every context factor
used in selection of the configuration has a finite set of values or context range
CRi ¼ ðcri1; . . .; criTiÞ, where Ti represents a number of values for the ith context
element. These values are obtained by categorizing actual values of context observa-
tions also referred as to measurable properties [6]. The categories enable for relative
comparison of clients.

Combination of context element values form the context range yields a set of
context situations ðCS1; . . .;CSH Þ ¼ CR1 � . . .� CRN (H is the number of context
situations). CSM is defined as a matrix with elements aij, i = 1,…,H, j = 1,…,N, where
aij 2 0; 1f g relates context situations to suitable configurations. The matrix element
aij = 1 indicates that configuration Oj is suitable in the case of context situation CSi.
The same configuration could be suitable for multiple context situations. One config-
uration could encompass multiple process variants.

Upon engaging a new client, its most plausible context situation is identified as
CSnew. Appropriate solution is identified by

minðj j aij ¼ 1 ^ CSnew 2 CSiÞ ð1Þ

Equation 1 selects the least cost configuration Oj appropriate for context situation
faced by the new client. If no appropriate configuration is available, the client has a
choice to select a configuration having the highest level of overlapping with support
context situations. The client also sets target values for KPI Knew

1 ; . . .;Knew
L , where the

superscript refers to the new client and the subscript l refers to the KPI. The selected
configuration is setup for the client and it is ready for operations. There could be a setup
time for deploying the configuration.

3.2 Delivery Stage

During the delivery stage, actual context situations and delivery performance are
monitored. The performance monitoring is carried out by gathering real-time values of
KPI Knew

it , where superscript identifies the client, the subscript i refers to KPI being
measured and t refers to the measurement time. The actual value is compared to the
performance target. If Knew

it \Knew
i then the ith performance objective is not met and a

recommendation to revise the solution is issued. Obviously, one should evaluate to
what extent the software solution is responsible for underperformance.

Selection and Evolutionary Development of Software-Service Bundles 7



The context monitoring is performed by comparing the observed context situation
CSt

new for the new client at the tth time moment to the context situations supported by
the current configuration, i.e., relationship CSnewt 2 CSO where CSO is a set of context
situations supported by configuration Oj used by the client. If the relationship does not
hold then a warning is issued notifying that the observed context situation is not
explicitly supported by the current configuration. The context monitoring serves as an
advanced warning system to potential performance deterioration since it is not known
whether the current configuration is suitable for the observed context situation. That
might lead to an unexpected behavior.

3.3 Evolution

Violations of performance objectives or observation of unsupported context situations
triggers a warning suggesting an upgrade of the current configuration. In response, to
this warning a client might decide on upgrading the current configuration by selecting a
more suitable configuration from CSM. This is a suitable approach if the actual context
situation is different from the one identified during the design stage or it has changed.
However, if underperformance is observed for the supported context situation and it is
attributed to the software product then the vendor might need to reevaluate CSM or a
special software-service bundle needs to be developed for the particular client.

4 Application Example

Business processes in many industries require collaboration among two or more
companies. Often this collaboration involves business information exchange in a form
of data exchange messages [7]. Such messages can contain errors, which need to be
corrected before further utilization of the information. The correction of errors might
require manual interventions which will be referred to as “cleaning services”. The
example is motivated by a real-life case in the energy industry, where a software
development company provides software for exchanging energy consumption data as
well as associated business process outsourcing services for handling data errors [8].

4.1 Description

A vendor offers a business information processing service. The service consists of data
processing software, data processing services and – if required – cleaning services by
the back office staff of the vendor based on knowledge about the most common data
exchange exceptions. The data processing services ensure business information pro-
cessing on behalf of the client. Clients can choose between doing data processing and
cleaning in-house or outsourcing it to the vendor. Figure 3 shows an overall data
exchange process from the client’s perspective. The client receives a message.
Depending on a decision-making logic the messages are processed along one or several
process branches. The first branch represents a manual processing (client’s employees
correct errors). The second branch represents an automated processing using the

8 J. Grabis and K. Sandkuhl



knowledge base on common exceptions provided by the vendor. However, some of the
exceptions might require manual intervention (“cleaning”). A client uses the out-
sourcing service provided by the vendor to deal with exceptions in the third branch.
The client transfers the exceptions to the outsourcing service and receives back the
remedied data. Multiple branches can be used simultaneously. For example, the client
mainly uses in-house automated processing and invokes the outsourcing service only if
internal resources are overloaded. This decision is made during the service delivery.
Nevertheless, the solution should be configured in a way to support both automated
in-house processing and usage of the outsourcing service.

The process execution goals are timely processing of all messages and handling of
all exceptions. The main context factors affecting the process execution are the number
of data exchange messages received or processing load and load volatility. The load
volatility characterizes variations in the processing load what might have adverse
consequences on scheduling of resources assigned to the manual processing.

4.2 Model

The vendor possesses the data exchange capability provided to its clients by means of
the software-service bundle. The data exchange capability model is created using the
concepts defined in Sect. 2.3. Goals, context and process variants are the main ele-
ments of the capability model important for the software solution selection method.

The main data exchange goals are timely data processing, correction of data
exchange errors as well as cost minimization and efficient utilization of resources
involved in the data exchange process. These goals are measured by the corresponding
KPIs. For instance, the timely data processing goal is measured as the processing time
KPI KPT. The context elements affecting the capability are defined in Table 1. The
processing load context element is measured by the number of messages received per
day and it assumes values from the range of values. Not all context elements are used in
configuration selection for the software-service bundle. Current backlog and schedule
context elements are used for run-time decision-making.

The capability model also defines the overall data exchange process including three
processing variants (Fig. 3). These process variants serve as the basis for defining
configurations of the software solution. The Allocate messages gateway represents
decision logics for run-time allocation of messages among process variants if several of
them are included in the configuration.

Fig. 3. The overall business information exchange process.

Selection and Evolutionary Development of Software-Service Bundles 9



Three configurations are offered to clients: O1 –manual processing of data exchange
exceptions; O2 – automated processing of data exchange exceptions; and O3 – combi-
nation of automated processing of data exchange exceptions with availability of
exceptions handling outsourcing services. The vendor also uses its expertise and his-
torical data to prepare CSM (Table 2). The matrix lists context situations as combina-
tions of values of CPL and CLV context elements. It shows that, for instance,
configuration O1 is suited for CS1 = {low, low}. Advanced configurations could be
used in simple context situations though that is not promoted to avoid inefficiencies.

4.3 Results

The aforementioned capability model provides foundation for delivering data exchange
solutions to clients. A simulated experiment is conducted to illustrate the software-
service bundle selection method. It simulates a flow of data exchange messages for a
single client and the client attempts to process these messages using one of the solutions
provided by the vendor. Execution of manual data processing activities in all configu-
rations requires human resources drawn from a limited pool of resources and has a
variable duration depending on complexity of exceptions.

The message flow Dt varies over time and is described as an autoregressive process
Dt = q + aDt-1 + ɛ, where q and a are coefficients defining process shape and ɛ = N
(0, r) is normally distributed with the standard deviation r. The average flow of
messages l = q/(1−a) and affects the processing load context element. The relationship
between Dt and value of the processing load context element CPL is expressed as

Table 1. Context values and their context ranges

Context element Context element range

Processing load (CPL) Low, medium, high
Processing load volatility (CLV) Low, medium, high
Backlog (number of messages waiting for processing) 0…1000
Calendar (scheduled hours for human resources) 0…100

Table 2. Capability support matrix for data exchange software-service bundle

Processing load level Load volatility O1 O2 O3

Low Low 1
Low Medium 1 1
Low High 1
Medium Low 1
Medium Medium 1 1
Medium High 1
High Low 1
High Medium 1
High High 1

10 J. Grabis and K. Sandkuhl



CPL ¼
low,if l\100

medium; if 100� l\1000
high,if l� 1000

8
<

:
ð2Þ

The coefficients a and r affect processing load volatility, i.e., larger values of these
coefficients result in a more volatile message flow. In this experiment a = 0.8 and
r = l/5. The value of qis varied to evaluate different context situations: (1) In the first
experiment (EXP1) q is set to 10 to evaluate a low processing load situation; and (2) in
the second experiment (EXP2) q is increased from 10 to 100 during the course of
message processing simulation to evaluate the impact of changes in context. Numerical
values used in the experiments are practically grounded though do not represent actual
observations. A new client defines that its typical context situation CSnew = {low,
low}. The least cost configuration appropriate for this context situation is O1. This
configuration is setup for the client. That implies client receiving data exchange soft-
ware and using manual exceptions handling.

O1 O2 

O3 O2 

a)

b)

Fig. 4. Dynamics of simulated delivery results and configurations used: (a) EXP1 and (b) EXP2

Selection and Evolutionary Development of Software-Service Bundles 11



Figure 4a shows monitoring results for EXP1. It includes values of Knew
PT;t and the

threshold value Knew
PT;t = 120 min. The processing load context element CPL is constant

while load volatility CLV exhibits slight variations and occasionally assumes Medium
value not explicitly supported by the current configuration O1. More importantly, Knew

PT ;t

frequently exceeds the threshold value what triggers a recommendation to reconsider the
configuration. CSM suggests that O2 is appropriate for dealing with CS2 = {low,
medium}. The switch to O2 takes place at time period 250. One can observe that
performance is significantly improved.

EXP2 simulates a permanent change of the context situation and CPL assumes
Medium value. O2 is suitable for both CS4 = {medium, low}and CS5 = {medium,
medium}, and experimental results (Fig. 4b) show that O2 delivers satisfactory per-
formance after the change in context. However, Knew

PT;t is close to its threshold.
Assuming, that a similar behavior is observed also for other clients using O2 in similar
conditions, the vendor might decide on updating CSM and recommending to used
exclusively O3 in context situation CS5 = {medium, medium}. The simulated
switching takes place at time period 750, when O3 is deployed. This change results into
reduction of the processing time.

The experimental results demonstrate that context observations can be used to drive
selection of appropriate configurations on the basis of the common capability model.

5 Related Work

Related work can be found in the areas of selection of packaged applications and
version management. The multi-objective methods for selecting packaged applications
approach allows for comprehensive evaluation of offerings by different vendors [2].
The selection is based on the generic set criteria and the alignment of these criteria with
business needs is not ensured. Capilla et al. [9] describe methods for designing different
versions of business software depending on the application context. These works focus
on software architecture and design issues rather than the software management
decisions. Evolutionary development in software engineering [5] concerns the opera-
tional level evolution of atomic development requirements.

The method proposed relies on several existing methods. Goal modeling techniques
[10] help to identify the relevant objectives. Business activity monitoring techniques
allow measuring the process performance according to the specified goals and to
identify significant changes in performance [11]. Context model techniques [12] help to
identify relevant context factors and to represent their impact on process design. The
method extensively uses categorized context values. A similar approach is taken by
[13] to model context-driven business processes.

Furthermore, there is related work in the field of service management from a service
science perspective. In recent years, the perspective on what is characterizing a ser-
vice has shifted from an intangible product to a more process-oriented focus [14].
A service process “[…] can be viewed as a chain or constellation of activities that allow
the service to function effectively” [15, p. 68]. Existing work tries to understand service
processes from three overall perspectives: input, transformation process and outcome

12 J. Grabis and K. Sandkuhl



[16]. In contrast to manufacturing-based production processes, also customers provide
significant input in service processes [17]. This is clearly visible in our product-service
bundle. However, this input is not only limited to one customer, but also multiple
customers which is also acknowledged service science [18]. The transformation process
“entails the service delivery and consumption process, and involves customer partici-
pation in the service delivery/consumption process” [16, p. 1016]. For software-service
bundles, we thus can divide this perspective into the continuum of service co-production
[19] and consumption process flow. Latter is considered in existing work as a charac-
teristic of services from a service operations management perspective. The final out-
come of the service is determined by the service provider as well as by the service
beneficiaries [20].

6 Summary and Future Work

The paper presented and discussed a method for evolutionary development and con-
figuration of software-services bundles. The paper showed that the vendor-client col-
laboration for selecting the most suitable configuration of a given software-service
bundle is feasible and represents value co-creation between vendor and client. The
capability concept and the CDD approach have been useful for this method to provide
the common basis for defining software solution and explicitly representing relation-
ships among performance, context and solutions. The method so far is evaluated only
using a simulation approach and experiences from real-world application cases are
needed for further validation.

There are multiple directions of further research. Updating the capability support
matrix according to monitoring results is an important part of the method what requires
further elaboration. Classification and machine learning methods can be used for these
purposes. The decision to upgrade the solution is not an automated decision and usually
involves a number of considerations (e.g., business relations) not covered by the
evolutionary development method. Switching to a new configuration incurs additional
costs. This factor also could be incorporated into the decision-making process to
evaluate cost-benefit aspects currently not considered in the paper.

From a service science perspective, the co-production of services has to be seen as a
continuum which “[…] can vary from none at all to extensive co-production activities
by the customer or user” [21, p. 8]. When specifying service processes, it thus needs to
be highlighted which tasks are performed by which entity of the service system or
service system network. For software-service bundles, modeling of the service process
with explicit distribution of tasks between vendor and client could be a way to further
optimize gathering of relevant data. This will be part of future work.

References

1. Pohl, K., Böckle, G., Van der Linden, F.: Software Product Line Engineering. Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

2. Jadhav, A.S., Sonar, R.M.: Evaluating and selecting software packages: a review. Inf. Softw.
Technol. 51, 555–563 (2009)

Selection and Evolutionary Development of Software-Service Bundles 13



3. Olsson, H.H., Bosch, J.: Towards continuous customer validation: a conceptual model for
combining qualitative customer feedback with quantitative customer observation. In:
Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.). LNBIP, vol. 210, pp. 154–166. Springer,
Heidelberg (2015)

4. Bērziša, S., Bravos, G., González, T., Czubayko, U., España, S., et al.: Capability driven
development: an approach to designing digital enterprises. Bus. Inf. Syst. Eng. 57, 15–25
(2015)

5. Sommerville, I.: Software Engineering. Pearson, Boston (2015)
6. Grabis, J., Stirna, J.: Advanced context processing for business process execution

adjustment. In: Persson, A., Stirna, J. (eds.) CAiSE 2015 Workshops. LNBIP, vol. 215,
pp. 15–26. Springer, Heidelberg (2015)

7. Schmidt, A., Otto, B., Österle, H.: Integrating information systems: case studies on current
challenges. Electron. Markets 20, 161–174 (2010)

8. Sandkuhl, K., Koc, H.: On the applicability of concepts from variability modelling in
capability modelling: experiences from a case in business process outsourcing. In: Iliadis, L.,
Papazoglou, M., Pohl, K. (eds.) CAiSE Workshops 2014. LNBIP, vol. 178, pp. 65–76.
Springer, Heidelberg (2014)

9. Capilla, R., Ortiz, O., Hinchey, M.: Context variability for context-aware systems. Computer
47, 85–87 (2014)

10. Kavakli, E.: Modeling organizational goals: analysis of current methods. In: Proceedings of
the ACM Symposium on Applied Computing, pp. 1339–1343 (2004)

11. Friedenstab, J., Janiesch, C., Matzner, M. Müller, O.: Extending BPMN for business activity
monitoring. In: Proceedings of the Annual Hawaii International Conference on System
Sciences, pp. 4158–4167 (2012)

12. Koç, H., Hennig, E., Jastram, S., Starke, C.: State of the art in context modelling – a
systematic literature review. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE
Workshops 2014. LNBIP, vol. 178, pp. 53–64. Springer, Heidelberg (2014)

13. Born, M., Kirchner, J., Muller, J.P.: Context-driven business process modeling. In: Camp, H.
S.O. (eds.) Advanced Technologies and Techniques for Enterprise Information Systems,
ICEIS 2009, pp. 17–26 (2009)

14. Sampson, S.E.: Visualizing service operations. J. Serv. Res. 15, 182–198 (2012)
15. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical technique for

service innovation. Calif. Manage. Rev. 50, 66–94 (2008)
16. Yalley, A.A., Sekhon, H.S.: Service production process: implications for service

productivity. Int. J. Prod. Perform. Manage. 63, 1012–1030 (2014)
17. Sampson, S.E., Froehle, C.M.: Foundations and implications of a proposed unified services

theory. Prod. Oper. Manage. 15, 329–343 (2006)
18. Tax, S.S., McCutcheon, D., Wilkinson, I.F.: The service delivery network (SDN) a

customer-centric perspective of the customer journey. J. Serv. Res. 16, 454–470 (2013)
19. Hilton, T., Hughes, T.: Co-production and self-service: the application of service-dominant

logic. J. Mark. Manage. 29, 861–881 (2013)
20. Spohrer, J., Kwan, S.K.: Service science, management, engineering, and design (SSMED):

an emerging discipline. Int. J. Inf. Syst. Serv. 1, 1–31 (2009)
21. Vargo, S.L., Lusch, R.F.: Service-dominant logic: continuing the evolution. J. Acad. Mark.

Sci. 36, 1–10 (2007)

14 J. Grabis and K. Sandkuhl


	Selection and Evolutionary Development of Software-Service Bundles: A Capability Based Method
	Abstract
	1 Introduction
	2 Method Overview
	2.1 Problem Statement
	2.2 Evolutionary Development Process
	2.3 Capability Modeling

	3 Evolutionary Development Stages
	3.1 Design Stage
	3.2 Delivery Stage
	3.3 Evolution

	4 Application Example
	4.1 Description
	4.2 Model
	4.3 Results

	5 Related Work
	6 Summary and Future Work
	References


