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Abstract. This paper investigates memory carving techniques for
embedded devices. Given that cryptographic material in memory dumps
makes carving techniques inefficient, we introduce a methodology to dis-
tinguish meaningful information from cryptographic material in small-
sized memory dumps. The proposed methodology uses an adaptive
boosting technique with statistical tests. Experimented on EMV cards,
the methodology recognized 92% of meaningful information and 98 % of
cryptographic material.
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1 Introduction

Embedded devices usually gather and store personal data about the behaviours
of their holders. They are typically low-cost devices including (but not limited
to) credit cards, mass transportation passes, electronic passports, keyless entry
and start systems, and ski passes. They usually gather and store a lot of personal
data, for example an electronic passport contains the identity and the picture of
its holder [2], a mass transportation pass may store the last trips of its holder [4],
a ski pass may also contain the location of the ski lifts the skier used [21], an
EMV card records the last payments done by the customer [8], a car ignition key
in recent vehicle contains plenty of information about the car and the behaviour
of the driver, including the monthly fuel consumption, the external temperature
during the last trip, and the average engine speed. In most cases, the personal
data contained in these devices are accessible without requiring any authentica-
tion, and can be obtained using, for example, the ISO/IEC 7816 interface or by
sniffing a genuine communication between the device and a reader.

Interpreting the meaning of the captured raw data is hard when the system
specifications are not available. However, such a task is important today when
investigations must be carried out. It can be to find digital evidence for example
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in connection with criminal investigations – when information related to a sus-
pect is stored in a device – or to verify that a system complies with the national
privacy regulations.

A large body of literature exists in the field of memory forensics. Many off-
the-shelf tools exist, too. The analyses typically focus on hard drives [18] and
volatile memories [3]. Analyses of hard drives are typically based on file carv-
ing, i.e. a technique that consists in searching for files in the considered data.
The main difficulty is the file fragmentation in the system. File carving is conse-
quently performed using machine learning techniques, the entropy of the blocks,
or the file headers and footers. The technique targets specific file formats, e.g.,
PDF, ZIP [5], or file systems such as NTFS [26]. Analyses of volatile memories
consist in searching for special strings or signatures, interpreting internal kernel
structures, or enumerating and correlating all page frames, in order to retrieve
running and terminated processes, open ports, sockets, hidden data, etc.

The analysis of the non-volatile memory of an embedded device differs from
classical memory forensics techniques for several reasons. (i) First of all, the
memory typically consists of a few kilobits only. (ii) The data available in these
devices are poorly structured: in most cases, there are no file headers, sentinels,
or field separators. (iii) Home-made encoding systems are commonly used in
practice to save memory or to naively hide information. (iv) Performing a bit-
by-bit copy of the memory is rarely possible because the only way to access
the memory is to use the application program interface (API) or to eavesdrop a
genuine communication. This means that the captured data is not necessarily a
perfect copy of the memory.

A naive technique to interpret data retrieved from embedded devices (called
a dump) consists in applying several encoding functions to the dumps until
retrieving the correct one for each information stored. Due to the nature of the
dumps, there is unfortunately no oracle that can efficiently determine whether
the decoding of the information is correct. As a consequence, the technique
outputs many false positives that renders it unusable in practice. Most existing
contributions on the memory carving problem for embedded devices consider
ad-hoc, hand-made analyses, e.g., for retrieving keys hidden in an EEPROM [6].

There exist few techniques designed for an automatic analysis of embedded
devices. A seminal work, though, is due to Ton Van Deursen et al. [25], who inves-
tigated the memory carving problem for sets of memory dumps, and applied it
to public transportation cards. It is worth noting that they obtained the memory
dumps using the API of the cards, meaning that there is no guarantee that the
dumps are indeed bit-by-bit copy of the memory. The authors aimed to singulate
the memory data fields using the concept of commonalities and dissimilarities
applied to a dump set. A commonality occurs for a given bit position if the value
of the bit is the same for all the dumps of a given set, whereas a dissimilarity
occurs otherwise. Using these commonalities and dissimilarities, as well as con-
textual information (as data printed on the coupon), the technique deduces the
data fields. Once the data fields are singulated, a manual investigation is needed
to retrieve the encoding function. The authors applied their technique to the
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E-Go System (the public transportation card in Luxembourg) and retrieved a
dozen of fields, e.g., the date and time of the last validation. Their work does
not provide an automatic interpretation of the data and it requires contextual
information to complete the analysis. Another work related to ours is due to
Jean-Louis Lanet et al. [14], who investigated the reverse engineering of EEP-
ROM in Java Cards. They aim to retrieve the location of the source code and
data related to the language(package, class, instance . . . ). The index of coinci-
dence [10] is used to locate the source code. This approach is not very efficient,
though. Still worse, in our case, real-life dumps are generally generated using
several (unknown) encoding functions. This makes the calculation of the index
of coincidence meaningless. To retrieve the data related to the language [14] uses
a pattern matching technique applied to the headers (or metadata), which differ
for each type of data. Unfortunately, there is neither header nor metadata in our
dumps.

Given the difficulty to retrieve personal data from the memory dump of
an embedded device, this work focuses on a narrower problem that consists in
distinguishing meaningful information (encoded with ASCII, BCD, etc.) from
cryptographic material (ciphered data, hash value, secret key, etc.). The ratio-
nale behind this restriction is that cryptographic materials generate many false
positives and no personal information can be obtained from these values, assum-
ing the algorithms used to create the materials are cryptographically secure. As
a consequence, we introduce a technique that separates the wheat from the chaff,
namely a preliminary step in the forensics process that distinguishes meaningful
information from cryptographic materials, considered as random data. Unfortu-
nately, the size of the considered dumps does not allow to naively use classical
tools (e.g., NIST’s statistical tests [19]) that usually require several kilobytes
of data to make the statistical tests relevant. Moreover, the tests cannot be
directly applied to the data because the considered dumps contain data fields,
which must be analysed separately. For the same reason, techniques for locat-
ing cryptographic keys hidden in gigabytes of sparse data, proposed by [20] and
based on the entropy computation, are not possible on such dumps.

This paper introduces a statistical and automatic recognition technique
that distinguishes meaningful information from cryptographic material, obtained
from non-volatile memory dumps of embedded devices. The technique, based on
a machine learning method, called boosting [9], requires information neither on
the dump structure, nor on the application context, for the classification between
these two sets of data. The technique is then improved by comparing dumps of
different devices belonging to the same application. Our technique reaches quite a
high success rate: we applied it to EMV-based dumps and Calypso-based dumps,
obtaining a 99 % success rate.

2 Dump Examples

To illustrate the problem considered in this paper, Sect. 2 provides details on
two dumps extracted from EMV and Calypso cards. The cards contain elemen-
tary files that have been retrieved using the cards’ APIs. The files are made of



Memory Carving in Embedded Devices 595

records. Files can be linear fixed (linear data structure of fixed length), lin-
ear variable (linear data structure of variable length), or cyclic (oldest data are
erased to store newest data). The information is contained in (non-necessarily
contiguous) fields, e.g., holder’s name, holder’s zip code, a cryptographic key,
etc. A pedestrian approach has been used to analyse the dumps, given that there
does not exist automatic tools that can achieve this task.

2.1 EMV Dump

Figure 1 is a (partial) anonymised dump of a credit card compliant with the
EMV specifications [8]. Each numbered line represents a record. The underlined
sequences are fields that contain the holder name, the issuer’s public key mod-
ulus, the amount, and the date of the last transactions.

1. 9F3602004D
2. 9F13020046
3. 9F170103
4. 9F4F109F02069F27019F1A025F2A029A039C01
5. 70615F201A4A4F484E2F534D4954482E4D52202020202020202020202020205F300202018C1B9F02069F03069

F1A0295055F2A029A039C019F37049F45029F4C088D1A8A029F02069F03069F1A0295055F2A029A039C019F37
049F4C08

6. 9F49039F3704701A5F25030911015F24031003315A0849750000075922345F340100
7. 70369F0702FF008E0E0000000000000000020301031F009F0D059800B420009F0E0500504800009F0F05B820B

4F8005F280202509F4A0182
8. 70329F080200028F01069F320103922434592451B87DA8C05BA7F1DE5DC802BF59D394D6CC034A046F46995E0

245E437AED7B899
9. 000000001350400250097810032600
10. 000000001770400250097810032600
11. 000000002090400250097810032500
12. 000000007707400250097810032400

Fig. 1. Extract of an anonymised credit card dump.

Holder Name. The underlined sequence of the 5th record represents the name of
the holder of the credit card (MR John Smith) encoded using ASCII and padded
with the repeated pattern 0x20.

Issuer’s Public Key Modulus. The underlined sequence of the 8th record repre-
sents the issuer public key modulus used by the authentication protocol.

Transactions. Records 9 to 12 represent the last four transactions (cash with-
drawal) made by the card. The first underlined sequence represents the transac-
tion amount (13.50 euros for the 9th record) and the second one is the date of
the transaction (2010/03/26 for the 9th record).

The EMV card contains a cyclic file that stores information on the transac-
tions. For any new transaction, the information in the cyclic file is rotated such
that the record about the oldest transaction is discarded to save room for the
newest transaction.
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2.2 Calypso Dump

Figure 2 is a (partial) anonymised dump of a transportation card compliant with
the Calypso specifications [4]. The record names (ICC, Holder1, Holder2, etc.)
are available in the specifications, but the content of the records is not defined by
Calypso. The content is indeed let to the discretion of the public transportation
operator. The provided example illustrates that a single card may contain several
encoding rules, and the information in the card is not necessarily byte-aligned.

ICC 00 00 00 00 00 00 00 04 00 71 B3 00 00 00 00 00 01 B8 B2 4A 02 50 00 33 01 1A 13 43 00

Holder1 04 00 98 E5 94 C8 02 0D 60 C9 65 C7 D5 90 00 00 00 00 00 00 00 19 75 08 10 92 82 D2 CF
Holder2 F3 6A 68 88 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

EnvHol1 08 38 2B 00 08 BD 59 2A 46 60 C4 81 98 E5 94 C8 02 0D 60 C9 65 C6 41 F4 00 00 00 00 00
EnvHol2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

EvLog1 09 0E E5 92 04 20 60 86 60 00 00 00 00 1C D6 DD 56 40 00 01 C0 00 00 51 08 66 E0 00 00
EvLog2 09 0E E5 7A 04 20 60 86 60 00 00 00 00 1C D6 DD 56 40 00 01 80 00 00 11 08 66 E0 00 00
EvLog3 09 0E E5 5A 04 20 60 86 60 00 00 00 00 1C D6 DD 56 40 00 01 40 00 00 91 08 66 E0 00 00

ConList 11 2B 40 01 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Fig. 2. Anonymised transportation car dump.

On the Holder1 line, the first underlined sequence represents the BCD-
encoded birth date of the holder: 1975/08/10. The second underlined sequence
that continues on the Holder2 line represents the name of the holder, namely
“James Smith”. To decode this information the binary representation of the
sequence must be split into 5-bit pieces (omitting the first bit of the sequence),
which are then decoded with the rule (decimal representation): A=1, B=2, C=3,
etc. This information is not byte-aligned.

EvLog1, EvLog2, and EvLog3 are the last three trips performed by the card,
stored in a cyclic file. For example, the first underlined sequences in the EvLog
lines correspond to the validation time, which is “11:53 am” for EvlLog1. This
information is retrieved using the binary representation of 0x592 (omitting the
last bit), and converting it to an integer that represents the number of minutes
since the beginning of the day. The second underlined sequence in each log
represents the validation date of the card during the trip: 2008/12/09, for
EvlLog1. This information is retrieved by using the binary representation of
0x5108 (omitting the two first bits) and by converting it to an integer that rep-
resents the number of days since 1997/01/01. Other information on this line are
the transportation means (metro, bus, tramway), the bus line number, the num-
ber of travellers who shared the card for that trip, the station, etc. Additional
information can be found in the dump, e.g., the serial number of the card, the
manufacturer, the date of manufacture, etc.
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3 Statistical Analysis

Retrieving the meaningful information from a dump using a statistical analysis
is a difficult problem. In particular, the meaningful information is drowned in
a mass of information that include pseudo-random values generated by crypto-
graphic means. This paper consequently focuses on a preliminary step in the
forensics process that distinguishes meaningful information from cryptographic
materials. To start with, we explain below the difficulty to use statistical tests
to perform this task in our framework.

3.1 Statistical Tests for (Pseudo-) Random Generators

There exist many statistical tests for random and pseudo-random number gen-
erators. The NIST statistical test suite [19] includes the most important ones,
while keeping small the redundancy between them. We consequently decided to
consider this suite for our experiments.

A statistical test aims to verify a given null hypothesis, which is data are
random in our experiments. A p-value represents the strength of the evidence
against the null hypothesis. This p-value is computed from the reference distri-
bution of the tested statistical property. NIST uses an asymptotic distribution.

The hypothesis is rejected if the p-value is lower than the level of significance
of the test (for example 0.01 or 0.001). Thus, a threshold of 0.01 means that one
sequence among 100 sequences is expected to be rejected. A p-value greater than
this threshold (respectively lower) indicates that the sequence is considered to
be random (respectively non-random) with a 99% confidence.

The NIST proposes two methods to decide whether or not a generator is
suitable for a cryptographic use. A set of sequences is produced by the generator,
and its quality is evaluated by means of statistical tests. The result is determined
from the rate of sequences that successfully pass each test (p-value greater than
the level of significance), or from the uniformity of the p-values.

Even if tests like the monobit test, the longest runs test, or the approximate
entropy test could be theoretically applied to short sequences (100 bits), the
recommended length is 20, 000-bit long according to the NIST, because asymp-
totic approximations are used to determine the limiting distribution. Additional
information on these statistical tests can be found in [19].

Moreover, some tests like the linear complexity test or the random excursions
test require at least 106 bits to be applied. For short sequences, the NIST sug-
gests that asymptotic distribution would be inappropriate and would need to
be replaced by exact distributions that, according to them, would commonly be
difficult to compute. Thus, [1,7,23] introduce new tests with their exact distri-
bution, and [24] suggests a new method to take the decision of randomness for
short sequences. Unfortunately, although these approaches can deal with short
sequence, they require a significantly large set of such sequences.
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3.2 Statistical Tests in Our Context

Dumps obtained from embedded devices typically contain information fields
whose lengths are between 1 bit and 1, 024 bits (the size of an entire dump
is typically 100-bit to 40, 000-bit long).

Each sequence tested can be seen as an output of a different generator (name,
date, ciphered or hashed data, etc.), then for a dump, only one sequence per
generator can be tested. Section 3.1 and the above-mentioned arguments justify
that most of statistical tests are not suited to short sequences, and the technique
used by the NIST to decide whether or not a sequence is random is therefore not
applicable. Moreover, there is no technique that use a combination of statistical
tests to take the decision of randomness. In our context, the decision of the
classification of each bit into meaningful information or cryptographic material
is only done by directly comparing a p-value to a threshold, but this threshold
need to be determined.

4 Distinguish Cryptographic Materials from Meaningful
Information

A first step to distinguish meaningful information from cryptographic materials
in a memory dump of an embedded device consists in establishing a methodology
to apply the statistical tests. Applying the tests to the entire dump is inefficient.
Instead, tests should be applied to each field of the considered dumps. Unfor-
tunately, neither the location nor the size of the fields of the dump are known.
The methodology consequently consists in classifying the data (meaningful or
cryptographic) bit by bit, instead of field by field.

A second step consists in performing a learning phase where the methodology
is applied to dumps for which the classification of bits is known. This ground
truth allows us to determine the decision threshold: the statistical tests provide
a score to each bit of the considered dump, and the score is compared to the
threshold to decide whether a bit is classified meaningful or cryptographic.

Then, a boosting algorithm [12] is used, namely a machine learning approach
that identifies the most appropriate statistical tests to be applied and how to
combine their results.

The identified tests can then be applied to dumps whose ground truth is
unknown.

Finally, comparing the classification obtained by this combination of statis-
tical tests on different dumps of the same application, we propose a technique
that improves the classification for each dump of the application.

4.1 Applying Statistical Tests to Dumps

Given dumps cannot be split into fields, the classification of the data has to
be done bit by bit. However statistical tests are not applicable to single bits.
As a consequence, bits need to be grouped into sequences. A methodology that
separates a dump into several overlapping sequences is thus proposed.
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Let D be a n-bit dump (bits indexed from 1 to n), a sequence length �, and
a shift s, with 0 < s ≤ � ≤ n. The shift represents the distance between two
start bits of two consecutive tested sequences. The i + 1-th tested sequence of
D is from the bit index (i × s + 1) to i × s + � with 0 ≤ i ≤ �n−�

s �. In the
case where s does not divide n − �, the bits from �n−�

s � × s + l − s + 1 to n
are never tested, and so a last sequence from index n − � + 1 to n is tested. For
each tested sequence, the statistical test returns a p-value. Due to the use of a
shift s potentially shorter than the sequence length �, each bit of D is tested in
at most � �

s� different sequences. All bits of D are therefore related to a variable
number of p-values. However, the classification method used in Sect. 4.2 works
with the same number of scores per bit. A score function that takes p-values as
input and outputs a single score is therefore applied to the p-values of each bit.
The function can be for example the mean of the p-values.

As a consequence, the previous parameters, namely sequence length, shift,
and score function play an important role in the quality on the classifier. Fur-
thermore, some statistical tests require an internal parameter. For example, the
serial test looking at the proportion of each possible block of m bits in the
tested sequence, takes m as additional input. It leads to a set of N features,
F = {Fj , 1 ≤ j ≤ N} where each feature is defined by a 5-tuple (statistical test,
sequence length, shift, score function, internal parameter). Applying a feature Fj

to D outputs a score set Sj = {sj
i , 1 ≤ i ≤ n} – as presented in Fig. 3 – where

sj
i is the score assigned by Fj to the i-th bit of D. Applying all the features Fj

of F so generates a set S = {sj
i , 1 ≤ j ≤ N, 1 ≤ i ≤ n} as presented in Fig. 4.

4.2 Bits Classification Using Statistical Tests

In order to decide whether a bit in a dump should be classified as cryptographic
or meaningful, scores returned by each feature need to be compared to a thresh-
old. This process that determines the class of each bit using the scores and
a pre-definite threshold is a classifier. Given a n-bit dump D and its score
set Sj obtained by applying a feature Fj , and the predetermined threshold t,
the classifier Cj computes the prediction Pj = {pj

i ∈ {cryptographic, meaning-
ful}, 1 ≤ i ≤ n} for D where the prediction of the class of the i-th bit of D is
done as following:

pj
i =

{
cryptographic, if sj

i > t

meaningful , otherwise

Using scores returned by each Fj together with the ground truth of D, repre-
sented by G = {gi ∈ {cryptographic, meaningful}, 1 ≤ i ≤ n}, a learning process
determines the best threshold to use. We use the learning process described in
[22] whose complexity is O(n) in our case. The best threshold is the one that
leads to the classification which is the most similar to the ground truth. Namely,
the classification that maximises the recognition rate Rj , where Rj is computed
as following:
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0 1 0 0 1 0

T(010)
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T(001)

T(010)

p1 p2 p3 p4

p-values
linking

Each bit is related

up to 3 p-values

0 1 0 0 1 0
p1 p1 p1

p2 p2 p2
p3 p3 p3

p4 p4 p4
. . . . . .

score
function

m
ean

0 1 0 0 1 0
sj1 sj2 sj3 sj4 sj5 sj6

Fig. 3. Applying a feature Fj = (T, 3, 1, mean, .) on a 6-bit dump D. The process

assigns the score set Sj = {sji , 1 ≤ i ≤ 6} to D.

Apply each Fj to

0 1 0 0 1 0

sj1 sj2 sj3 sj4 sj5 sj6

Bit 0 1 0 0 1 0

S1 s11 s21 s31 s41 s51 s61

S2 s12 s22 s32 s42 s52 s62

. . . . . . .

Sj s1j s2j s3j s4j s5j s6j

. . . . . . .

SN s1N s2N s3N s4N s5N s6N

Fig. 4. Set S = {sji , 1 ≤ j ≤ N} of scores obtained after applying all features Fj of
the set F to a short dump D of 6 bits length.

Rj =
∑n

i rj
i

n
with rj

i =

{
1, if Gi = pj

i

0, otherwise

Applying the learning process to all Fj leads to a set of classifier C = {Cj , 1 ≤
j ≤ N}, where each Cj is related to the feature Fj .



Memory Carving in Embedded Devices 601

4.3 Boosting of Statistical Tests

In order to determine the best features Fj to use, we propose to use the boosting
technique that is a machine learning technique to combine several classifiers of
the set C into a final classifier Ĉ.

More precisely, we propose here to use the AdaBoost algorithm [9] which is
the most popular boosting method. Given a dump, AdaBoost first selects the
best classifier of C and adds it to the final classifier Ĉ. The best classifier of the
set C is the one that leads to the best recognition rate respecting the ground
truth of the dump. Then looking at the obtained classification, misclassified bits
by Ĉ receive a more important weight. The boosting then selects the new best
classifier taking into account the bit weights (thus this second classifier focuses
on misclassified bits) and adds it to Ĉ. The weights of the bits misclassified by
Ĉ are updated. Repeating those actions until all the bits are correctly classified,
or a certain preset number of classifiers in Ĉ is reached. AdaBoost does not
return the optimal classifier Ĉ because it behaves as a greedy algorithm but it
is efficient whereas the naive optimal algorithm is computationally infeasible.
AdaBoost’s complexity is O(|C|L), where L is the complexity of the learning
algorithm.

The final classifier provided by the boosting is then used to distinguish cryp-
tographic material from meaningful information in dumps where the ground
truth is unknown.

4.4 Merging Classifications in a Set of Dumps

Dumps belonging to the same application share similarities on their data. How-
ever, the prediction P̂ obtained by the final classifier is done independently for
each dump. Therefore a merging technique is proposed to combine their classi-
fication in order to improve the recognition rate.

A set of dumps of the same application can be obtained by dumping memory
of different cards belonging to several holders. It can also be acquired by dumping
the same card at different time of the card lifetime, e.g. before and after a cash
withdrawal for bank cards.

One may expect that dumps belonging to a given application to be identically
structured, i.e. containing the same fields, in the same locations. For example, in
some Calypso dumps, the name, the birth date, and the postal code of the holder
or details of his last trips are always located at the same place in the dump, with
the same encoding. The data of these fields vary for each dump but the class
(meaningful information or cryptographic material) is the same. The merging
process is also applied to cyclic records, because they contain the same fields
in the same locations. Therefore a classification of the bits of the application is
computed rather than a classification for each dump.

Given a set D = {Dk, 1 ≤ k ≤ d} of d dumps of length n bits belonging to the
same application the merging process creates a prediction Pmerging that replaces
all the prediction of the final classifier. The prediction Pmerging is computed as
follows:
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Pmerging = {Majority(P̂ 1
i , P̂ 2

i , . . . P̂ d
i ), 1 ≤ i ≤ n}

where P̂ k
i represents the prediction of the final classifier for the i-th bit of

the dump Dk, and Majority represents the application of a majority vote to the
classes. The Pmerging obtained has a better recognition rate than the prediction
obtained independently for each dump of D.

5 Experiments

We present the data and the values of the features used by our boosting experi-
ment. The final classifier obtained by AdaBoost is applied to real EMV dumps.
The merging process finally allows us to reach a recognition rate greater than
99% on these EMV dumps.

5.1 Generating Data for the Learning Phase

When fitting the classifiers, AdaBoost requires a sufficient amount of data
belonging to each class (i.e. meaningful information and cryptographic mate-
rial) from different embedded objects, to be representative of all the existing
embedded devices.

We have extracted the data of about 300 devices (using CardPeek [16] or
RFIDIOT [15]) from various applications: access control, transportation, bank-
ing, health insurance and loyalty cards, train tickets, e-passports, ski passes,
etc. Unfortunately, only a small part of these data can be used for the learning
phase, because the ground truth of a large part of these data is unknown. In
order to solve this problem, we set up a large synthetic dump containing data
similar to real dumps, inspired by our 300 dumps. This synthetic dump is mod-
eled by several sequences of variable lengths, containing cryptographic materials
(hashed or ciphered data, cryptographic keys, etc.) or meaningful information
(dates, names, etc.).

A generated synthetic dump is 100, 000-bit long. It contains approximately
65% of meaningful information, where sequences are between 80 and 300-bit
long. Cryptographic materials are generated from various cryptographic algo-
rithms as RSA, AES, SHA-1, etc. They are truncated to obtain the expected
length. Meaningful information includes dates with different encoding, e.g.,
ASCII, BCD, and various formats like YYYY-MM-DD, YY/MM/DD, etc.
There are also names, textual information, and zip codes with various encoding
techniques.

5.2 Considered Features

Given each feature is described by 5 parameters (Statistical test, Sequence length,
Shift, Score function, Internal parameter) and each parameter can be assigned
with various values, the set F contains approximately 10, 000 features.
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Statistical Test: It is the statistical test that is applied to the dump sequences.
All these tests are the NIST tests except those that require 106 bits or a spe-
cific pattern to test. These NIST tests represent 8 tests: monobit, runs, block
frequency, serial, discrete Fourier transform, approximate entropy, cumulative
sum, and longest runs. These 8 tests provided in the NIST suite are completed
by the autocorrelation [13] and tests suited to short sequences: TBT [1] and
saturation point [23]. There is so 11 tests in total.

Sequence Length: We have decided to lower bound the sequences to 32 bits
because tests on too short sequences are not relevant. Sequence lengths used in
our experiments are thus chosen in the set {32, 48, 76, 100, 128, 192, 256}.

Shift: 10 different shifts are used, represented by a percentage of the sequence
length: 10%, 20% . . . 100%.

Score Function: It represents the method that computes the score from the
set of p-values of each bit. The functions mean, min, max, and the geometric
mean are used here.

Internal Parameter: When the test requires an internal parameter, several
values are considered for this parameter. For example, for the serial test the
parameter is the block length. When it is applied to a sequence of 256 bits, the
possible size of the blocks are from 2 to 6 bits.

5.3 Learning with AdaBoost

The boosting algorithm must be set with a parameter that is the number of clas-
sifiers of the final classifier. This parameter must be well suited to the context
to avoid overfitting the final classifier. This phenomenon occurs when the final
classifier is too adapted to the data used for fitting, which leads to a poor recog-
nition rate on other data. We have experimented with a number of classifiers
from 1 to 50.

Two synthetic dumps are generated, one represents the learning set and the
second the validation one. The boosting creates a final classifier Ĉ from the
learning dump and then this classifier is applied to the validation one. Then,
varying the number of classifiers in Ĉ on the learning dump, each obtained Ĉ is
applied to the validation one. The Ĉ which leads to the best recognition rate on
the validation dump is saved.

The final classifier obtained after learning with AdaBoost is composed of five
tests with their parameters, described as following:

– Approximate Entropy on sequences of 192 bits by blocks of 2 bits and a shift
of 19 bits, the score function is max.

– Longest runs on sequences of 256 bits by blocks of 8 bits and a shift of 25
bits, the score function is min.
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– TBT on sequences of 256 bits by blocks of 4 bits and a shift of 76 bits, the
score function is mean.

– Serial test on sequences of 256 bits by blocks of 3 bits and a shift of 76 bits,
the score function is mean.

– Cumulative sum on sequences of 256 bits with a shift of 230 bits, the score
function is max.

The recognition rate of these tests is 91.7% on the learning dump and 90.7%
on the validation one.

The boosting algorithm selects the most pertinent statistical tests in relation
to our context of short sequences belonging to memory dumps. Note that, slightly
varying the learning data, the boosting algorithm returns other strong classifiers
(with different statistical tests and parameters) providing similar recognition
rate. Namely, generating three dumps D1, D2, and D3, then applying the boost-
ing to the scores obtained by the features on D1 and D2 creates two final classifier
CF1 and CF2 . These two classifiers can consist in different statistical tests but
when they are applied to the dump D3 they provide similar recognition rate.
Using more statistical tests in the final classifier improves the recognition rate
on the learning dump, we obtain 98.1% with 50 statistical tests, but the recog-
nition rate on the validation one is 90.0%, it is a case of overfitting. Using only
one statistical test in the final classifier leads to a recognition rate of 89.9%
on the learning dump and a recognition rate of 87.7% on the validation one.
One can notice that these statistical tests use more than 200 bits to take their
decision, but they are able to detect the class of sequences that are shorter than
200 bits, because all bits are tested several times due to the shift between tested
sequences.

Experiments have been done with our own python program using the
AdaBoost-SAMME.R algorithm [11] from Scikit-learn [17]. Calculating the
p-values array on a large dump of 100, 000 bits for our set of 10, 000 fea-
tures took several hours. Calculations have been made on a 64-core processor
(4 AMD Opteron 6282SE 2.6 GHz) with 512 GB of RAM available. Running
the AdaBoost algorithm, on a single core, takes between a few minutes (when
|Ĉ| = 1) and two hours (when |Ĉ| = 50).

5.4 Recognition on Real Dumps

In this subsection, the classifier trained on synthetic data is used to classify
meaningful information and cryptographic materials on real dumps of memory.
This set is applied to more than 30 EMV dumps [8], 2 VITALE dumps (the
French health insurance card) and 7 Calypso dumps. In these cards, the mean-
ing of an important part of the data is publicly known (EMV, VITALE) or a
previous work of the authors allows to determine it, so, the ground truth (i.e.
theoretical classification of the data) is easily accomplished. It represents more
than 600, 000 bits of data with 140, 000 cryptographic bits and 500, 000 bits of
meaningful information. As result, we obtained a recognition rate of 92.1% for
cryptographic bits and 98.6% for bits of meaningful information. When the final
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classifier is applied to Calypso cards, we get 100% of recognition. Note that
there are only bits of meaningful information in our Calypso dumps. Apply-
ing the final classifier to these dumps, is almost instantaneous, for large dumps
(40, 000 bits), it takes less than 2 s.

Some further analysis can improve the results, for example if a single cryp-
tographic bit (resp. meaningful bit) is surrounded by a significant amount of
meaningful bits (resp. cryptographic bits), then this bit is likely misclassified.
Errors are often localised on the frontier between two fields, one containing cryp-
tographic material and another one containing meaningful information.

Table 1. Detection of cryptographic bits and meaningful bits in EMV, VITALE, and
Calypso dumps

Dump type Cryptographic bits Recognition rate Meaningful bits Recognition rate

EMV 131, 384 92.3 % 379, 352 98.0 %

VITALE 9, 168 90.0 % 126, 160 99.9 %

Calypso 0 – 9, 681 100.0 %

5.5 Merging Process on EMV Cards

Table 1 shows that our method applied to a single dump already provides good
results. We now still improve the results by analysing in parallel several dumps
obtained from the same application. We call this improvement the merging
process.

In the following experiments, 10 fields representing in total 3, 560 bits are
selected, split as 3, 312 cryptographic bits and 248 bits of meaningful informa-
tion. These fields are information about the holder, the card or cryptographic
materials. Since they are repeated numerous time in each dump (cyclic records)
and our database is composed of 34 EMV dumps, the merging process takes
the decision of the classification of the fields using 21, 120 bits of meaningful
information and 124, 512 cryptographic bits. Applying the merging process to
all these fields, we obtain a 100% recognition rate. Merging 3 to 5 dumps is
usually enough to reach a 100% recognition rate.

Table 2 provides the results of the merging process for each selected field from
EMV cards, where the class is M for meaningful information and C for crypto-
graphic material. The classic rate column is the mean of recognition rates of the
analysis applied to each dump separately. The merging rate column represents
the recognition rate when applying the merging process.

Note that the memory structure of the dumps of a given application is not
always the same in practice: some records are possibly missing, or are not of
the same length, the number of repetitions of cyclic records can vary or the
data stored in a field is not always of the same length and the value of the
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Table 2. Recognition rate of the merging process on several fields of EMV cards.

Field name Class Length (bits) Classic rate Merging rate

Issuer PK Certificate C 1,024 93.1 % 100.0 %

Signed Static App. Data C 960 93.8 % 100.0 %

ICC PK Certificate C 1,024 93.1 % 100.0 %

ICC PK Remainder C 144 83.2 % 100.0 %

Issuer PK Remainder C 160 86.2 % 100.0 %

App. Label M 16 99.0 % 100.0 %

App. Preferred Name M 16 97.3 % 100.0 %

App. Effective Date M 24 97.6 % 100.0 %

App. Expiration Date M 24 99.5 % 100.0 %

non-used bits of the allocated space for the field is uncertain. For example,
Mifare cards own always the same structure in their memory which is separated
into several sectors of fixed length. Whereas EMV cards are made of files that
contain records, and depending on the bank, these files and records can differ.
They do not store necessarily the same number of transactions, do not contain
all possible records of the EMV specification, the field of the name is padded
with 0x20 when the name is shorter than the allocated space, etc. Consequently,
a pre-processing phase is needed to identify the records in each dump of the
application. In our dumps, all records are separated due to the data recovery
technique. This pre-process aims to match the records between the dumps. This
operation does not require the knowledge of the card specification, because it
is performed by analysing the structure of the data of the dump and the data
into the record. It includes the size and the location of the records in the dump,
combined with the presence of runs of 0 or 1 separating fields in the record.

6 Conclusion and Perspectives

This paper investigates memory carving techniques for embedded devices. Given
that cryptographic material in memory dumps makes carving techniques ineffi-
cient, we introduce a methodology to distinguish meaningful information from
cryptographic material in memory dumps. We propose a technique to apply sta-
tistical tests to memory dump from embedded devices. Our approach uses an
adaptive boosting algorithm based on results of statistical tests for randomness.
We obtained a recognition rate of about 95 % on real dumps from EMV, Vitale
and Calypso cards. We also suggested to analyse several dumps in parallel, which
increases the recognition rate up to 100.0% on EMV cards. Merging the classifi-
cation of several dumps of the same application reaching a rate of 100.0 % with
only 3 merged dumps for considered fields.
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