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Abstract. Hardware tokens for user authentication need a secure and
usable mechanism to lock them when not in use. The Pico academic
project proposes an authentication token unlocked by the proximity of
simpler wearable devices that provide shares of the token’s master key.
This method, however, is vulnerable to a cold boot attack: an adver-
sary who captures a running Pico could extract the master key from its
RAM and steal all of the user’s credentials. We present a cryptographic
countermeasure—bivariate secret sharing—that protects all the creden-
tials except the one in use at that time, even if the token is captured while
it is on. Remarkably, our key storage costs for the wearables that sup-
ply the cryptographic shares are very modest (256 bits) and remain con-
stant even if the token holds thousands of credentials. Although bivariate
secret sharing has been used before in slightly different ways, our scheme
is leaner and more efficient and achieves a new property—cold boot pro-
tection. We validated the efficacy of our design by implementing it on a
commercial Bluetooth Low Energy development board and measuring its
latency and energy consumption. For reasonable choices of latency and
security parameters, a standard CR2032 button-cell battery can power
our prototype for 5–7 months, and we demonstrate a simple enhancement
that could make the same battery last for over 9 months.

Keywords: Hardware authentication token · Cold boot attack · Memory
remanence · Bivariate secret sharing · Bluetooth low energy

1 Introduction

In 2014 the influential FIDO industry consortium published version 1.0 of its Uni-
versal Authentication Framework specification [1], which defines a token-based
authentication system intended to replace passwords. The token itself might
be unlocked with a variety of methods, such as biometrics. In 2011, Stajano
proposed Pico [2], a system with similar goals and architecture (replacing pass-
words by a token that locally stores a different credential per verifier) but with
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a proximity-based secret-sharing method for unlocking the token (as originally
proposed in 2001 by Desmedt et al. [3]) that would also allow continuous authen-
tication (similar to what Corner and Noble [4] first demonstrated in 2002). In
this work we revisit the security of the Pico token-unlocking proposal, improv-
ing its resilience against memory readout attacks such as “cold boot” [5]. We
use the Pico terminology throughout, since this is the reference design that we
are improving upon; however, our techniques might also be applied to FIDO
UAF or to any other security token that requires locking when not in possession
of its user, provided it adopted the proximity-based secret-sharing technique
called “Threshold things that think” by Desmedt et al. [3] and “Picosiblings” by
Stajano [2]. In this introduction we first set the scene by summarizing the rel-
evant features of Pico. We then explain what additional security benefits we
provide with our work.

The Pico is a security token containing hundreds of login credentials, stored
in encrypted form in the token’s permanent memory. Because the Pico’s aim is to
allow people to authenticate without having to remember secrets, by design its
storage is not unlocked by a PIN or password but rather by the presence of other
small wearable devices, the Picosiblings, using a k-out-of-n secret sharing scheme
to reconstruct the strong master key that decrypts the Pico’s storage.1 Without
the master key, which is not stored in the Pico, the encrypted credentials are
unreadable. The intention is that, if adversaries capture the Pico, they will not
be able to read its secrets, not even if they also capture a few Picosiblings. No
protection is offered by the scheme, though, if the adversary manages to capture
the Pico and at least k Picosiblings.

To avoid storing the master key in the Pico, the master key is securely erased
immediately after having been reconstructed and used. The decrypted creden-
tials themselves are securely erased after a short interval. Whenever the Pico
needs to use any of its credentials (again), the master key must be reconstructed
to allow their decryption, but reconstruction can only happen if at least k Picosi-
blings are within range. Therefore a group of k Picosiblings creates an aura of
safety around its wearer, within which the Pico can unlock its credentials.

The privacy of the wearer would be under threat if a passive observer could
recognize the Picosiblings by their transmissions, thereby identifying the wearer
and tracking their location. The security of the credentials would be under threat
if an active attacker could impersonate the target Pico to the Picosiblings and
persuade them to release their shares of the master key. For this reason, the
communications between a Pico and its Picosiblings must be authenticated and
encrypted, and the Picosiblings must only respond to their own Pico.

The primary focus of this paper is to protect the Pico against cold boot attacks.
A cold boot attack consists of capturing the running device while plaintext secrets

1 In Pico, for additional security, some special shares are supplied by user biometrics
and by a network server [2], and different shares may have different weights [6].
The work described in this paper is independent of these features and therefore for
simplicity in what follows we shall ignore these aspects here and treat all shares
equally unless otherwise noted.
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are in RAM, power-cycling it without allowing a clean shutdown and then exploit-
ing data remanence to read its secrets from RAM, as described by Halderman
et al. [5]. We generalize the threat model, beyond the literal cold boot, to any
other potential means of reading the secrets present in RAM at the time the run-
ning Pico is captured, regardless of whether they involve power-cycling the device.
The plaintext secrets under threat would include the credentials themselves, the
reconstructed master key used to decrypt them and the shares of the master key
received from the Picosiblings.

1.1 Highlights

Although the individual techniques we use (secret sharing, bivariate polynomials,
etc.) have been proposed before, our variant is original, the way we combine them
is original, and the protection features we achieve have not previously appeared
in the literature. We also build a working prototype and measure its performance.
In particular:

We design a new internal architecture for the Pico security token and a
communication protocol between Pico and Picosiblings that, besides meeting all
the security and privacy requirements in the original Pico paper,2 additionally
protect the Pico from cold boot attacks. The hundreds of credentials on the Pico
are never all exposed in plaintext, even within the device: the Pico only unlocks
the credentials in use at the time. This minimizes exposure to any memory
readout attacks, however performed.

We partition the Pico credential database into independently encrypted bins.
Crucially, our protection scheme is such that the additional key storage cost per
Picosibling is constant with respect to the number of bins.

Whether the credentials in the Pico are public keys or symmetric keys [7], we
achieve the above without resorting to public-key primitives, so as to facilitate
energy-efficient implementation and to avoid introducing a failure point under
the threat that quantum computing might one day break today’s public-key
cryptosystems.

We validate our design with a prototype implementation using commercial off-
the-shelf Bluetooth Low Energy parts that demonstrates most of the above fea-
tures. Working Picosiblings had never been implemented in hardware before and
thus our prototype, besides offering enhanced security, is the first concrete instan-
tiation of Picosiblings on which performance measurements can be conducted.

2 The Problem

In the original design for Pico, as summarized above, the credential storage is
encrypted by a master key that in turn is assembled from cryptographic shares
received from the Picosiblings. If adversaries steal a Pico that has been switched
off, they will not be able to recover the master key (which only exists in tempo-
rary storage), nor any of the user’s credentials (stored in permanent storage, but
2 We repeat these requirements in Sect. 2 for the convenience of the reader.
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encrypted under the master key), nor any of the received shares (which need to
be cached in some readable form until at least k of them have been assembled).
The problem, however, is that they might steal a running Pico, with received
shares or decrypted secrets in RAM, and somehow find a way of reading these
shares or secrets while they lie in RAM in plaintext.

A more subtle problem is that, in order to communicate securely with the
Picosiblings, the Pico needs to store, permanently, some Pico-to-Picosiblings
communication keys. Since the master key that unlocks the storage of the Pico
is reconstructed from shares supplied by the Picosiblings, it is clear that the
communication keys to talk to the Picosiblings cannot be encrypted under the
master key, or they would be inaccessible when the Pico boots up. But if they are
stored in plaintext and accessible to attackers who capture the Pico, then such
attackers would be in a position to impersonate the Pico to the Picosiblings and
therefore obtain the shares from them. Stannard and Stajano [8] acknowledge
this threat and invoke some amount of tamper resistance in order to address
it. Clearly, if the Pico’s processor and memory are all enclosed in a tamper-
resistant perimeter, any memory-readout attacks will fall outside the adversary
model. However it is hard for us as independent researchers to constructively
validate the strength of this defense because tamper-resistant system-on-chip
devices are usually only sold to corporations, under NDA and in large volumes.

To protect the security and privacy (including location privacy) of the owner
of the Pico, the original design [2] called for a protocol providing the following
features:

– The Pico can ascertain the presence of any of its Picosiblings in the vicinity.
– The Picosibling responds to its master Pico but not to any other Pico.
– At each ping, the Picosibling sends its k-out-of-n share to the Pico, in a way

that does not reveal it to eavesdroppers.
– An eavesdropper can detect the bidirectional communications between Pico

and Picosiblings but not infer identities or long-term pseudonyms.
– The Pico can detect and ignore old replayed messages.
– The Pico can detect and ignore relay attacks (e.g. with Hancke-Kuhn [9]).

Most of these properties were offered in Stannard and Stajano’s protocol [8];
however, as our current work redefines the communication between Pico and
Picosiblings, these properties must be preserved.

2.1 Attacker Model

– We assume the attacker can listen to some of the communications between Pico
and Picosiblings, but not to those of their initial setup and pairing (“secure
at first use”).

– We assume the attacker can send messages to the Pico and/or Picosiblings,
but not during initial setup and pairing.
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– We assume the attacker can capture and read out the content of a Pico
(whether on or off) and fewer than k Picosiblings, but only after initial setup
and pairing has taken place.3

– As a concession to the considerations above, we assume it is possible for the
defender to use low-cost tamper-proofing facilities of the kind in use in smart-
cards and phone SIMs in order to provide a small amount of permanent storage
that the adversary cannot read, even after acquiring physical control of the
device.4 We assume however that the adversary is otherwise able to read out
the bulk storage (flash) and workspace (RAM) of the captured device.

The attacker wins if she can extract all the credentials in plaintext out of a
captured Pico or if she can use a captured Pico to authenticate as its owner (the
former implies the latter).

3 Our Solution in a Nutshell

Our core idea is to partition the encrypted storage of the Pico into many small
bins, each holding just a few credentials (ideally just one, subject to technical
limitations), and to redesign the secret sharing scheme and the communication
protocol with the Picosiblings so that only one bin gets decrypted at a time.

Instead of one master key for the whole Pico we now have as many master
keys as there are bins. These are, again, reconstructed from shares supplied by
the Picosiblings, but now the Pico must first ask for the shares that are relevant
to a particular bin.

We keep the communication keys with the Picosiblings in tamper-resistant
storage from which the adversary cannot economically extract them. (We could
conceivably also store a “master key to encrypt the whole RAM” in there as well;
however, in the absence of a dedicated cryptoprocessor, the decrypted RAM, or
at least the current block of decrypted RAM, would then have to be written out
in some workspace in order to be used, and we have assumed that the adversary
could access that.)

This means that even an adversary who can read the memory of our Pico
(except for the Picosibling communication keys held in tamper-resistant storage)
can at most acquire the credentials of one of the bins. We therefore protect the
security token from cold boot attacks even when it is not possible (for reasons
of cost, performance or simply because the manufacturers will not sell us any
potentially suitable hardware) to resort to enclosing the whole processor and
RAM into a tamper-resistant enclosure.

3 The number of devices compromised by the attacker can never go down (the attacker
cannot “unlearn” the secrets of a device he previously compromised) and any Picosi-
bling that he ever compromised counts towards the quota that cannot reach k in our
adversary model.

4 Note that such protected storage would be needed by Pico to protect the communi-
cation keys with the Picosiblings regardless of cold boot protection, as acknowledged
by Stannard and Stajano [8].
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The trade-off of our approach is that, whereas previously when the master
key had been reconstructed all the credentials were available instantly, here the
Pico must first decide which bin of credentials to decrypt, then request the shares
of the relevant bin key from the nearby Picosiblings and only then, after a round
trip, will it be able to decrypt the relevant credentials. This introduces latency.
User acceptability of an alternative security mechanism is largely unaffected
by the level of security it offers (which is unobservable by most users anyway)
but is dramatically affected by waiting time. For this reason, besides developing
the crypto, we implemented our system on commercial off-the-shelf Bluetooth
LE development boards in order to measure whether the latency and power
consumption of our approach would be acceptable in a realistic setting.

4 A New Secret Sharing Scheme for Authentication
Tokens

4.1 The Pico Credential Database

A Pico stores a potentially large number N of user credentials, grouped into 256
bins.5 The value 256 is a parameter of the system; it is straightforward to make
it larger, at the cost of somewhat increased implementation complexity. For each
account the user has, there is one (userid, credential) pair. The user may, but
does not have to, use a different userid for every account. The user may also
have several accounts with the same service, obviously with distinct userids.

The original Pico design [2] was vulnerable to a cold boot attack: the entire cre-
dential database was encrypted with a single master key, shared across the Picosi-
blings using Shamir secret sharing [10]. While the Pico was being unlocked, that
key, and so the entire set of credentials, could be exposed. To mitigate this attack,
in our design we encrypt the credentials in each bin with their own bin key.

Doing this in a naive way, however, would require the Picosiblings to each
store shares of hundreds of keys, which is far too much—we want the Picosibling
storage requirements to be very small. To this end, we use a keying polynomial
K(y) of degree r, and set the encryption key for bin β to K(β). The keying poly-
nomial K(y) is shared to the Picosiblings in the manner described in Sect. 4.2.

The choice of the polynomial degree r is important: the Picosiblings will each
have to store r + 1 key-sized entries, so we would like to keep r small. However,
if the Pico is ever actively unlocking more than r bins at the same time, then
at least r + 1 values of K(βi) will be in memory simultaneously. A cold boot
attack at that point will be able to recover the entire polynomial K, and thus
decrypt all of the bins. Note that this is not to say that credentials from at
most r bins can be unlocked at any time in the Pico; once the Pico unlocks a
bin (reconstructs the bin key K(βi) and decrypts the desired credential(s) in
the bin), the Pico will wipe the key (and the shares that constructed it) from

5 If N ≤ 256 then each credential has its own bin and can be decrypted independently
of the others. If N > 256 then some bins may contain more than one credential,
which will be encrypted and decrypted together.
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memory. It is only if the Pico is actively receiving shares of more than r bin keys
at the same time that the fatal problem arises.

We can therefore choose r to be quite small, and simply program the Pico
to never request more than r key reconstructions in parallel. Indeed, r = 1 is
a perfectly reasonable choice, and results in each Picosibling having to store
only two key-sized values—256 bits in total. (Note that r = 0 corresponds to the
original Pico strategy [2] of encrypting every credential with the same key.)

Appendix A presents the schema for the Pico credential database.

4.2 Bivariate Secret Sharing

The secret to be shared across the Picosiblings (say there are n Picosiblings) is
the above keying polynomial, which is an arbitrary degree-r polynomial K(y) =

r∑

j=0

kjy
j .

The possible inputs y for this polynomial are bin identifiers (βi), which are
values in a small finite field F. In our implementation, we choose F = GF (28), so
the number of bins is |F| = 256, and each bin identifier is a single byte. However,
the outputs of the polynomial should be encryption keys, which should of course
be much larger than 8 bits. Therefore, we select the coefficients kj of the keying
polynomial from a vector space V over F; in particular, we choose V = F

16, so
that the elements of V are vectors (arrays) of 16 bytes (128 bits). Thus we write
K(y) ∈ V[y].

In order to share an entire polynomial K(y), rather than a single encryption
key as in the original design, we now have the Pico create a bivariate polynomial
F(x,y) of degree (k − 1, r)—that is, of degree k − 1 in x and of degree r in y:

F (x, y) =
k−1∑

i=0

r∑

j=0

aijx
iyj . For a univariate polynomial, k points yi = f(αi) define

a unique polynomial f of degree k − 1. The equivalent statement for a bivariate
polynomial is that k univariate polynomials fi(y) = F (αi, y) of degree r define
a unique bivariate polynomial F of degree (k − 1, r).

A bivariate secret sharing scheme for n participants (the Picosiblings, in our
case) is defined as follows. Let F be a finite field; V be a vector space over
F; k, r, and n be non-negative integers with 1 ≤ k ≤ n; and α1, . . . , αn be
arbitrary distinct non-zero elements of F. (The αi are the Picosibling identifiers
selected by the Pico. Although our protocol never requires these identifiers to
leave the Pico—even the Picosiblings never learn their own identifiers—they
are not security sensitive, in the sense that their knowledge would not help an
adversary guess any of the shares.) As above, the secret to be shared is the
univariate polynomial K(y) =

∑r
j=0 kjy

j ∈ V[y].
For 0 ≤ j ≤ r, set a0j = kj , and for 1 ≤ i ≤ k − 1 and 0 ≤ j ≤ r,

select aij uniformly at random from V. Then construct the bivariate polynomial
F (x, y) ∈ V[x, y] as above.

For each 1 ≤ i ≤ n, compute the degree-r polynomial fi(y) = F (αi, y) ∈ V[y],
and send fi(y) (the share) to participant i. Note that the amount of storage this
requires at each participant is r + 1 elements of V.
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In a typical secret-sharing protocol, k participants would combine their shares
to recover the shared secret polynomial K(y). Our scenario is slightly different,
however; for a specified bin identifier β, we wish to reconstruct just the single
value K(β) ∈ V, and not the whole polynomial K(y). To accomplish this recon-
struction, we will send the value β to k Picosiblings. Each Picosibling i will reply
with vβi = fi(β) = F (αi, β)—a single value in V. We then perform Lagrange
interpolation on the (αi, vβi) pairs in the usual way to recover F (0, β) = K(β).

We can achieve proactivity [11] by periodically creating n shares of the zero
polynomial, and sending them to the Picosiblings to add to their existing shares
(queueing them on the Pico until the next time each Picosibling is encountered—
this is safe, since the queued value reveals no information about either the old
or new value of the share of the keying polynomial). To remove a Picosibling
from the scheme, the same mechanism is used, except the removed Picosibling
is not sent a share of the zero polynomial. To add a Picosibling to the scheme, k
existing Picosiblings get together to reconstruct F , a new and unused αn+1 �= 0
is picked, and F (αn+1, y) is sent to the new Picosibling.

4.3 Picosibling Protocol

We now develop a protocol based on the above bivariate secret sharing scheme
that allows individual bins in the Pico credential database to be unlocked as
needed.

Enrollment. When a new Picosibling is enrolled to a Pico, the Pico executes
a pairing protocol with the Picosibling in order to establish a random shared
symmetric communication key CKi that will be used to protect all communica-
tion between the Pico and that Picosibling. The pairing mechanism is outside
the scope of the current discussion; see Krause [12] for a description of the
proposed pairing mechanisms for Picos and Picosiblings. At pairing time, the
Pico also selects an arbitrary unused non-zero αi ∈ F to serve as that Picosi-
bling’s Picosibling identifier. The Pico will store each of the communication
keys CKi in its small tamper-proof memory, while the αi are not sensitive, and
need not be protected in this manner. If the tamper-proof memory is extremely
tight, the CKi can each be derived from a single master 128-bit secret CK∗

as CKi = CBC-MACCK∗(αi); in that case, only the 128-bit CK∗ needs to be
stored in tamper-proof memory.

The first batch of at least k Picosiblings will be enrolled at the time the Pico
is initialized. At this time, the Pico will create the keying polynomial K(y), use
it to encrypt the credential database, and send shares of K(y) to the Picosib-
lings as described above. Later, new Picosiblings can be enrolled by having the
Pico communicate with k existing Picosiblings to reconstruct the entirety of the
bivariate polynomial F (x, y) that produces the shares of the keying polynomial
K(y) = F (0, y). The Pico will then send the new Picosibling the coefficients
fi0, fi1 ∈ V of its share of the keying polynomial.
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Query Share. When the user attempts to authenticate to a service, the Pico
will look up the bin identifier β associated with the credential for that service
in its credential database. The Pico will then attempt to construct the bin key
K(β) by communicating with each of k nearby Picosiblings. This communication
will be protected using the above symmetric communication keys CKi.

The Pico sends the value β to each Picosibling; the Picosibling evaluates its
share vβi = fi0+β∗fi1 of the keying polynomial for the specified bin and returns
the value vβi to the Pico.

The Pico (which knows the value of αi associated with each Picosibling) then

uses Lagrange interpolation to find the bin key K(β) =
k∑

i=1

vβi

∏

1≤j≤k
j �=i

αj

αj − αi
.

The bin key is then used to decrypt the desired credential in bin β of the Pico
credential database. Once the credential is accessed, the shares and the recon-
structed K(β) can be deleted from memory.

The bin key reconstruction process is when the Pico is at its most vulnerable:
if it has received some, but not all, of the k shares it has requested, then an
adversary cold booting the Pico at that point could recover some shares of the
bin key, and capturing up to k−1 Picosiblings (which is within the threat model)
would reveal the bin key to the adversary. However, unlike the original Pico
design, only the credentials in that bin are revealed, and not all credentials in
the Pico. One might be tempted to use a technique such as that of TRESOR [13]
to do the entirety of the bin key reconstruction and bin decryption in CPU
registers; being able to do so would add even more security to our proposal. We
could not experiment with this idea because in our prototype the role of the
Pico was played by a BLE-capable Android phone whose non-Intel CPU did not
support the AES-NI instruction set required by TRESOR.

Query Presence. Once the credential has been used, the Pico enters into a con-
tinuous authentication mode with the service. [2] The continuous authentication
uses an ephemeral key and, therefore, no longer needs access to the credential
database. However, if the Pico is out of range of its siblings it automatically
locks and pauses any active sessions.

While the Pico is in continuous authentication mode, it periodically sends
heartbeat requests to its nearby Picosiblings. As long as k Picosiblings respond
to the heartbeat, the Pico will maintain continuous authentication to the service.
These siblings do not necessarily have to be the devices that initially provided
shares to unlock the credential, although it is reasonable for the Pico to try to
contact those devices first.

5 Prototype Implementation

To validate and measure the performance of our cryptographic design, we imple-
mented our scheme on a realistic hardware development platform for wearable
devices.
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To our knowledge, this is the first time that working Picosiblings as ded-
icated devices have been prototyped. Our self-imposed implementation con-
straints attempt to limit the burden imposed on the user in various dimensions
(size, weight, maintenance, obtrusiveness, cost, etc.). More specifically, Picosib-
lings should:

– Be small enough to be attached (unobtrusively) to a range of items that users
already frequently carry (such as wallets, phones, and keys).

– Be able to be integrated into items that users carry or wear.
– Operate for many months without charging or replacing batteries.
– Be cheap to purchase and replace.

Whilst somewhat vague, these non-functional requirements introduce a set
of constraints against which the success of our prototype implementation can be
measured.

The Pico and its Picosiblings are heavily asymmetric, with Picosiblings being
both heavily constrained (in terms of size and therefore battery capacity) and
poorly resourced (in terms of memory, computation power, and user interface
features). Recognizing this, our implementation is optimized around the most
resource-constrained devices—the Picosiblings.

A defining architectural choice for Picosiblings is the wireless communica-
tion protocol. Low-cost, low-power wireless communication is a key enabling
technology for the Internet of Things (IoT). Of the numerous wireless standards
employed in IoT applications, Bluetooth Low Energy (BLE) is the closest match
to Pico’s requirements. BLE is specifically targeted at scenarios exhibiting signif-
icant asymmetry, and has been designed around the performance of off-the-shelf
button-cell batteries. BLE also supports a privacy feature, in which hardware
addresses are encrypted over the air, in order to avoid tracking of devices [14];
this feature also meshes well with our requirements.

5.1 BLE Picosibling Service

In contrast to Bluetooth classic (essentially a cable replacement), BLE is targeted
at applications that transmit only a few octets of data at frequencies ranging
from once a second to every few days, weeks, or months. Such applications typi-
cally send only a limited range of primitive data types; for example, representing
the value of a temperature sensor. In BLE, server state is made available through
sets of characteristics. Characteristics group together state (both readable and
writable) and metadata such as name and access permissions. Readable charac-
teristics expose the historic or current state recorded by the service. For example,
a simple light switch service may expose the state of the light (either on or off).
Writable characteristics are commonly used to command behaviour; for example,
turning a light on or off. Characteristics and associated behaviours are grouped
together into reusable components called services. Clients can interrogate a ser-
vice’s characteristics and associated metadata to determine how to interact with
the service; this can be viewed as a implementation of the well-known Service
Oriented Architecture (SOA) pattern:
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A paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains. It provides a uni-
form means to offer, discover, interact with and use capabilities to produce
desired effects consistent with measurable preconditions and expectations
[15].

The following sections provide an overview of the BLE Picosibling service.6

Enrollment. To enroll a new Picosibling, it must be first awoken and made dis-
coverable by the Pico. In our prototype implementation, unenrolled Picosiblings
are woken up by the user pressing a button. However, as the design matures, such
UI elements will be removed. As with commercial BLE beacon devices, awaken-
ing the device from sleep will be performed by the user tapping the device (which
is detected by a MEMS accelerometer). Once awake, the Picosibling enters the
BLE general advertising mode. Whilst in this mode, the Picosibling can accept a
connection event from the Pico. Once connected, the Picosibling’s exposed state
can be read and written.

With weaknesses in BLE pairing mechanisms well documented [16], enroll-
ment of Picosiblings is based upon the principle of “secure at first use”. To enroll
a new Picosibling, the Pico writes into it its unique communication key CKi and
share fi(y). The Picosibling’s communication key is exposed by the BLE service
as a single 16-byte (128-bit) write-only characteristic. When this characteristic
is written, the Picosibling performs key diversification7 to generate a further
two keys. These keys provide authenticated encryption (encrypt-then-MAC) for
messages sent over the air. Transmitted messages contain counters to prevent
reflection and replay attacks.

As noted in Sect. 4.2, storage for the share requires r + 1 elements of V. In
this case, values in V are vectors (arrays) of 16 elements of F; that is, arbitrary
16-byte (128-bit) values. Thus, the share fi(y) is represented in the BLE profile
as a single 32-byte write-only characteristic.

Query Share/Presence. To query the Picosibling’s share, the Pico writes
the value β (encrypted and MAC’d using the keys established at enrollment)
into a write-only characteristic. This characteristic is 48 bytes in length, with
16 bytes for each of the initialization vector (IV), encrypted payload, and a
message authentication code (MAC). On writing the characteristic, the value is
decrypted and verified using the keys established at enrollment. The decrypted
payload is a binary packed data structure containing a counter (whose value is
even for communication from the Pico to the Picosibling, and odd in the opposite

6 This description is intended to capture the essential features of our implementation
rather than act as a formal specification.

7 The communication key is diversified by performing a CBC-MAC (using the AES
coprocessor) on two fixed values (1 and 2). The Picosibling does not possess a source
of cryptographically strong randomness, and therefore is not trusted to generate
random keys.
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Fig. 1. Overview of the Picosibling protocol implementation (left) and the Picosibling
profile implementation (right) in BLE, as UML sequence diagrams.

direction), a share flag (set to 1 when the Pico is querying the value of a share,
and 0 when it is merely querying presence), and an 8-bit bin identifier β.

Using the bin identifier β, the Picosibling evaluates its share fi(β).8 The
Picosibling share (encrypted and MAC’d) is returned to the Pico by updating a
64-byte read-only characteristic (16 bytes for the IV, 32 bytes for the encrypted
payload, including the share and the incremented counter, and 16 bytes for the
MAC). Changes to this value are automatically reported as a BLE notification
to the Pico.

Querying the Picosibling’s presence is achieved as described above, querying
the Picosibling while setting the share flag to 0.

Figure 1 (left) shows an overview of the BLE Picosibling profile query share
and presence behaviour.

Our prototype Picosiblings have been developed using an off-the-shelf BLE
development kit from Texas Instruments (TI), described in Appendix B.

5.2 BLE Picosibling Profile

A BLE profile specifies the behaviour of the client (in our case, the Pico). Figure 1
(right) gives an overview of the client behaviour when querying the Picosiblings’
shares. Querying presence is largely the same, except that if k responses are

8 As an optimization, computation in GF (28) is performed with two precomputed
256-byte tables. The first provides provides a lookup i �→ gi and the second gi �→ i
for a generator g. Note that although the CC2541 device contains 256 KB of flash,
there is not a free 64KB segment capable of holding a 256 * 256B lookup table
required for precomputing the entire multiplication table in GF (28).
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not received, the Pico deletes its continuous authentication keys and locks up,
preventing the user (or a malicious actor) from using the device to authenticate.

Neither BLE nor any of the other commercial wireless communications stan-
dards attempts to mitigate against relay attacks. As relay attacks against wireless
communications are not (currently) viewed as being widely exploitable, commer-
cial manufacturers find little justification to complicate their implementations
by inclusion of complex distance bounding protocols. We therefore lower our
expectations slightly:

– Pico can detect and ignore relay attacks that route messages over the Internet
(where the introduced latencies are sufficiently large to be detected).

To mitigate this attack the Pico client is responsible for measuring round trip
times, ensuring that communication with the Picosiblings has not been routed
through the Internet.

In common with previous work [17], our Pico client is developed as an
Android mobile phone application, which provides the Quasi-Nothing-To-Carry
property of the evaluation framework defined by Bonneau et al. [18]. Our mini-
mal implementation of Pico supports:

– Requesting Picosibling shares to unlock entries in the credential database (see
Appendix A) and

– querying Picosiblings for user presence.

No other features of Pico are implemented in our prototype client.

6 Performance Evaluation

In contrast to typical BLE applications such as remote sensing, where commu-
nication is infrequent and therefore battery life is measured in months or even
years, Pico continually communicates with its Picosiblings to verify that the user,
once authenticated, remains present. Thus a key objective of prototyping is to
estimate the impact that the protocol of Sect. 4.3 has on the Picosibling’s battery
life. Following the detailed guidance given in TI Application Note AN092 [19],
we have produced estimates of battery lifetime under representative conditions
with the focus on assessing the broad feasibility of our architectural choices.

As a first step, we derive an upper bound estimate on battery lifetime. This
corresponds to an active but unused Picosibling; that is, a Picosibling that the
user is carrying with them but is not one of the k-out-of-n used by Pico when
querying a share or user presence. In contrast to Bluetooth classic, BLE is a con-
nectionless protocol. As a connection-oriented channel is never established, there
is little cost in dropping and re-establishing connections only when there is useful
data to send [20]. When not communicating, Picosiblings enter a low-power sleep
mode.9 Although Picosiblings spend the majority of their time asleep, they peri-
odically wake up, advertising their presence to respond to requests from the Pico
9 As detailed in Kamath and Lindh [19], when sleeping the device enters Power Mode

2 where the current consumed is 1µA.
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Fig. 2. Left: Oscilloscope trace of current consumed by BLE Picosibling during periodic
wakeup, advertising its presence. Right: Oscilloscope trace of the current consumed by
a BLE Picosibling when the Pico is querying its presence. (Note the differences in the
horizontal scale.)

device. The time between wakeups, tw, is a parameter of our system. As men-
tioned in Sect. 3, this time controls how long (after the user initiates a login to
a service) the Pico may have to wait before being able to contact its Picosib-
lings, and thus complete the login. We want this latency to be low, but frequent
wakeups will decrease battery life. We analyze this tradeoff next.

Figure 2 shows an oscilloscope trace of current consumption10 during the
period in which the Picosibling is advertising its presence to the Pico device.
As is evident from Fig. 2, current consumption varies markedly as the Picosi-
bling transitions between different operating states (notably transmitting and
receiving, but also waking up and preparing for sleep).

We measured the average current during the advertising period to be 10.42 mA.
The time between advertising events is tw; the advertising period is 4.02 ms, with
the Picosibling being asleep (and drawing 1µA) the remainder of the time. Thus,
we estimate the total average current of an active but unused Picosibling as

((tw − 4.02ms) ∗ 1µA + (4.02ms ∗ 10.42mA))
tw

= 1µA +
41.9
tw

µAs.

In the original design [2], Picosibling shares are used to construct a single full-
disk encryption (FDE) key. This FDE key protects the Pico credential database
when the user is not present. In contrast, our scheme requires that decryption
keys are reconstructed on demand; that is, when the user authenticates with a
given service. As keys are reconstructed in the flow of the overall authentication
process, response latency is critical. Sasse et al. [21] report that average com-
pletion time for username and password authentication is on the order of ten
seconds.11 In our prototype implementation, we chose tw = 1 s, so that the Pico
10 Measured as the voltage across a 1KΩ resistor.
11 This value was produced by applying the KLM-GOMS methodology (a modelling

approach for predicting how long it takes an expert user to accomplish a task on a
computing system) [22].



50 I. Goldberg et al.

reconstructs the encryption keys within one second under ideal conditions and
within two to three seconds with some radio interference. This process involves
little cognitive effort from the user and is therefore unlikely to be seen as a major
burden. This value of tw yields an average current of about 43µA.

Assuming 55 mAh is the capacity of a CR1616 battery (see Appendix B for
hardware details), that gives an expected battery lifetime of 55 mAh/43µA =
1300 h, or 53 days. Assuming the capacity of a CR2032 battery is 230 mAh, this
results in an expected battery lifetime of 230 mAh/43µA = 5300 h, or 220 days.

Our estimates indicate that an active but unused Picosiblings can operate on
a CR2032 battery for over seven months. A Picosibling interacting with a Pico
will, however, of course have a somewhat lower battery life; we analyze this effect
next. Figure 2 shows the current consumed by the Picosibling when the Pico is
querying its presence. Querying presence requires the client (Pico) to write a
single BLE characteristic, with the response returned via a BLE notification.
However, the captured trace exhibits multiple interactions between the Pico and
the Picosibling. Whilst additional messages (for example for setting up the BLE
connection) are expected, the sheer number of interactions was somewhat con-
fusing. On detailed investigation we determined that the TI BLE stack limits
the MTU of user data to 20 bytes (the minimum allowable in the BLE speci-
fication). Thus, when writing or reading characteristics greater than 20 bytes,
the communication is broken into multple packets. As the TI BLE stack is pro-
vided as a binary library, this parameter could not be changed and the presence
of these additional messages is a limitation of our current implementation. We
could improve on this, and thus save time and energy, but only if we had the
ability to modify the library.

Figure 2 shows that the Picosibling responds to a query in about 680 ms.
This could be significantly reduced, saving energy, if more data could be sent in
each packet. Note that querying a Picosibling’s share requires exactly the same
set of interactions with the Pico, and therefore takes approximately the same
time. The additional processing time required to evaluate the share is tiny in
comparison.

Once a Pico is unlocked, it enters continuous authentication mode. In this
mode, the Pico polls its Picosiblings to ensure that at least k of them remain in
the Pico’s vicinity. How often this polling is done is governed by tc, another para-
meter of our system. Again, a higher tc will increase the battery life. This time,
the tradeoff is not to interactive latency, however, but to how long a Pico will stay
unlocked after leaving the aura of its Picosiblings. (Note that tc must be a multiple
of tw, as communication can only occur when the Picosibling wakes up.)

Similar to the above, we compute the average current for a Picosibling under-
going continuous authentication to be 823

tc
µAs. This is in addition to the above

cost of waking up every tw, so the total average current is 1µA + 41.9
tw

µAs +
823
tc

µA s. (Although, again, the numerator 823 could be significantly smaller with
an improved BLE stack with a higher MTU.)

If we retain tw = 1 s, and set tc = 30 s, then the average current is 70µA. If we
are satisfied with tc = 60 s, the average current is 57µA. With a CR1616 battery,
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the latter figure would give an expected battery lifetime of 960 h, or 40 days; with
a CR2032 battery, the battery life would increase to 4000 h, or over 165 days.
This value is within the performance requirements for Picosiblings outlined in
Sect. 5 (and would be even higher with a better BLE stack).

It should also be noted that, under normal circumstances, Pico automati-
cally logs users out of services when they are away from the terminal used to
access those services. Thus, the Pico does not need to confirm the presence of its
Picosiblings continuously. If a user, for example, is actively logged into a service
only half of the time, the lifetime of a CR2032 battery would be over 190 days
with our current implementation.

Additionally, the Picosiblings could use a MEMS accelerometer to notice that
they are not being worn (when, for example, the user is asleep), and go to sleep
themselves for that entire time, without waking up every tw.

Extending the above example, if the user sleeps 8 h per day, and is actively
logged into a service for half of her waking hours, the lifetime of a CR2032
battery would be over 280 days.

7 Related Work

The most obviously related work is Pico: the relevant papers from Stajano and
his group [2,6–8,17] have been extensively referred to throughout the text.

Laurie and Singer [23] argue that it is impossible to have a system which is
both general purpose and trustworthy. Their requirements for a trusted authen-
tication device (which they refer to as the Neb) closely match those of Pico.
However, in contrast to Pico, the Neb does not attempt to mitigate loss or theft
of the device.

FIDO (Fast IDentity Online), an open industry alliance of vendors, including
a who’s who of major players such as Alibaba, American Express, ARM, Google,
Intel, Mastercard, Microsoft, PayPal, Samsung and Visa, released two sets of
specifications for online authentication: UAF (Universal Authentication Frame-
work) [1] and U2F (Universal Second Factor) [24]. Both involve authenticating
to online services with a device. UAF replaces passwords entirely by allowing
users to authenticate from a FIDO-enabled device, such as a smartphone. It
involves registering the user’s device to online services and selecting a biomet-
ric authentication action, such as swiping a finger, performed on the device.
Pico and FIDO share commonalities in both the problem they are addressing
and their approaches, though it should be noted that Pico predates the FIDO
specifications by over 3 years.

Müller et al.’s TRESOR [13] is closely related to our present work in pur-
pose: it too is a low-cost protection against cold boot attacks. Their approach
is totally different, however: it works by running the encryption fully within
the CPU registers, with creative use of the debug registers as crypto storage.
We considered how to overcome the restrictions on the limited register space
available, and we would have liked to offer defense in depth by combining their
approach with ours, but were not able to do so because TRESOR is specific to
Intel processors supporting the AES-NI instruction set.
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There is prior art on sensing the proximity of a user-worn tag to infer user
presence and lock and unlock devices, from Want et al.’s Active Badge [25],
through Landwehr’s patent [26,27], and to Corner and Noble’s “Zero-interaction
authentication” [4], the first system in which the user-worn token provided the
cryptographic key to unlock the target device. Sharing the key among multiple
devices was first suggested by Desmedt et al. [3]. Peeters defended a PhD [28] on
this topic and, among other contributions, showed how to securely store a share
in a wearable device that does not offer a secure storage hardware primitive [29].
We did not use it because capturing enough wearables was outside our threat
model, but this is another result that might be profitably combined with our
design to provide defense in depth.

Bivariate secret sharing has been used in prior works; for example, by Cachin
et al. [30] and by Tassa and Dyn [31]. In those works, the secret to be shared was a
scalar, and the bivariate polynomial was used to effectively make shares of shares
of the secret. In contrast, in our work, the secret to be shared is itself the uni-
variate keying polynomial K(y). This polynomial is not acting in a secret-sharing
capacity; K(0) is not special—it is merely the bin key for bin number 0.

Proactive secret sharing was introduced by Herzberg et al. [11], and mobile
proactive secret sharing (MPSS) by Schultz et al. [32]. Those schemes require rel-
atively heavyweight commitment and public-key primitives. Our system does not
require such primitives, because our threat model is less general. In particular, in
our setting, the dealer (the entity creating the shares from the secret) is the Pico
itself, which is assumed to be trusted—there is no need for the Picosiblings to
verify that the shares they receive are consistent. Similarly, although we allow for
a mobile adversary that can compromise Picosiblings over time, we assume that
once an adversary compromises a Picosibling, it cannot be “uncompromised”;
that is, the set of compromised Picosiblings is non-decreasing. This allows us to
use relatively simple protocols for Picosibling addition and removal, as we do
not need to deal with cases where the adversary compromises k − 1 Picosiblings
before a removal, and a different k − 1 Picosiblings afterwards. (MPSS, on the
other hand, does go to great effort to deal with such cases.)

8 Conclusions

The remarkable industry momentum gathering behind the FIDO alliance sug-
gests a strong convergence towards replacing passwords with a personal authen-
tication token. If that premise is accepted, the next problem is how to lock and
unlock the token to protect it against unauthorized use. While FIDO UAF [1]
offers static unlocking, Pico [2] adopts the proximity-based threshold scheme
pioneered by Desmedt et al. [3], using it as a platform for continuous authenti-
cation.

We found Pico vulnerable to a cold boot attack: an adversary who captured
a running Pico and was able to read its RAM would be able to steal all the cre-
dentials of the user. We designed and prototyped a low-cost mitigation for this
vulnerability, without resorting to the silver bullet of making the whole security
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token tamper-proof. Bootstrapping all security from a small amount of tamper-
resistant flash memory (which Pico requires anyway, regardless of our contribu-
tion), we protect the user’s credentials against an adversary who may read out
all the flash and RAM of a running token. Our new secret sharing scheme, based
on a bivariate polynomial, allows only a small fraction of the credentials to be
exposed at a time. Our solution scales to a high number of credentials while
imposing only a constant (and small) storage cost on the Picosiblings.

We have prototyped our cryptographic design on COTS hardware and mea-
sured its performance in terms of power consumption and latency. Our Picosibling
prototype lasts for 165–220 days (depending on how frequently the user is authen-
ticated to a service) on a CR2032 button-cell battery, with an observed authenti-
cation latency of 2–3 s. We also show how a simple accelerometer detecting when
the Picosibling is not being worn could increase the battery life by about 50 %.
Fixing gratuitous inefficiencies in the BLE stack would increase it further.

We trust readers will agree that our prototype, though not yet ready for prime
time, soundly demonstrates the viability of our design: if it were made into a
commercial product, battery life and latency could be improved even further.
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comments on the comparative security of our scheme with respect to related work.
Jenkinson and Stajano thank the European Research Council for funding this research
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Appendix A Schema of the Pico Credential Database

Table 1 shows the schema of the Pico credential database. Each row in this
database is indexed by a hash of the service’s identifier H(IDS). Each of the N

Table 1. Schema of the Pico credential database. Depending on the scenario, creden-
tials may be public/private key pairs or symmetric keys shared with the service. Note
that Google and Expedia end up in the same bin, that the user shares the same userid
for Expedia and Amazon, and that the user has two distinct Twitter accounts, which
she distinguishes by the userid.

Hash of service’s Bin identifier Encrypted credential Userid

identifier

H(IDGoogle) 0x1e {credGoogle,jane.doe}K(0x1e) jane.doe

H(IDAmazon) 0x75 {credAmazon,jane257}K(0x75) jane257

H(IDTwitter) 0x57 {credTwitter,@jane}K(0x57) @jane

. . . . . . . . . . . .

H(IDExpedia) 0x1e {credExpedia,jane257}K(0x1e) jane257

H(IDTwitter) 0x32 {credTwitter,@tattoophile}K(0x32) @tattoophile



54 I. Goldberg et al.

rows in the Pico credential database contains a 1-byte bin identifier β1, . . . , βN ,
an encrypted credential, and other information required to identify the account
to the user. Note that if N > 256, then there will be multiple credentials in the
same bin; those credentials will be encrypted with the same key. A cold boot
attack during a bin key reconstruction will reveal all of the credentials in the
bin, and not just the credential being actively requested—but only a fraction of
one percent of all the credentials, and not all of them, as in the previous design.

Appendix B Hardware Prototype Platform

Our prototype Picosiblings have been developed using an off-the-shelf BLE devel-
opment kit from Texas Instruments (TI), shown in Fig. 3. The TI development
board is built around a power-optimised system-on-chip (SoC) solution target-
ing BLE and proprietary 2.4 GHz RF applications [33]. The development kit
includes a hardware debugger and full source code for Operating System (OSAL)
and Hardware Abstraction Layers (HAL). The BLE protocol stack is provided as
a set of binary libraries. Software for the platform is built using the third-party
IAR Embedded Workbench toolchain.

The CC2541’s main features include:

– High-performance low-power 8-bit 8051 processor
– 256 KB flash and 8 KB RAM (retained in all power states)
– Peripherals including watchdog and general-purpose timers, 2x USART, I2C,

and AES coprocessor
– 6 mm x 6 mm QFN40 package

Fig. 3. Texas Instruments CC2541DK-MINI Bluetooth Low Energy development kit.

In volume, the CC2541 SoC is priced at approximately $4. However, assum-
ing price falls in line with trends witnessed with classic Bluetooth, it can be
expected to approach the $2–3 range as the technology becomes ubiquitous.
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Fig. 4. The two standard coin batteries we used. Left: CR1616 (16 mm diameter,
1.6 mm thickness, ≈55 mAh). Right: CR2032 (20 mm diameter, 3.2 mm thickness,
≈230 mAh).

As the CC2541 SoC requires relatively few additional discrete components the
bill of materials for a Picosibling built using this device could comfortably sit in
the $3–4 range. This is, arguably, sufficiently cheap for users not to worry about
purchasing and replacing devices.

Standard button-cell CR1616 and CR2032 batteries (shown in Fig. 4) are
reasonable batteries to use in our scenario, as their size makes them well suited
to wearable electronics and embedding in jewellery.
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