
Constrained PRFs for Unbounded Inputs
with Short Keys

Hamza Abusalah1(B) and Georg Fuchsbauer2

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
habusalah@ist.ac.at

2 Inria, ENS, CNRS and PSL Research University, Paris, France
georg.fuchsbauer@ens.fr

Abstract. A constrained pseudorandom function (CPRF) F : K×X →
Y for a family T of subsets of X is a function where for any key k ∈ K
and set S ∈ T one can efficiently compute a short constrained key kS ,
which allows to evaluate F (k, ·) on all inputs x ∈ S, while the outputs
on all inputs x /∈ S look random even given kS .

Abusalah et al. recently constructed the first constrained PRF for
inputs of arbitrary length whose sets S are decided by Turing machines.
They use their CPRF to build broadcast encryption and the first ID-
based non-interactive key exchange for an unbounded number of users.
Their constrained keys are obfuscated circuits and are therefore large.

In this work we drastically reduce the key size and define a constrained
key for a Turing machine M as a short signature on M . For this, we
introduce a new signature primitive with constrained signing keys that
let one only sign certain messages, while forging a signature on others is
hard even when knowing the coins for key generation.

Keywords: Constrained PRFs · Unbounded inputs

1 Introduction

Constrained PRFs. A pseudorandom function (PRF) [15] is a keyed function
F : K × X → Y for which no efficient adversary, given access to an oracle O(·),
can decide whether O(·) is F(k, ·) with a random key k ∈ K, or whether O(·) is a
uniformly random function X → Y. A PRF F is called constrained [7,10,17] for
a predicate family P if additionally there exists a PPT constraining algorithm
kp ← F.Constr(k, p) that, on input a key k and a predicate p : X → {0, 1}
specifying a subset Sp = {x ∈ X | p(x) = 1} of potentially exponential size,
derives a constrained key kp. The latter allows computing F(k, x) on all x ∈
Sp, while even given keys for p1, . . . , p�, values F(k, x) for x /∈ ⋃

i Spi
still look

random. Note that if all sets Sp are polynomial-size, a simple solution would be

H. Abusalah—Research supported by the European Research Council, ERC starting
grant (259668-PSPC) and ERC consolidator grant (682815 - TOCNeT).

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 445–463, 2016.
DOI: 10.1007/978-3-319-39555-5 24

446 H. Abusalah and G. Fuchsbauer

to set kp := {F(k, x) |x ∈ Sp}, which would achieve the desired security. The
challenge is to have short keys for potentially big sets.

The simplest type of constrained PRFs (CPRF) are puncturable PRFs [18],
where for any input x ∈ {0, 1}∗ one can derive a key kx∗ that allows evaluation
everywhere except on x∗, whose image is pseudorandom even given kx∗ . The
most general CPRF is one that is constrained w.r.t. a Turing-machine (TM)
predicate family M, where M ∈ M defines a subset of inputs of arbitrary
length SM = {x ∈ {0, 1}∗ |M(x) = 1}. In a TM-constrained PRF a constrained
key kM can be derived for any set SM defined by a TM M .

Abusalah et al. (AFP) [2] construct a (selectively secure) TM-constrained
PRF and show how to use it to construct broadcast encryption (BE) [8,11] where
there is no a priori bound on the number of possible recipients and the first
identity-based non-interactive key-exchange scheme [7,12,19] with no a priori
bound on the number of parties that agree on a key.

The main shortcoming of their construction is that a constrained key kM for
a TM M is an obfuscated circuit and is therefore not short but typically huge.
This translates to large user keys in the BE and ID-NIKE schemes built from
their CPRF. In this paper we overcome this and reduce the key size drastically
by defining a constrained key kM for M as simply a signature on M .

TM-Constrained PRFs with Short Keys. The AFP TM-constrained PRF
in [2] is built from puncturable PRFs, succinct non-interactive arguments of
knowledge (SNARKs), which let one prove knowledge of an NP witness via a
short proof, collision-resistant hashing and public-coin differing-input obfusca-
tion (diO) [16]. The latter lets one obfuscate programs, so that one can only
distinguish obfuscations of two equal-size programs if one knows an input on
which those programs’ outputs are different. Moreover, if for two programs it is
hard to find such a differing input, even when knowing the coins used to construct
the programs, then their obfuscations are indistinguishable.

Relying on essentially the same assumptions, we enhance the AFP construc-
tion and obtain short constrained keys. Let us look at their CPRF F first, which
is defined as F(k, x) := PF(k,H(x)), where PF is a puncturable PRF, and H is a
hash function (this way they map unbounded inputs to constant-size inputs for
a puncturable PRF). A constrained key for a TM M is a diO obfuscation of the
circuit PM that on input (h, π) outputs PF(k, h) iff π is a valid SNARK proving
the following statement: (∗) ∃x : h = H(x) ∧ M(x) = 1. So PM only outputs
the PRF value if the evaluator knows such an input x.

We also define our TM-CPRF as F(k, x) := PF(k,H(x)). However at setup,
we publish as a public parameter once and for all a diO-obfuscated circuit P
that on input (h, π,M, σ) outputs PF(k, h) iff π is a valid SNARK for (∗) and
additionally σ is a valid signature on M . A constrained key kM for a TM M is
a signature on M and a party holding kM := σ can generate a SNARK π, as in
the AFP construction, and additionally use M,σ to run P to evaluate F.

The intuition behind the construction is simple: in order to evaluate F on x,
one needs a signature on a machine M with M(x) = 1. Unforgeability of such
signatures should guarantee that without a key for such an M the PRF value of x
should be pseudorandom. However, actually proving this turns out quite tricky.

Constrained PRFs for Unbounded Inputs with Short Keys 447

In the selective security game for CPRFs, the adversary first announces an
input x∗ and can then query keys for sets that do not contain x∗, that is, sets
decided by TMs M with M(x∗) = 0. The adversary then needs to distinguish
the PRF image of x∗ from random. To argue that F(k, x∗) is pseudorandom, we
replace the circuit P by P ∗ for which F looks random on x∗, because it uses a
key that is punctured at H(x∗). Intuitively, since P is obfuscated, an adversary
should not notice the difference. However, to formally prove this we need to
construct a sampler that constructs P and P ∗ and argue that it is hard to find
a differing input (h, π,M, σ) even when given the coins to construct the circuits.

One such differing input would be one containing a signature σ̂ on a machine
M̂ with M̂(x∗) = 1. Since σ̂ is a key for a set containing x∗, P outputs the PRF
value, while P ∗ does not, as its key is punctured. As the adversary only obtains
signatures for M ’s with M(x∗) = 0, σ̂ intuitively is a forgery. But the sampler
that computes P and P ∗ also computed the signature verification key. So how
can it be hard to construct a differing input containing σ̂ for someone knowing
the coins that also define the secret key?

We overcome this seeming contradiction by introducing a new primitive called
functional signatures with obliviously samplable keys (FSwOSK). To produce the
circuits P, P ∗, the sampler needs to answer the adversary’s key queries, that is,
compute signatures on M ’s with M(x∗) = 0. FSwOSK lets the sampler create a
pair of verification and signing keys, of which the latter only allows to sign such
machines M ; and security for FSwOSK guarantees that even when knowing the
coins used to set up the keys, it is hard to create a signature on a message M̂
with M̂(x∗) = 1.

2 Preliminaries

2.1 Constrained and Puncturable PRFs

Definition 1 (Constrained Functions). A family of keyed functions Fλ =
{F : K × X → Y} over a key space K, a domain X and a range Y is efficiently
computable if there exist a probabilistic polynomial-time (PPT) sampler F.Smp
and a deterministic PT evaluator F.Eval as follows:

– k ← F.Smp(1λ): On input a security parameter λ, F.Smp outputs a key k ∈ K.
– y := F.Eval(k, x): On input a key k ∈ K and x ∈ X , F.Eval outputs y = F(k, x).

The family Fλ is constrained w.r.t. a family Sλ of subsets of X , with constrained
key space KS such that KS ∩ K = ∅, if F.Eval accepts inputs from (K ∪ KS) × X
and there exists the following PPT algorithm:

kS ← F.Constr(k, S): On input a key k ∈ K and a (short) description of a set
S ∈ Sλ, F.Constr outputs a constrained key kS ∈ KS such that

F.Eval(kS , x) =
{
F(k, x) ifx ∈ S
⊥ otherwise.

448 H. Abusalah and G. Fuchsbauer

ExpO,b
F, A(λ) :

k ← F.Smp(1λ); C, E := ∅
(x∗, st) ← AO1

1 (1λ)
If x∗ ∈ E, then abort
If b = 1 then y := F.Eval(k, x∗);
else y ← Y
C := C ∪ {x∗}
Return b′ ← AO2

2 (st, y)

Oracle Constr(S) :

If S /∈ Sλ ∨ S ∩ C 	= ∅
Return ⊥

E := E ∪ S
kS ← F.Constr(k, S)
Return kS

Oracle Eval(x) :

If x /∈ X ∨ x ∈ C
Return ⊥

E := E ∪ {x}
y = F.Eval(k, x)
Return y

Fig. 1. The security game for constrained PRFs

Definition 2 (Security of Constrained PRFs). A family of constrained
functions Fλ = {F : K × X → Y} is selectively pseudorandom, if for every
PPT adversary A = (A1,A2) in ExpO,b

F, A, defined in Fig. 1, with O1 = ∅ and
O2 = {Constr(·),Eval(·)}, it holds that

AdvO
F, A(λ) :=

∣
∣ Pr

[
ExpO,0

F, A(λ) = 1
] − Pr

[
ExpO,1

F, A(λ) = 1
]∣
∣ = negl(λ). (1)

Furthermore, Fλ is adaptively pseudorandom if the same holds for O1 = O2 =
{Constr(·),Eval(·)}.
Remark 1. We require ExpO,b

F, A of Fig. 1 to be efficient. Thus when sets are
described by Turing machines then every machine M queried to Constr must
terminate on x∗ within a polynomial number of steps T (as the oracle must
check whether S ∩ {x∗} �= ∅, that is, M(x∗) = 1).

Puncturable PRFs [18]. These are simple constrained PRFs whose domain
is {0, 1}n for some n and whose constrained keys are for sets {{0, 1}n \
{x1, . . . , xm} | x1, . . . , xm ∈ {0, 1}n,m = poly(λ)}, i.e., a punctured key can
evaluate the PRF on all except polynomially many inputs. We only require
selective pseudorandomness. A formal definition is given in the full version [1].

Selectively secure puncturable PRFs are easily obtained from selectively
secure prefix-constrained PRFs, which were constructed from the GGM PRF
[15] in [7,10,17]. In this work we only require selectively secure puncturable
PRFs.

2.2 Public-Coin Differing-Input Obfuscation

Public-coin differing-input (di) obfuscation guarantees that if for pairs of pub-
licly sampled programs it is hard to find an input on which they differ then
their obfuscations are computationally indistinguishable. We follow [16] by first
defining public-coin di samplers that output programs whose obfuscations are
indistinguishable.

Definition 3 (Public-Coin DI Sampler [16]). A non-uniform PPT sampler
Samp is a public-coin differing-input sampler for a family of polynomial-size

Constrained PRFs for Unbounded Inputs with Short Keys 449

circuits Cλ if the output of Samp is in Cλ × Cλ and for every non-uniform PPT
extractor E it holds that

Pr
[

r ← {0, 1}poly(λ)
(C0, C1) := Samp(1λ, r); x ← E(1λ, r)

: C0(x) �= C1(x)
]

= negl(λ). (2)

Definition 4 (Public-Coin diO [16]). A uniform PPT algorithm diO is a
public-coin differing-input obfuscator for a family of poly-size circuits Cλ if:

– For all λ ∈ N, C ∈ Cλ and x: Pr
[
C̃ ← diO(1λ, C) : C(x) = C̃(x)

]
= 1.

– For every public-coin di sampler Samp for a family of poly-size circuits Cλ,
every non-uniform PPT distinguisher D and every λ ∈ N:

∣
∣ Pr

[
r←{0, 1}poly(λ); (C0, C1) :=Samp(1λ, r); C̃ ← diO(1λ, C0) : 1←D(r, C̃)

]−
Pr

[
r←{0, 1}poly(λ); (C0, C1) :=Samp(1λ, r); C̃ ← diO(1λ, C1) : 1←D(r, C̃)

]∣
∣

= negl(λ). (3)

Ishai et al. [16] conjecture that Garg et al.’s [13] iO construction satisfies their
notion of public-coin diO.

2.3 Non-interactive Proof Systems

An efficient non-interactive proof system in the common-random-string (CRS)
model for a language L ∈ NP consists of PPT prover P and verifier V sharing a
uniformly random string crs. On input a statement and a witness, P outputs a
proof; V, on input a statement and a proof outputs 0 or 1. We require proof sys-
tems to be complete (honestly generated proofs verify) and sound (no adversary
can produce a a valid proof of a false statement).

A non-interactive proof system is zero-knowledge if proofs of true statements
reveal nothing beyond their validity. This is formalized by requiring the existence
of a PPT simulator S = (S1,S2) that on input a true statement produces a CRS
and a proof that are computationally indistinguishable from real ones.

Definition 5 (NIZK). A tuple of PPT algorithms NIZK = (G,P,V,S) is a
statistically sound non-interactive zero-knowledge (NIZK) proof system in the
common-random-string model for L ∈ NP with witness relation R if we have:

1. Perfect completeness: For every (η, w) such that R(η, w) = 1, it holds that

Pr
[
crs ← {0, 1}poly(λ) ; π ← P(crs, η, w) : V(crs, η, π) = 1

]
= 1.

2. Statistical soundness:

Pr
[
crs ← {0, 1}poly(λ) : ∃ (η, π) s.t. η /∈ L ∧ V(crs, η, π) = 1

]
= negl(λ).

(4)
3. Computational zero-knowledge: For every (η, w) such that R(η, w) = 1, and

non-uniform PPT adversary A, it holds that
∣
∣ Pr

[
crs ← {0, 1}poly(λ); π ← P(crs, η, w) : A(crs, η, π) = 1

]−
Pr

[
(crs, τ)←S1(1λ, η); π←S2(crs, τ, η) : A(crs, η, π) = 1

]∣
∣ = negl(λ). (5)

450 H. Abusalah and G. Fuchsbauer

A succinct non-interactive argument of knowledge (SNARK) is a computa-
tionally sound NI proof-of-knowledge system with universally succinct proofs. A
proof for a statement η is succinct if its length and verification time are bounded
by a fixed polynomial in the statement length |η|. We define SNARK systems in
the common-random-string model following Bitansky et al. [5,6,16].

Definition 6 (The Universal Relation RU [3]). The universal relation RU
is the set of instance-witness pairs of the form ((M,m, t), w) where M is a TM
accepting an input-witness pair (m,w) within t steps. In particular |w| ≤ t.

Definition 7 (SNARK). A pair of PPT algorithms (P,V), where V is deter-
ministic, is a succinct non-interactive argument of knowledge (SNARK) in the
common-random-string model for a language L with witness relation R ⊆ RU if
there exist polynomials p, �, q independent of R such that the following hold:

1. Completeness: For every (η = (M,m, t), w) ∈ R, it holds that

Pr
[
crs ← {0, 1}poly(λ); π ← P(crs, η, w) : V(crs, η, π) = 1

]
= 1.

Moreover, P runs in time q(λ, |η|, t).
2. (Adaptive) Soundness: For every PPT adversary A:

Pr
[
crs ← {0, 1}poly(λ); (η, π) ← A(crs) : η /∈ L ∧ V(crs, η, π) = 1

]
= negl(λ).

3. (Adaptive) Argument of knowledge: For every PPT adversary A there exists
a PPT extractor EA such that

Pr
[
crs ← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π) := A(crs; r); w ← EA(1λ, crs, r)

:
(η, w) /∈ R ∧
V(crs, η, π) = 1

]

= negl(λ).

4. Succinctness: For all (crs, η, w) ∈ {0, 1}poly(λ) × R, the length of an honestly
generated proof π ← P(crs, η, w) is bounded by �(λ, log t) and the running time
of V(crs, η, π) is bounded by p(λ + |η|) = p(λ + |M | + |m| + log t).

Bitansky et al. [5] construct SNARKs for Rc ⊂ RU where t = |m|c and c is
a constant, based on knowledge-of-exponent assumptions [6] and extractable
collision-resistant hash functions (ECRHF) [5]. These are both non-falsifiable
assumptions, but Gentry and Wichs [14] prove that SNARKs cannot be built
from falsifiable assumptions via black-box reductions. Relying on exponentially
hard one-way functions and ECRHF, [5] construct SNARKs for RU .

2.4 Commitment Schemes

A commitment scheme CS for a message space M �� ⊥ consists of the following
PPT algorithms: On input 1λ, Setup outputs a commitment key ck; on input
ck and a message m ∈ M, Com outputs a commitment c and an opening d;
on input ck, c and d, Open opens c to a message m or ⊥. Besides correctness
(commitments open to the committed message), we require computational hiding
(no PPT adversary can distinguish commitments to messages of his choice) and
statistical binding (no unbounded adversary can find some c and two openings
d, d′, which open c to two different messages, except with negligible probability
over the choice of ck). A formal definition is given in the full version [1].

Constrained PRFs for Unbounded Inputs with Short Keys 451

2.5 Collision-Resistant Hash Functions

A family of hash functions is collision-resistant (CR) if for a uniformly sampled
function H it is hard to find two values that map to the same image under H.
It is public-coin CR if this is hard even when given the coins used to sample H.
A formal definition is given in the full version [1].

2.6 Functional Signatures

Functional signatures were introduced by Boyle et al. [10]. They generalize the
concept of digital signatures by letting the holder of a secret key sk derive keys
skf for functions f .1 Such a key skf enables signing (only) messages in the range
of f : running Sign(f, skf , w) produces a signature on f(w).

Definition 8 (Functional Signatures [10]). A functional signature scheme
for a message space M �� ⊥ and a function family Fλ = {f : Df → Rf}λ with
Rf ⊆ M is a tuple of PPT algorithms FS = (Setup,KeyGen,Sign,Verify) where:

– (msk,mvk) ← Setup(1λ): On input a security parameter 1λ, Setup outputs a
master signing and verification key.

– skf ← KeyGen(msk, f): On input msk and a function f ∈ Fλ, KeyGen outputs
a signing key skf .

– (f(w), σ) ← Sign(f, skf , w): On input f ∈ Fλ, a signing key skf for f , and
w ∈ Df , Sign outputs a signature on f(w) ∈ M.

– b = Verify(mvk,m, σ): On input a master verification key mvk, a message
m ∈ M, and signature σ, Verify outputs b ∈ {0, 1}.

A functional signature is correct if correctly generated signatures verify, and is
secure if it satisfies unforgeability, function privacy, and succinctness.

Unforgeability states that even given oracles that generate signatures and
functional signing keys, it must be hard to produce a valid signature on a message
that was not submitted to the signing oracle and that cannot be signed using
a key obtained from the key oracle. Function privacy states that signatures
neither reveal the function associated to the secret key nor the used preimage
w. Succinctness requires that the size of a signature is independent of |w| and
|f |. A formal security definition is given in the full version [1].

Boyle et al. [10] construct functional signatures based on zero-knowledge
SNARKs.

3 Functional Signatures with Obliviously Samplable Keys

We introduce and construct a new primitive we call functional signatures with
obliviously samplable keys (FSwOSK), which will be central to achieving short

1 In [10], f is given as a circuit, but in their construction of functional encryption,
Boyle et al. [9] allow f to be a Turing machine. In this work we adopt the latter
definition.

452 H. Abusalah and G. Fuchsbauer

Expind-b
S,A (λ)

(st, m) ← A1(1
λ)

If b = 0

(vk, sk)←KeyGen(1λ); σ←Sign(sk, m)

Else (vk, σ) ← OSmp(1λ, m)
Return b′ ← A2(st, vk, σ)

Fig. 2. The oblivious-indist. game

Expobl-uf
S,A (λ)

(st, m) ← A1(1
λ)

r ← {0, 1}poly(λ); (vk, σ) ← OSmp(1λ, m; r)
(m∗, σ∗) ← A2(st, r)
Return 1 iff m∗ 	= m

∧ Verify(vk, m∗, σ∗) = 1

Fig. 3. The oblivious-unforgeability game

keys for CPRF with unbounded inputs. We first extend a (standard) signature
scheme by an extra functionality that given a message m allows one to sample
a verification key together with a signature on m in an oblivious way. This
means that, while the key and the signature look like regularly generated ones,
it is hard to forge a signature on a different message under this key, even when
given the coins used to sample the key/signature pair. We call this primitive
signatures with obliviously samplable signatures (SwOSS) and construct it from
one-way functions and NIZK by adapting a signature scheme due to Bellare
and Goldwasser [4]. We then combine this scheme with SNARKs in order to
construct our FSwOSK following the construction of a (standard) functional
signature scheme of Boyle et al. [10].

3.1 Signature Schemes with Obliviously Samplable Signatures

Definition 9 (SwOSS). Let S = (KeyGen,Sign,Verify) be a (standard) sig-
nature scheme that is existentially unforgeable under chosen-message attacks
(EUF-CMA) with message space M �� ⊥. We say S has obliviously samplable
signatures if there exists a PPT algorithm OSmp such that:

– (vk, σ) ← OSmp(1λ,m): On input security parameter 1λ and a message m ∈
M, OSmp outputs a verification key vk and a signature σ on m.

SwOSS S is secure if it satisfies (with experiments defined in Figs. 2 and 3):

1. Indistinguishability: For every PPT algorithm A = (A1,A2) in Expind-b
S,A (λ)

∣
∣ Pr

[
Exp ind-0

S,A (λ) = 1
] − Pr

[
Exp ind-1

S,A (λ) = 1
]∣
∣ = negl(λ). (6)

2. Oblivious unforgeability: For every PPT A = (A1,A2) in Expobl-uf
S,A (λ)

Pr
[
Expobl-uf

S,A (λ) = 1
]

= negl(λ). (7)

Construction 1 (SwOSS). Let Fλ = {F : K × {0, 1}n → Y} be a family
of PRFs, CS = (Setup,Com,Open) a perfectly binding commitment scheme for
message space M, and NIZK = (G,P,V,S a statistically sound NIZK scheme for

Lη :=
{

(ck, c0, c1, y,m)
∣
∣
∣
∣
∃ (k, r) :

(
c0 = CS.Com1(ck, k; r) ∧ y = F(k,m)

)

∨ c1 = CS.Com1(ck,m; r)

}

(8)

Constrained PRFs for Unbounded Inputs with Short Keys 453

(where Com1 denotes the first output of Com). Let � ∈ M be such that � /∈ K
and � /∈ {0, 1}n. Our signatures-with-obliviously-samplable-signatures scheme
OS = (KeyGen,Sign,Verify,OSmp) is defined as follows:

(sk, vk) ← KeyGen(1λ) : On input a security parameter 1λ, compute

– k ← F.Smp(1λ); crs ← {0, 1}poly(λ); ck ← CS.Setup(1λ);
– (c0, d0) := CS.Com(ck, k); (c1, d1) := CS.Com(ck,�);

return sk := (k, r0), vk := (crs, ck, c0, c1)

σ ← Sign(sk,m) : On input sk = (k, r0) and m ∈ M compute

– y := F(k,m);
– π ← NIZK.P(crs, η := (ck, c0, c1, y,m), (k, r0)), where η ∈ Lη from (8);

return σ := (y, π).

b := Verify(vk,m, σ) : On input vk = (crs, ck, c0, c1), m and σ = (y, π),

return b := NIZK.V(crs, η = (ck, c0, c1, y,m), π).

(vk, σ) ← OSmp(1λ,m) : On input 1λ and m ∈ M , compute

– r := r0‖r1‖ry‖rSetup‖crs‖rP ← {0, 1}poly(λ),
– y ←ry

Y // ry is used to sample y from Y,
– ck := CS.Setup(1λ; rSetup),
– (c0, d0) := CS.Com(ck,�; r0); (c1, d1) := CS.Com(ck,m; r1),
– π := NIZK.P(crs, η := (ck, c0, c1, y,m), w := (m, r1); rP);

return vk := (crs, ck, c0, c1) and σ := (y, π).

Theorem 1. Scheme OS in Construction 1 is an EUF-CMA-secure signature
scheme with obliviously samplable signatures.

Proof. We need to show that (KeyGen,Sign,Verify) is (standard) EUF-CMA-
secure and prove indistinguishability (6) and oblivious unforgeability (7). The
proof of EUF-CMA is analogous to that of Bellare and Goldwasser’s [4] (noting
that the second clause in (8) is always false) and is therefore omitted.

Indistinguishability: Let A = (A1,A2) be a PPT adversary that non-negligibly
distinguishes honestly generated (Expind-0

OS,A(λ)) and obliviously sampled verifi-
cation key-signature pairs (Expind-1

OS,A(λ)). Our proof will be by game hopping
and we define a series of games Exp(0) := Expind-0

OS,A(λ), Exp(1), . . . ,Exp(5) :=
Expind-1

OS,A(λ) and show that for c = 0, . . . , 4, Exp(c) and Exp(c+1) are computa-
tionally indistinguishable. In Exp(0) the adversary obtains vk output by KeyGen
and σ output by Sign as defined in Construction 1.

454 H. Abusalah and G. Fuchsbauer

Expind-b
FS,A (λ)

(st, f) ← A1(1
λ)

If b = 0

(msk,mvk) ← KeyGen(1λ)
skf ← KeyGen(msk, f)

Else (mvk, skf) ← OSmp(1λ, f)
Return b′ ← A2(st,mvk, skf)

Fig. 4. The oblivious-indist. game

Expobl-uf
FS,A (λ)

(st, f) ← A1(1
λ)

r ← {0, 1}poly(λ)

(mvk, skf) ← OSmp(1λ, f ; r)
(m∗, σ∗) ← A2(st, r)
Return 1 iff m∗ /∈ Rf

∧ Verify(mvk, m∗, σ∗) = 1

Fig. 5. The oblivious-unforgeability game

Exp(1) differs from Exp(0) in that the CRS for the NIZK and the proof π are
simulated. By zero knowledge of NIZK the game is indistinguishable from Exp(0).
Exp(2) differs from Exp(1) in that c0 commits to � rather than a PRF key k. By
computational hiding of CS, this is indistinguishable for PPT adversaries (note
that r0 is not used elsewhere in the game).
Exp(3) differs from Exp(2) in that c1 commits to m rather than �. Again, by
hiding of CS (and since r1 is not used anywhere), this is indistinguishable.
Exp(4) differs from Exp(3) in that y ← Y is random rather than y := F(k,m).
Pseudorandomness of F guarantees this change is indistinguishable to PPT
adversaries (note that k is not used anywhere else in the game).
Exp(5) differs from Exp(4) in that the CRS crs for the NIZK is chosen at random
(rather than simulated) and π is computed by NIZK.P. Again, this is indistin-
guishable by zero knowledge of NIZK.

Oblivious unforgeability. This follows from soundness of NIZK and the binding
property of CS. OSmp sets c0 to a commitment of � and c1 to a commitment
of m. If A manages to output a signature (y∗, π∗) that is valid on message
m∗ �= m, i.e., NIZK.V(crs, (ck, c0, c1, y∗,m∗), π∗) = 1, then by soundness of NIZK,
(ck, c0, c1, y∗,m∗) ∈ Lη (8), meaning that either c0 is a commitment to a valid
PRF key or c1 is a commitment to m∗. Either case would contradict the binding
property of the commitment scheme.

This proves Theorem 1. A formal proof is given in the full version [1].

3.2 Functional Signature Schemes with Obliviously Samplable Keys

Definition 10. (FSwOSK). Let FS = (Setup,KeyGen,Sign,Verify) be a func-
tional signature scheme (Definition 8). FS has obliviously samplable keys if there
exists a PPT algorithm:

(mvk, skf) ← OSmp(1λ, f): On input 1λ and a function f ∈ Fλ, OSmp outputs
a master verification key mvk and a functional signing key skf for f .

FSwOSK FS is secure if it is a secure functional signature scheme that addition-
ally satisfies the following:

Constrained PRFs for Unbounded Inputs with Short Keys 455

1. Indistinguishability: For every PPT A = (A1,A2) in Exp ind-b
FS,A (λ) (Fig. 4):

|Pr
[
Exp ind-0

FS,A (λ) = 1
] − Pr

[
Exp ind-1

FS,A (λ) = 1
]| = negl(λ).

2. Oblivious unforgeability: For every PPT A = (A1,A2) in Expobl-uf
FS,A (λ)

(Fig. 5):
Pr

[
Expobl-uf

FS,A (λ) = 1
]

= negl(λ).

We next show that if in the construction of functional signatures of Boyle
et al. [10] we replace the signature scheme by a SwOSS (Definition 9) then
we obtain a FSwOSK. As a first step Boyle et al. [10, Theorem 3.3] construct
FS′ = (Setup′,KeyGen′,Sign′,Verify′), which does not satisfy function privacy
nor succinctness, but which is unforgeable if the underlying signature scheme
is EUF-CMA. Relying on adaptive zero-knowledge SNARKs for NP, they then
transform FS′ into a secure FS scheme [10, Theorem 3.4].

We first enhance their scheme FS′ by an oblivious sampler OSmp′ so it also
satisfies indistinguishability and oblivious unforgeability, as defined in Defini-
tion 10.

Construction 2. Let OS = (KeyGen,Sign,Verify,OSmp) be a secure SwOSS
and SS an EUF-CMA-secure signature scheme. For a message space M �� ⊥
and a function family Fλ = {f : Df → Rf ⊆ M}λ, we construct FS′ as follows:

(msk,mvk) ← FS′.Setup(1λ) : Return(msk,mvk) ← OS.KeyGen(1λ).
skf ← FS′.KeyGen(msk, f) : On input msk and f ∈ Fλ, compute (sk, vk) ←

SS.KeyGen(1λ), σf‖vk ← OS.Sign(msk, f‖vk) ; return skf := (f‖vk, σf‖vk, sk).
(f(w), σ) ← FS′.Sign(f, skf , w) : On input f ∈ Fλ, key skf = (f‖vk, σf‖vk, sk) for

f and w ∈ Df , compute σw ← SS.Sign(sk, w); return σ := (f‖vk, σf‖vk, w, σw).
b = FS′.Verify(mvk,m, σ) : Given mvk, m ∈ {0, 1}∗, σ = (f‖vk, σf‖vk, w, σw);

return OS.Verify(mvk, f‖vk, σf‖vk) = 1 = SS.Verify(vk, w, σw) ∧ m = f(w).
(mvk, skf) ← FS′.OSmp(1λ, f) : Given 1λ and f ∈ Fλ, pick rG, rO ← {0, 1}poly(λ),

set (sk, vk) := SS.KeyGen(1λ; rG), (mvk, σf‖vk) := OS.OSmp(1λ, f‖vk; rO);
return mvk and skf := (f‖vk, σf‖vk, sk).

Theorem 2. FS′ of Construction 2 is a FSwOSK that satisfies correctness,
unforgeability, indistinguishability and oblivious unforgeability (but neither func-
tion privacy nor succinctness).

Theorem 2 is formally proved in the full version [1] and we give some proof
intuition here. Theorem 3.3 in [10] proves that (FS′.Setup,FS′.KeyGen,FS′.Sign,
FS′.Verify) is a functional signature scheme that is correct and unforgeable. What
remains then is to show that FS.OSmp′ satisfies both indistinguishability (Item
1. in Definition 10) and oblivious unforgeability (Item 2.).

Note that a FSwOSK master verification key is a SwOSS verification key,
and a FswOSK functional signing key is a SwOSS signature; thus an obliviously
samplable pair for FSwOSK translates to a pair for SwOSS; indistinguishability

456 H. Abusalah and G. Fuchsbauer

for FSwOSK reduces thus to indistinguishability for SwOSS. Similarly, oblivious
unforgeability for FSwOSK reduces to oblivious unforgeability of SwOSS (note
that in this game the adversary cannot ask for functional signatures, so EUF-
CMA of the regular signature scheme is not needed).

Next we show that the transformation of [10] applies to our scheme FS′, and
therefore the transformed FS is a FSwOSK satisfying Definition 10.

Theorem 3. Assuming an adaptive zero-knowledge SNARK system for NP, FS′

from Construction 2 can be transformed into a secure FSwOSK scheme FS.

Proof (Proof sketch). The construction and proof of the theorem are exactly the
same as those of Theorem 3.4 of [10], and therefore we only give an intuitive
argument and refer the reader to [10] for more details.

First observe that in FS′ a signature σ := (f‖vk, σf‖vk, w, σw) on f(w) con-
tains both f and w in the clear and is therefore neither function-private nor
succinct. In the new scheme FS a signature on m is instead a zero-knowledge
SNARK proof π of knowledge of the following: f , vk, a signature σf‖vk on f‖vk
that verifies under mvk, an element w such that f(w) = m, and a signature
σ on w, valid under vk. Now function privacy reduces to zero knowledge and
succinctness of signatures reduces to succinctness of the underlying SNARK.

4 Constrained PRFs for Unbounded Inputs

In this section we construct a family of constrained PRFs for unbounded inputs
such that a constrained key is simply a (functional) signature on the constraining
TM M . As a warm-up, we review the construction of [2] where a constrained
key is a diO obfuscation of a circuit that depends on the size of the constraining
TM M . In particular, the circuit verifies a SNARK for the following relation.

Definition 11 (Rlegit). We define the relation Rlegit ⊂ RU (with RU from Def-
inition 6) to be the set of instance-witness pairs (((H,M), h, t), x) such that M
and H are descriptions of a TM and a hash function, M(x) = 1 and H(x) = h
within t steps. We let Llegit be the language corresponding to Rlegit. For nota-
tional convenience, abusing notation, we write ((H,M, h), x) ∈ Rlegit to mean
(((H,M), h, t), x) ∈ Rlegit while implicitly setting t = 2λ.

Remark 2. Let t = 2λ in the definition of Rlegit; then by succinctness of
SNARKs (Definition 7), the length of a SNARK proof is bounded by �(λ) and
its verification time is bounded by p(λ + |M | + |H| + |h|), where p, � are a priori
fixed polynomials that do not depend on Rlegit.

Construction 3 [2]. Let PFλ = {PF : K × {0, 1}n → Y} be a selectively secure
puncturable PRF, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a family of public-coin CR
hash functions, diO a public-coin diO obfuscator for a family of polynomial-size
circuits Pλ, and SNARK a SNARK system for Rlegit (Definition 11). A family
of selectively secure PRFs Fλ = {F : K × {0, 1}∗ → Y} constrained w.r.t. to any
polynomial-size family of TMs Mλ is defined as follows:

Constrained PRFs for Unbounded Inputs with Short Keys 457

K ← F.Smp(1λ) : Sample k ← PF.Smp(1λ), H ← H.Smp(1λ), crs ← {0, 1}poly(λ);
return K :=(k,H, crs).

kM ← F.Constr(K,M) : On input K = (k,H, crs) and M ∈ Mλ, define

PM,H,crs,k(h, π) :=
{
PF.Eval(k, h) if SNARK.V(crs, (H,M, h), π) = 1
⊥ otherwise

(9)

compute P̃ ← diO(1λ, PM,H,crs,k) and output kM := (M, P̃ ,H, crs).
y := F.Eval(κ, x) : On input κ ∈ K ∪ KM and x ∈ {0, 1}∗, do the following:

– If κ ∈ K, κ = (k,H, crs): return PF.Eval(k,H(x)).
– If κ = (M, P̃ ,H, crs) ∈ KM: if M(x) = 1, let h := H(x) (thus (H,M, h) ∈

Llegit), π ← SNARK.P(crs, (H,M, h), x) and return y := P̃ (h, π).

The drawback of Construction 3 is that a constrained key for a TM M is a
diO-obfuscated circuit and is therefore large. In our construction below we use
FSwOSK to define a constrained key kM simply as a functional signature on M .
As in Construction 3, our constrained PRF F is defined as F(k, x) = PF(k,H(x)),
where PF is a puncturable PRF and H is a collision-resistant hash function. To
enable evaluating F given a constrained key kM , in the setup we output as a
public parameter a diO-obfuscation of a circuit P (defined in (10) below) that
on input (M,h, π, σ) outputs PF(k, h) which is equal to F(k, x) if π is a valid
SNARK proving knowledge of some x such that M(x) = 1 and h = H(x), and
moreover σ is a valid functional signature on M ; and outputs ⊥ otherwise.

Construction 4 (TM CPRF with short keys). Let PFλ = {PF : K ×
{0, 1}n → Y} be a selectively secure puncturable PRF , Hλ = {H : {0, 1}∗ →
{0, 1}n}λ a family of public-coin collision-resistant hash functions, FS =
(Setup,KeyGen,Sign,Verify,OSmp) a FSwOSK scheme, diO a public-coin differ-
ing-input obfuscator for a family of poly-size circuits Pλ, and SNARK a SNARK
system in the common-random-string model for Rlegit (cf. Definition 11).

We construct a family of PRFs Fλ = {F : K×{0, 1}∗ → Y} constrained w.r.t.
to a polynomial-size family of Turing machines Mλ as follows:

K ← F.Smp(1λ) :

– H ← H.Smp(1λ).
– crs ← {0, 1}poly(λ).
– (msk,mvk) ← FS.Setup(1λ).
– skfI

← FS.KeyGen(msk, fI) where fI(M) := M .
– k ← PF.Smp(1λ).
– P̃ ← diO(1λ, P) where P = PH,crs,mvk,k ∈ Pλ is defined as:

P (M,h, π, σ) :=

⎧
⎨

⎩

PF.Eval(k, h) if SNARK.V
(
crs, (H,M, h), π

)
= 1

∧ FS.Verify(mvk,M, σ) = 1
⊥ otherwise

(10)

458 H. Abusalah and G. Fuchsbauer

– Set pp = (H, crs,mvk, P̃) and return K := (k, skfI
,pp).

kM ← F.Constr(K,M) : On input K = (k, skfI
,pp) and M ∈ Mλ, compute

(M,σ) ← FS.Sign(I, skfI
,M) and return kM := (M,σ,pp).

y := F.Eval(κ, x) : On input κ ∈ K ∪ KM and x ∈ {0, 1}∗ :

– If κ ∈ K, κ = (k, skfI
,pp = (H, crs,mvk, P̃)): set y := PF.Eval(k,H(x)).

– If κ ∈ KM, κ = (M,σ, (H, crs,mvk, P̃)): if M(x) = 1, set h := H(x) (thus
(H,M, h) ∈ Llegit), compute π ← SNARK.P(crs, (H,M, h), x), and return y :=
P̃ (M,h, π, σ).

Remark 3. The public parameters pp are computed once and for all. As the
model for CPRFs defines no public parameters, we formally include them in kM .
Note that Pλ is a circuit family with input length |M | + n + |π| + |σ| where |π|
is upper bounded by �(λ) even for an exponentially long x (cf. Remark 2).

Let us now argue why we need functional signatures with obliviously sam-
plable keys in order to prove our construction secure.

If we could replace the PRF key k by a punctured one k∗ := kH(x∗) then
F(k, x∗) would look random, as required for selective security of F. The obfus-
cated circuit P would thus use k∗ instead of k. But obfuscations of Pk and Pk∗

are only indistinguishable if it is hard to find an input on which they differ. And,
since we use public-coin diO, this should be even hard when given all coins used
to produce Pk and Pk∗ .

In the security experiment the adversary can query keys for machines M
with M(x∗) = 0 and when fed to Pk and Pk∗ , both output the same. However,
if the adversary manages to forge a signature on some M̂ with M̂(x∗) = 1 then
Pk outputs F(k, x∗), but Pk∗ , using a punctured key, outputs ⊥.

The tricky part is to break some unforgeability notion when this happens. The
differing-input sampler that computes Pk and Pk∗ must simulate the experiment
for A and thus create signatures to answer key queries. This is why we need
functional signatures, as then the sampler can use a signing key skf∗ , which
only allows signing of machines with M(x∗) = 0, to answer key queries. FS
unforgeability guarantees that even given such a key it is hard to compute a
signature on some M̂ with M̂(x∗) = 1.

The next problem is that finding a differing input (and thus a forgery on M̂)
should be hard even when given all coins, so in particular the coins to create the
signature verification key mvk contained in Pk and Pk∗ ; thus it would be easy
to “forge a signature”. This is why we need FSwOSK, as they allow to sample
a verification key together with skf∗ and even given the coins, forgeries should
be hard.

Theorem 4. Fλ of Construction 4 is a selectively secure family of constrained
PRFs with input space {0, 1}∗ for which constrained keys can be derived for any
set that can be decided by a polynomial-size Turing machine.

Constrained PRFs for Unbounded Inputs with Short Keys 459

Exp
b,(c)
F, A(λ) // c ∈ {0, 1, 2, 3, 4}

(x∗, st) ← A1(1
λ)

H ← H.Smp(1λ); crs ← {0, 1}poly(λ)

If c ≤ 1

(msk,mvk) ← FS.Setup(1λ)

Define fI and fx∗ as in (11) and pad
them to the same length.

skfI ← FS.KeyGen(msk, fI)

skfx∗ ← FS.KeyGen(msk, fx∗)

Else

(mvk, skfx∗) ← FS.OSmp(1λ, fx∗)

k ← PF.Smp(1λ)
kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)})

If c ≤ 2 then

P := PH,crs,mvk,k as defined in (10)
Else

P := PH,crs,mvk,kh∗ as defined in (10)
˜P ← diO(1λ, P)

pp := (H, crs,mvk, ˜P)

If b = 1, y∗ := PF.Eval(k, H(x∗)), else y∗ ← Y
b′ ← AConstr(·),Eval(·)

2 (st, y∗); return b′

Oracle Constr(M)

If M /∈ Mλ ∨ M(x∗) = 1
Return ⊥

If c = 0

(M, σ) ← FS.Sign(fI , skfI , M)
Else

(M, σ) ← FS.Sign(fx∗ , skfx∗ , M)
Return kM := (M, σ,pp)

Oracle Eval(x)

If x = x∗

Return ⊥
If c ≤ 3

y := PF.Eval(k, H(x))
Else

If H(x) = H(x∗), abort
Else y := PF.Eval(kh∗ , H(x))

Return y

Fig. 6. Hybrids used in the proof of Theorem 4

Proof. Let A be a PPT adversary for the game Exp(∅,{Constr,Eval}),b
F, A (λ), as

defined in Fig. 6, which we abbreviate as Expb. We need to show that Exp0

and Exp1 are indistinguishable. Our proof will be by game hopping and we
define a series of hybrid games Expb,(0) := Expb, Expb,(1),Expb,(2), Expb,(3),
Expb,(4) and show that for b = 0, 1 and c = 0, 1, 2, 3 the games Expb,(c) and
Expb,(c+1) are indistinguishable. Finally we show that Exp0,(4) and Exp1,(4)

are also indistinguishable, which concludes the proof. All games are defined in
Fig. 6, using the following definitions:

fI : M �→ M, fx∗ : M �→
{

M if M(x∗) = 0
⊥ otherwise (11)

Expb,(0) is the original game Expb,(∅,{Constr,Eval})
F, A (λ) for Construction 4. (Note

that we padded fI but, by succinctness, functional signatures (returned by
Constr) are independent of the length of f .)

Expb,(1) differs from Expb,(0) by replacing the signing key skfI
with skfx∗ , which

only allows to sign machines M with M(x∗) = 0.
Expb,(2) differs from Expb,(1) by replacing the verification/signing key pair

(mvk, skfx∗) with an obliviously sampled one.

460 H. Abusalah and G. Fuchsbauer

Expb,(3) differs from Expb,(2) by replacing the full key of the puncturable PRF
PF with one that is punctured at H(x∗) in the definition of P .

Expb,(4) differs from Expb,(3) by answering Eval queries using the punctured
key kh∗ and aborting whenever the adversary queries Eval on a value that
collides with x∗ under H.

Intuitively, Expb,(0)(λ) and Expb,(1)(λ) are computationally indistinguishable
as the only difference between them is the use of the signing key skfI

and skfx∗ ,
respectively, in answering constraining queries. The Constr oracle only com-
putes signatures on TMs M with M(x∗) = 0. Therefore, fx∗ coincides with fI

on all such legitimate queries. By function privacy of FS, signatures generated
with fx∗ and fI are computationally indistinguishable.

Proposition 1. Expb,(0) and Expb,(1) are computationally indistinguishable
for b = 0, 1 if FS is a functional signature scheme satisfying function privacy
and succinctness.

The only difference between Expb,(1) and Expb,(2) is in how mvk and skfx∗

are computed. In Expb,(1) the keys mvk (used to define P) and skfx∗ (used
to answer Constr queries) are generated by FS.Setup and FS.KeyGen, resp.,
whereas in Expb,(2) they are obliviously sampled together. Indistinguishability
of honestly generated and obliviously sampled pairs (Definition 10) of verifica-
tion/signing key pairs guarantees that this change is indistinguishable to PPT
adversaries.

Proposition 2. Expb,(1) and Expb,(2) are computationally indistinguishable
for b = 0, 1 if FS is a FS scheme with obliviously samplable keys.

It is in the next step that we use the full power of our new primitive FSwOSK.
The only difference between Expb,(2) and Expb,(3) is in the definition of the
circuit P that is obfuscated. In Expb,(2) the circuit P =: P (2) is defined as
in (10), with k ← PF.Smp(1λ). In Expb,(3), the key k in circuit P =: P (3) is
replaced by a punctured key kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)}).

The two games differ thus in whether P̃ is an obfuscation of P (2) or P (3). By
public-coin diO, these are indistinguishable, if for a sampler Samp that outputs
P (2) and P (3), no extractor, even when given the coins used by Samp, can find
a differing input (M̂, ĥ, π̂, σ̂).

Suppose there exists an extractor E outputs such a tuple. By correctness of
PF, P (2) and P (3) only differ on inputs (M̂, ĥ, π̂, σ̂), where

ĥ = H(x∗), (12)

as that is where the punctured key behaves differently. Moreover, the signature
σ̂ must be valid on M̂ , as otherwise both circuits output ⊥. Intuitively, unforge-
ability of functional signatures should guarantee that

M̂(x∗) = 0, (13)

Constrained PRFs for Unbounded Inputs with Short Keys 461

as the adversary only obtains a signature from its Constr oracle when it submits
machines satisfying (13), so a valid σ̂ on M̂ with M̂(x∗) = 1 would be a forgery.

To construct P (2) and P (3), Samp must simulate the experiment for A, during
which it needs to answer A’s Constr queries and thus create signatures. This
shows the need for a functional signature scheme: we need to enable Samp to
create signatures on M ’s with M(x∗) = 0 (by giving it skfx∗) while still arguing
that it is hard to find a signature on M̂ with M̂(x∗) = 1.

Finally, if we used standard functional signatures then we would need to
embed a master verification key (under which the forgery will be) into Samp,
but this would require diO with auxiliary inputs. We avoid this using FSwOSK,
which let Samp create mvk (together with skf∗) itself, and which ensure that
for E , even given Samp’s coins, it is hard to find a forgery σ̂. It follows that (13)
must hold with overwhelming probability.

Finally the proof π̂ must be valid for (H, M̂, ĥ), as otherwise both circuits
output ⊥. By SNARK extractability, we can therefore extract a witness x̂ for
(H, M̂, ĥ) ∈ Llegit, that is, (i) M̂(x̂) = 1 and (ii) H(x̂) = ĥ. Now (i) and (13)
imply x̂ �= x∗ and (ii) and (12) imply H(x̂) = H(x∗). Together, this means
(x̂, x∗) is a collision for H.

Overall, we showed that an extractor can only find a differing input for P (2)

and P (3) with negligible probability. By security of diO (Definition 4), we thus
have that obfuscations of P (2) and P (3) are indistinguishable.

Proposition 3. Expb,(2) and Expb,(3) are computationally indistinguishable
for b = 0, 1, if diO is a public-coin differing-input obfuscator, FS a FSwOSK
satisfying oblivious unforgeability and H is public-coin collision-resistant.

For the game hop from games Expb,(3) to Expb,(4), indistinguishability follows
directly from collision resistance of H, as the only difference is that Expb,(4)

aborts when A finds a collision.

Proposition 4. Expb,(3) and Expb,(4) are computationally indistinguishable
for b = 0, 1, if H is CR.

We have now reached a game, Expb,(4), in which the key k is only used
to create a punctured key kh∗ . The experiment can thus be simulated by an
adversary B against selective security of PF , who first asks for a key for the set
{0, 1}n \ {H(x∗)} and then uses A to distinguish y∗ = PF.Eval(k,H(x∗)) from
random.

Proposition 5. Exp0,(4) and Exp1,(4) are indistinguishable if PF is a selec-
tively secure family of puncturable PRFs.

Theorem 4 now follows from Propositions 1–5, which are proven in the full
version [1].

462 H. Abusalah and G. Fuchsbauer

References

1. Abusalah, H., Fuchsbauer, G.: Constrained PRFs for unbounded inputs with short
keys. Cryptology ePrint Archive, Report 2016/279 (2016)

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded
inputs. In: Sako, K. (ed.) Topics in Cryptology - CT-RSA 2016. LNCS, vol. 9610,
pp. 413–428. Springer, Heidelberg (2016). http://eprint.iacr.org/2014/840

3. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

4. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

5. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint Archive,
2014:580 (2014)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, New York (2013)

7. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

8. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 206–223. Springer, Heidelberg (2014)

9. Boyle, E., Chung, K.-M., Pass, R.: On Extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

12. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (2013)

14. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

16. Ishai, Y., Pandey, O., Sahai, A.: Public-Coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 668–697. Springer, Heidelberg (2015)

17. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 13, pp. 669–684. ACM (2013)

http://eprint.iacr.org/2014/840

Constrained PRFs for Unbounded Inputs with Short Keys 463

18. Sahai, A., Waters, B., How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

19. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, Okinawa, Japan, January 2000

	Constrained PRFs for Unbounded Inputs with Short Keys
	1 Introduction
	2 Preliminaries
	2.1 Constrained and Puncturable PRFs
	2.2 Public-Coin Differing-Input Obfuscation
	2.3 Non-interactive Proof Systems
	2.4 Commitment Schemes
	2.5 Collision-Resistant Hash Functions
	2.6 Functional Signatures

	3 Functional Signatures with Obliviously Samplable Keys
	3.1 Signature Schemes with Obliviously Samplable Signatures
	3.2 Functional Signature Schemes with Obliviously Samplable Keys

	4 Constrained PRFs for Unbounded Inputs
	References

