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Abstract. We propose a direct construction of attribute-based encryp-
tion (ABE) scheme for bounded multi-stack deterministic pushdown
automata (DPDAs) and Turing machines that have polynomial runtime
in the security parameter. Particularly, we show how to extend our con-
struction to handle bounded DPDAs with two or more stacks, which
leads to an ABE scheme for deterministic Turing machines (DTMs) with
polynomial runtime.

Our ABE schemes have “input-specific” decryption runtime meaning
that the decryption time depends on the semantics of attributes. If a
machine halts prematurely on a certain input, its execution can be cut
short. To the best of our knowledge, our ABE scheme is the first one
that achieves this property and has security proofs based on standard
cryptographic assumption.

The key technical ingredient we apply is a special graph encoding
on the executions of bounded DPDAs with multi-stacks, allowing us to
remember just enough of the execution history to enforce correct evalu-
ation. The security of our scheme is shown to be based on the learning
with errors (LWE) problem in the selective security model.

1 Introduction

Attribute-based encryption (ABE) enables the enforcement of complex access
control conditions based on expressive decryption keys and ciphertext attributes.
In a (key-policy) ABE scheme [15], a decryption key is associated with a Boolean
predicate P from a family of predicates P, and a message is encrypted with a
public attribute string w. Decryption succeeds iff P (w) = 1. Designing ABE
schemes with expressive and efficient access policies is of both theoretical and
practical interest. On one hand, the research of ABE results in substantial
advances in theoretical cryptography, such as functional encryption, garbling
schemes and various of security proof techniques. With its plenty of applica-
tions in Cloud storage, access control, and outsourced computations etc., ABE
has been shown a promising cryptographic primitive for the “Big Data” era in
which huge amount of sensitive data needs to be securely stored and efficiently
accessible in an expressive way.
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ABE with Input-Specific Decryption Complexity. Usually, the policy
evaluation in decryption algorithms of ABE incurs a heavy computational over-
head. As it is mentioned in [12], in most of the previously proposed ABE schemes
whose polices are polynomial-size boolean formulas or boolean circuits, the pol-
icy evaluation always takes worst-case runtime. With the input-specific runtime,
policy evaluation runs in the bare necessary time and could be very fast even
for very large inputs. This property is crucial in most real world applications.

A simple example is the filter rule set in firewall systems. In a firewall sys-
tem, the coming packets are inspected by filters according to a set of filtering
rules. These filtering rules are usually sequentially arranged and will be applied
to packets sequentially as well. Inspecting one packet under all rules is obviously
inefficient. However, it is common practice to arrange the rules so that early
accept/reject decisions can be made for most normal packets. As a consequence,
decisions will hopefully be made very quickly for most of packets and, thus, effi-
ciency increases. Our Turing machine-ABE scheme with input-specific runtime
could see applications in complex filtering-based security systems for encrypted
data.

From a practical perspective, it is desirable to design ABE schemes from
standard cryptographic assumptions with efficient data access or decryption
time. This serves for another motivation of us to design automata-based ABE
scheme with input-specific decryption time. In the computation models of var-
ious automata, computations of an automaton would finish once it gets to an
accept state after reading a prefix of inputs. However, this does not mean all
the automata-based ABE schemes have input-specific decryption. In fact, the
decryption time in the pairing-based ABE schemes in [2,26], depends on the
length but not the content of input attributes, and thus, is not input-specific.

Most interestingly, it is a well-known (if poorly understood) phenomenon
that most NP-complete problems exhibit a “phase transition” [9] from easy to
hard to easy again, as a certain statistic of the input is varied (such as the ratio
of number of clauses to number of variables in random 3-SAT instances). This is
why SAT solvers work very well in practice, despite tackling problems that are
formally NP-hard. Accordingly, our input-specific runtime constructions open
the door to functional policy specifications that are technically NP-complete or
NP-hard, but easily computable for inputs of practical interest.

Expressiveness of ABE. One of the central problems in ABE research is
how to make predicates and policies ever more expressive. Most ABE schemes
handle boolean formulas of polynomial size, with certain restrictions such as
a monotonicity requirement. An advance over this model was provided with
the pairing-based ABE schemes from [2,26] and lattice-based scheme from [6],
where predicates attached to decryption keys are deterministic finite automata
(DFAs), and attribute strings attached to ciphertexts are viewed as DFA input
strings. Another recent breakthrough in that area came with the construction of
ABE schemes for general boolean circuits with polynomial size [4,10,13], using
different technical ideas such as multi-linear maps and/or lattices. Assuming
the existence of Extractable Witness Encryption and Succinct Non-interactive
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Arguments of Knowledge (SNARKS), two very strong and non-standard assump-
tions, Goldwasser et al. [12] proposed an ABE scheme for any polynomial-time
Turing machines. An outstanding feature of the ABE schemes for DFAs from
[2,26] and for Turing machines from [12] is that attribute strings could be
arbitrarily long, which lead to various interesting applications, such as the inno-
vative audit log system from [26]. However, it should be mentioned that the non-
standard computational assumptions in [2,26] require fixing an a priori bound
on the input length for the security reduction to obtain, and the construction of
[12] came with a price of requirement of strong assumptions which have no satis-
factory instantiations. In a different direction, ABE schemes for general circuits
[4,10,13] provide obvious versatility benefits, as they enable predicates or poli-
cies to be any polynomial-size combinational (memoryless) function. For certain
applications where policies have polynomial size, one could convert the policies
into circuits on the fly and then apply the ABE schemes for circuits.

In this work, from the perspective of expressiveness of ABE, we focus on
extending the notion of ABE for DFAs from [6,26] by providing memory tak-
ing the form of one or more push-down stacks—yielding a notion of ABE for
(bounded) deterministic pushdown automata and Turing machines respectively.

Although the framework of [26] initiated the study of ABE schemes for
automata (as opposed to the more traditional boolean formulas and circuits),
it did not seem to support any mechanism for “read/write” tapes. Conceptu-
ally, two difficulties with implementing secure stack or tape machines are that
configurations are exponentially many and time varying. One possible but not
very satisfactory answer is to encode the entire memory (e.g., the stack or the
tape) atomically into the atomic state or configuration of the machine. A related
approach is to unroll an entire (bounded) Turing machine into a boolean circuit,
e.g., so that a circuit-oriented ABE scheme [4,10,13] can be used; in this case
it is the entire memory across the entire execution that is encoded “atomically”
into the circuit as a function of its inputs.

A conceptually more desirable approach is to embrace the nature of the stack
or tape as an attached memory, from which only the current element under the
read/write head is accessible to the actual state machine, itself possibly very
small. This approach requires guarantees that the portion of memory that is
temporarily out of sight will not be tampered with—a non-trivial proposition.
Our main contribution is to provide a secure way to attach stacks and tapes
onto a “seed” ABE for DFA in a flexible and generic way. Based on this, we
show how to realise ABE for deterministic state machines with multiple stacks
(two stacks are enough to get a Turing machine, though additional stacks will
increase efficiency). Our construction is based on the standard LWE assumption,
rather than the pairing-based approach of [26].

1.1 Our Results

With above two motivations, we present a direct (key-policy) ABE scheme with
input-specific decryption time for multi-stack deterministic pushdown automata
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(DPDAs) that have polynomial (in security parameter) runtime. In particu-
lar, this yields a (key-policy) ABE scheme for deterministic Turing machines
(DTMs) with polynomial (in security parameter) runtime through the equiva-
lence between DTMs and DPDAs with two stacks. We refer to this special type
of DPDAs and DTMs as bounded DPDAs and bounded DTMs, respectively, for
short. To the best of our knowledge, our construction is the first ABE scheme
which directly supports stack automata and has input-specific decryption time
from standard cryptographic assumptions.

In our scheme, predicates or policies of users’ decryption keys are directly
expressed as bounded DPDAs. Messages are encrypted with polynomial-size
attribute strings (the length of individual strings can vary). Decryption keys
recover messages if and only if the automata recognize the strings attached to
the ciphertexts. We prove the security of our scheme in the selective security
model, based on the learning with errors problem (LWE).

In general, deterministic pushdown automata refer to single-stack machines.
Deterministic pushdown automata with two stacks are much more powerful,
being equivalent to deterministic Turing machines (DTMs). Our approach works
with an arbitrary number of stacks; we will focus on constructing an ABE scheme
for single-stack DPDAs and then show how to extend it easily to two (or more)
stacks, to capture the full power of (bounded) deterministic Turing machines.

1.2 Our Approaches

Our approaches stem from the LWE-based ABE scheme for DFAs from [6].
We firstly give a quick review of stack and pushdown automata. A stack is a
basic data structure which stores data in such a way that the most recently
stored item is the first to be retrieved (also known as “last in, first out” access).
Basically, stacks provide two principal operations: “push” a new element to the
top of stack and “pop” the top-most element from stack. Stacks provide PDAs
with additional memory space making PDAs more powerful than DFAs. A 3-
Stack PDA is depicted in the Fig. 1.

We outline our approaches for 1-stack DPDAs. A deterministic pushdown
automaton M with one stack is a 7-tuple: M = (Q,Σ,Γ, δ, s0, z0, F ). The input
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Fig. 1. A 3-Stack Pushdown Automaton
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tape of M consists of symbols of an alphabet Σ. We write Σε = Σ ∪ ε for the
empty symbol ε. The finite internal states of M make up a set Q. F ⊆ Q is a set
of accept states. Γ is an alphabet of stack elements. For every execution, M starts
from a unique initial state s0 ∈ Q and the stack is empty which is indicated by
a bottom stack element z0 ∈ Γ. For one computation process of M , a string w
of symbols of Σ, which forms an input tape, is taken as an input. In one step of
computation, M takes a current letter of input tape and the top stack element
as input, does a stack operation and shifts its state according to a deterministic
transition function δ : Γ × Q × Σε → Γ × Q. For instance, in the transition
δ(u, s, b) → (v, s′), an automaton reads the symbol b ∈ Σ, changes the top stack
element from u to v, and shifts its state from s to s′. Once M reaches some accept
state sω ∈ F , it stops and accepts w. A PDA does not “remember” its execution
history. A triple (γ, s,w), which is called Instantaneous Description (ID), can
be used to track the execution history of a PDA by capturing a “snapshot” of
a PDA’s execution status. In the ID, γ ∈ Γ∗ is the current stack contents with
sequential order, s ∈ Q is the current state, and w ∈ Σ∗ is the remaining unread
input. An accept ID is (γ′, sω,w′) where γ ∈ Γ∗ is the stack contents, sω ∈ F is
a accept state, and w′ ∈ Σ∗ is a suffix of w.

The starting point of our construction is to naturally encode the input tapes
and the transition function of PDAs into ciphertexts and decryption keys, respec-
tively. We show the idea by describing a toy construction. Let � be the upper
bound of the length of all input strings. Let Sz0 and As0 be two publicly known
matrices represent the unique initial stack element z0 and state s0 for all DPDAs.
A lattice trapdoor of [Sz0 ||As0 ] serves as the master secret key. A ciphertext of
the input tape which contains an input string w = w1w2 . . . w� ∈ Σ� has the
LWE form

s�[Sz0 ||As0 ||Gw1 ||Gw2 || . . . ||Gw�
] + ν�

for a random secret vector s $←− Z
n
q , public matrices Gwi

$←− Z
n×m
q , and noise

vector ν from some noise distribution χ. Note [Sz0 ||As0 ||Gw1 ||Gw2 || . . . ||Gw�
]

is just the matrix representation of ID (s0, z0, w1w2...w�) for all the DPDAs in
the beginning of execution.

The decryption key of a PDA M = (Q,Σ,Γ, δ, s0, z0, F ) contains a set of
low-norm transition matrices {Rδ} such that a transition δ(u, s, b) → (v, s′)
( where s /∈ F ) is mathematically abstracted as a matrix multiplication
[Su||As||Gb]Rδ = [Sv||As′ ] (mod q) (here we don’t consider the ε transitions).
These equations are inductively constructed. Firstly check if matrix [Su||As]
exists with trapdoor (the first of this type of matrix is [Sz0 ||As0 ] which does
have trapdoor). If one of the sub-matrices of [Su||As] does not exist, sample
it by “matrix-trapdoor” sampling algorithm TrapGen. Run TrapGen again to
sample Sv and As′ if they haven’t been created. Then apply the lattice preim-
age sampling function SampleD to sample the low-norm transition matrix Rδ.
Finally, each matrix Asω

for sω ∈ F will be equipped with a decryption vector
that allows decrypters to recover messages.
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The decryption procedure works by following an accept execution path,
sequentially applying the transition matrices Rδ to linearly transform

s�[Sz0 ||As0 ||Gw1 ||Gw2 || . . . ||Gw�
] + ν�

into
s�[Su||Asω

||Gwj
||Gwj+1 || . . . ||Gw�

] + ν̄�,

(for some u ∈ Γ) which is the incomplete (in terms of stack configuration) matrix
representation of an accept ID (sω,γ, wjwj+1...w�) where 1 ≤ j. The decryption
vector of Asω

then applies. We note the decryption does not need to read the
whole input string.

Two problems make this toy construction insecure. Firstly, the concatena-
tion matrix [Gw1 ||Gw2 || . . . ||Gw�

] does not mathematically enforce any sequence
between letters in the string. Secondly, no mechanism ensures the consistency
of stack configurations. Different configurations may lead to the same execution
result. For instance, consider two IDs (uvz0, s, w1w2w3) and (uvvz0, s, w1w2w3).
A transition δ(u, s, w1) → (v, s′) takes them to different next IDs, but they have
the same transition equation. In particular, a transition equation only mirrors
one piece of the whole execution of a DPDA and shows no connections with other
transitions. On the other hand, this problem brought by “memoryless” descrip-
tion of DPDAs can be amended by including the whole execution history to each
transition step, just as ID does. However, exponentially many IDs (within the
input length bound �) is impossible to be encoded in decryption keys.

Summing up, in order to securely embed bounded DPDAs with one or mul-
tiple stacks into decryption keys, we must take care to retain enough state to
prevent malleability attacks while avoiding an exponential blow-up of the size of
the decryption keys.

The Challenges of (Not) Keeping Memory. To figure out the minimal
amount of state we need to keep in a pushdown automaton with respect to some
input length bound, we notionally unroll all the possible execution paths of the
automaton into a specially crafted low-dimensional space. The dimensions and
coordinates of the space are determined so that the directed execution graph is
acyclic (no directed cycles). Intuitively, the coordinates of this “execution graph
space” represent the variables that the core state machine must remember about
the stack/tape configuration. For example, one dimension could be a counter
indicating how many symbols the machine has read from its second stack so far.
The fewer the dimensions, the more risk that the graph of all possible unrolled
executions, will contain directed cycles. If that happens, a malicious user can
“jump” from one execution to another, yielding an illegal execution that could
accept a word not in the language—an attack.

At one extreme, a machine whose core remembers nothing about the tapes
corresponds to a very low-dimensional execution space (as the case of the toy
construction). In this case, an adversary will be able to alter the stack tape
or the input tape “out of sight” of the state machine, undetected, in order to
take shortcuts/longcuts/sidecuts in the execution, throwing the machine into
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a configuration it should not have been able to reach from the given input.
Conversely, a Turing machine whose state remembers everything, including the
whole tape itself, can obviously be simulated as a mere DFA, albeit one with
a huge state space, without danger of allowing an adversary to deviate from
the execution. In this case the execution graph space will have (at least) one
dimension for each possible cell. This will make the graph acyclic, but at the
cost of requiring a state machine with exponentially many states.

Between those unworkable extremes, we devise an execution graph space of
low constant dimension (function only of the number of stacks) that will always
guarantee acyclicity. This gives us the variables that the core state machine will
need to keep track of, to cryptographically ensure correct execution regardless
of the size of the stack(s). Those variables enforce a set of constraints suffi-
cient to ensure that users (performing the decryption) consistently proceed with
the forward execution of the DPDA step by step, without having to remember
unneeded data about the DPDA’s previous steps. In our full construction, the
actual execution of an automaton is based on the repeated application of tran-
sition equations similar to the toy construction. But each transition equation
will carry (just) enough aforementioned variables so that the acyclic execution
graphs can be correctly instantiated. We note that the transition equation (as in
the toy construction) is a direct generalisaztion of the two-to-one recoding [13],
itself ultimately based on lattice basis delegation [1,8].

Perhaps the most novel aspect of our ABE construction is the secure con-
struction of (long, bidirectional) read/write tapes that do not require the entire
configuration to be kept “in focus” at all times, unlike most other lattice-based
public-key encryption scheme. We cryptographically enforce “big picture” con-
sistency across space and time, using only local transformations or transitions
with a short window of visibility. More specifically, there are a few transition
steps involved in our constructions, implemented as local matrix multiplications.
Once we ensure the current decryption step has been securely and honestly taken,
it is automatically guaranteed that the previous decryption steps are securely
taken, which by induction implies that the entire execution is globally correct.
We prove all this using a game-based reductionist simulation from the LWE
hardness assumption. The aforementioned execution graph and the selection of
its dimensions to ensure acyclicity, are critical to the success of this simulation.

Relationship with ABE for Circuits. We emphasize that the pushdown
automata in our scheme are subject to polynomial size input and polynomial
execution time restrictions, and thus also admit (non unique) functionally equiv-
alent polynomial size circuits. ABE schemes for general circuits like [4,10,13] can
thus in theory achieve the same functionality by converting the bounded DPDA
to DTM into an equivalent circuit beforehand. Our schemes provide a quite
different and direct way to solve the problem, with an additional advantage of
input-specific decryption time.

More specifically, the process of converting deterministic pushdown automata
(especially with multiple stacks) into circuits is subtle. First, we need an actual
algorithm, not just an existential equivalence. Second, the actually translated
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circuits can be optimised to have gates with small fan-in at the expense of
depth, or be optimised for shallowness and require many gates, but not both. As
both the height of the circuit and the number of gates and their fan-in affect the
efficiency of circuit-based ABE schemes, a compromise would have to be struck.

A proper comparison with circuit-based ABE would require taking into
account the exact cost of translating a DPDA or Turing machine into a cir-
cuit, not only in the sense of existential upper bounds, but also in the form of
efficient algorithms that achieve them. A naive translation approach could result
in a very noticeable penalty in the resulting Circuit ABE. Alas, an extensive lit-
erature search has failed to reveal any hypothetical TM-to-Circuit translators
that would be markedly superior than the naive translation. For an ABE policy
specified as a DPDA or a DTM, our construction sidesteps all issues related to
translation and its tuning, and has the advantage of simplicity. Conversely of
course, given an ABE policy as a circuit, it would be preferable to use a DTM
for circuits rather translate it into a machine representation for our construction.
Last but not least, the circuits conversion will certainly lose the advantage of
input-specific decryption times from which many potential applications may get
benefits in terms of efficiency.

The main contribution of our result is to show how the “simple” idea of
directly embedding a bounded DPDA or DTM into an ABE system can actually
be made to work, and proven secure in the reductionist simulation framework.

1.3 Other Related Works

The research on ABE can be traced back to the development of identity-based
encryption (IBE). fuzzy IBE, a variant of IBE introduced in [23], triggered the
birth of ABE. Various ABE schemes have been proposed based on multi-linear
maps, bilinear maps and lattices [5,15,18,25]. While ABE enables complex access
mechanism on encrypted data, it only provides privacy for the payload mes-
sages rather than attributes of the message. ABE is inadequate in some applica-
tions where the attributes themselves are considered to be sensitive. Predicate
encryption (PE) has a similar structure to ABE but enjoys stronger privacy.
PE hides the attributes of encrypted data as well for decryptors whose predicates
of decryption are not satisfied by the attributes. Very recently, Gorbunov et al.
[14] proposed a PE scheme for general circuits from standard LWE assumption
by combining the key-homomorphic ABE scheme for circuits [4] and LWE-based
fully homomorphic encryption. Functional encryption is a more powerful prim-
itive which generalises ABE and PE. However, practical functional encryption
schemes are only known for limited functionalities such as inner-product [17,20].

We note that the effort of improving (worst-case) decryption time of ABE
schemes has been taken, for instance, in [16]. However, we are not aware of any
existing ABE schemes from standard cryptographic assumptions that have the
input-specific decryption time (the construction from [12] relies on SNARKS and
extractable witness encryption, two very strong assumptions).
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2 Preliminary

2.1 Lattices

We use the standard definitions of random integer lattices, discrete Gaussian
distribution, the well-known lattice trapdoor techniques, and discrete Gaussian
sampling algorithems. Particularly, we use the trapdoor generation algorithm
TrapGen from [1,11,19] in the black-box way. The sampling algorithms SampleD
and SampleExtend used in this paper are respectively the same as the SamplePre
and SampLeft algorithms defined in [1]. We refer to the full version of this paper
or above citations for details. The security of our constructions is based on the
learning with errors (LWE) problem firstly introduced by Regev [22]. We refer
to [7,21,22] for the definition and hardness results of the LWE problem.

2.2 Pushdown Automata

A deterministic pushdown automaton with one stack is a 7-tuple
(Q,Σ,Γ, δ, s0, z0, F ). Q is a finite set of states. F ⊆ Q is the set of the accept
states. Σ is the finite input alphabet. Σε = Σ ∪ {ε} for the empty symbol ε.
Γ is the finite stack alphabet. δ : Γ × Q \ F × Σε → Γ × Q is the determin-
istic transition function. z0 ∈ Γ is the initial stack element and it is always at
the bottom of the stack and never been removed. s0 ∈ Q is the unique start
state. The reader is referred to the full version of this paper or the textbook [24]
for the computational models of deterministic pushdown automata and Turing
machines.

2.3 Definitions of Attribute-Based Encryption for PDAs

A key-policy attribute-based encryption scheme for PDAs consists of four
algorithms (Setup, KeyGen, Encrypt, Decrypt). Setup takes as input a security
parameter λ and a universal alphabet Σε. It generates public parameters Pub
and master secret key Msk. KeyGen uses Msk to generate decryption SkM for a
given PDA machine M . Encrypt applies Pub to encrypt a message Msg under a
string w ∈ Σ∗, and produces the ciphertext Ctxw. Decrypt recovers the message
from Ctxw using SkM if M accepts w, i.e. w ∈ L(M).

Security Model. We review the game-based selective security definition of (key-
policy) ABE scheme for PDAs. Let A be the adversary, B be the challenger.

Initial. A submits a string w∗ ∈ Σ∗ as its challenge.
Setup. B runs algorithm Setup to generate the public parameters Pub and

master secret key Msk and passes Pub to A.
Phase 1. A adaptively issues the key generation queries for keys correspond to

any PDA machine M of its choice. The only restriction is w∗ /∈ L(M). B
runs the algorithm KeyGen(Pub,Msk,M) and returns SkM .

Challenge. A chooses a challenge message to be encrypted with w∗. B flips
a random coin γ ∈ {0, 1}. If γ = 1, the challenge ciphertext is returned.
Otherwise, a random element in the ciphertext space is returned.
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Phase 2. This phase is exactly the same as Phase 1.
Guess. Finally, A outputs a guess bit γ′ of γ. It wins if γ′ = γ.

The advantage of A in the above game is defined as |Pr[γ′ = γ] − 1
2 |. We say a

(Key-Policy) ABE scheme for PDAs is selectively secure if all PPT adversaries
have at most a negligible advantage in the above game. In the stronger model
named the adaptive security model, adversary submits the challenge string w∗

in the Challenge phase.

3 Execution Graph of DPDAs

We now turn to explain the structure of the specially crafted execution graphs
of DPDAs which are low-dimensional and acyclic. The execution graphs allow
us to securely encode bounded DPDAs into decryption keys and to successfully
overcome the difficulties of keeping execution history in memory. Without loss
of generality, 1-Stack DPDAs are described in full detail. It is straightforward to
extend the ideas to 2-Stack DPDAs and n-Stack DPDAs, by linearly increasing
the dimension of the execution graphs so that they remain acyclic.

3.1 Descriptions of Execution Graph

The execution graph G = (V,E) of a 1-Stack DPDA M = (Q,Σ,Γ, δ, s0, z0, F ),
with respect to the input length bound τ and running time bound η, consists of
a set of vertices, denoted by V , and a set of edges denoted by E.

A vertex in V , which comprises of 5 variables, has form (u, s, j, t′, t). The first
coordinate u ∈ Γ is the current top-most stack element. The second coordinate
s ∈ Q is the current state of DPDA. The third coordinate j, where 1 ≤ j ≤ τ ,
is the “input position” indicating currently the first j − 1 input symbols have
been read by M , and the next symbol to be read is the jth one. The fourth
and fifth coordinate t′ and t, where −1 ≤ t′ ≤ 2η − 1, 0 ≤ t ≤ 2η and t′ < t,
are “stack position tags” of u. t represents the stack position of current stack
element u and t′ represents the stack position of u’s previous stack element.
These stack position tags sequentially chain all current stack elements together
in a logical way. During the transition (execution), the stack position tags change
dynamically (in a way we specify later) so that the new top-stack element which
is pushed in has a (logically) higher position than the previous top stack element,
and the sequential relation between the stack element that is popped out, and
rest of stack elements is removed. For the special stack element z0 which will
never be popped out, we assign the special tag value −1 to indicate that z0 is
always in the bottom of the stack.

The edges in E are defined by the input of transitions, either a symbol b ∈ Σ
or an empty symbol ε. The input symbol b ∈ Σ, which defines the outgoing edge
of a vertex (s, u, j, t′, t), is tied by input position j. We don’t explicitly defines
the input position for the ε input as it never appears in the input string.
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The initial vertex of an execution graph of M is (z0, s0, 1,−1, 0). Inductively,
two vertices are connected to each other with respect to the type of transi-
tion, increasing of input position tags and increasing of stack positions. Let
(u, s, j, t′, t) be the current vertex for the top stack element u ∈ Γ, the state
s ∈ Q, input position j and stack position tags t′ and t for u and u’s previous
stack element respectively.

1. For a “push” transition δ(u, s, b) → (v, s′), b ∈ Σ will define the outgoing
edge. The next vertex will be defined as (v, s′, j + 1, t + 1, t + 2) in which we
increase the input position by 1, meaning that a non-empty symbol is read,
and assign stack position tag t + 2 to v and update u’s position tag from t to
t + 1. There must be the case that −1 ≤ t′ < t. We write this relation as:

(u, s, j, t′, t) b−→ (v, s′, j + 1, t + 1, t + 2)

In the special case t′ = −1, we have u = z0.
2. For a “pop” transition δ(s, u, b) → (s′, v), b ∈ Σ will define the outgoing edge.

The next vertex will be defined as (v, s′, j + 1, t′′, t + 1) in which we increase
the input position by 1 and update v’s stack position tag from t′ to t + 1 and
v’s previous tack element’s stack position tag, say t′′, is not change. There
must be the case that −1 ≤ t′′ < t′ < t. We write this relation as:

(u, s, j, t′, t) b−→ (v, s′, j + 1, t′′, t + 1)

In the special case t′′ = −1, we have v = z0.
3. For a ε “push” transition δ(u, s, ε) → (v, s′), ε symbol will define the outgoing

edge. The next vertex will be defined as (v, s′, j, t + 1, t + 2) in which the
input position stays unchanged, meaning that no input has been read in this
transition. v is assigned the new stack position tag t + 2 and u’s position tag
is updated from t to t+1. There must be the case that −1 ≤ t′ < t < 2η. We
write this relation as:

(u, s, j, t′, t) ε−→ (v, s′, j, t + 1, t + 2)

In the special case t′ = −1, we have u = z0.
4. For a ε “pop” transition δ(u, s, ε) → (v, s′), ε symbol will define the outgoing

edge. The next vertex will be defined as (s′, v, j, t′′, t + 1) in which the input
position stays unchanged, meaning that no input has been read in this tran-
sition. We update v’s stack position tag from t′ to t + 1. v’s previous tack
element’s stack position tag, say t′′, is not change. There must be the case
that −1 ≤ t′′ < t′ < t < 2η. We write this relation as:

(u, s, j, t′, t) ε−→ (s′, v, j, t′′, t + 1)

In the special case t′′ = −1, we have v = z0.

In a execution process with respect to a specific input, M will start from
(z0, s0, 1,−1, 0). It then follows the path defined by the input and ε transitions
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to travel between vertices. Once M reaches a vertex with some accept state sω,
it stops and accepts the input. Otherwise, M stops and rejects the input if there
is no transition with respect the current input or j, t′, t reach the bounds.

To see why the execution graphs for 1-Stack DPDAs are acyclic, the coordi-
nates of tuple (u, s, j, t′, t), (input position j and stack position tags t′, t) increase
monotonically with at least one of them increasing at each step. t′ decreases only
when the top-most stack elements are popped out from the stack and its stack
position tag is never going to be used again.

3.2 Matrix Representation

In our constructions, the execution graphs are instantiated by Matrices (recall
the toy construction). However, matrix concatenation neither forces any sequen-
tial order to the individual matrices nor logically binds the individual matrices
together. On the other hand, in execution graph, coordinates in a vertex are
logically integrated, vertices and edges (specified by input symbols) are bound
with respect to the input positions. In order to mitigate this problem, we use
subscripts of matrices to denote the state, stack element and input symbols, and
encode the input positions and stack position tags in the superscripts of matrices
to tie concatenated matrices together logically.

Specifically, for a vertex (u, s, j, t′, t), we encode it by matrix concatenation
[S(t′,t)

u ||A(t,j)
s ]. S(t′,t)

u ∈ Z
n×m
q is the stack matrix of u with t as u’s stack position

tag and t′ as the stack position tag of u’s previous element. A(t,j)
s ∈ Z

n×m
q is the

state matrix of s. The superscript t ties A(t,j)
s to S(t′,t)

u , and j ties A(t,j)
s to the

jth input symbol, say b, which has matrix representation G(j)
b .

For expressing the transition equations that connect two vertices through an
edge, we consider the following cases:

– (u, s, j, t′, t) b−→ (v, s′, j + 1, t + 1, t + 2) where the push transition δ(u, s, b) →
(v, s′) for jth input b happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈
Z
3m×3m such that:

[S(t′,t)
u ||A(t,j)

s ||G(j)
b ]R(t′,t,j)

δ = [S(t′,t+1)
u ||S(t+1,t+2)

v ||A(t+2,j+1)
s′ ] (mod q)

– (u, s, j, t′, t) b−→ (v, s′, j + 1, t′′, t + 1) where the pop transition δ(u, s, b) →
(v, s′) for jth input b happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈
Z
4m×2m such that:

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ||G(j)

b ]R(t′,t,j)
δ = [S(t′′,t+1)

v ||A(t+1,j+1)
s′ ] (mod q)

– (u, s, j, t′, t) ε−→ (v, s′, j, t+1, t+2) where the push transition δ(u, s, ε) → (v, s′)
for ε input happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈ Z
2m×3m

such that:

[S(t′,t)
u ||A(t,j)

s ]R(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||A(t+2,j)

s′ ] (mod q)
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– (u, s, j, t′, t) ε−→ (s′, v, j, t′′, t + 1) where the push transition δ(u, s, ε) → (v, s′)
for ε input happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈ Z
3m×2m

such that:

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ]R(t′,t,j)

δ = [S(t′′,t+1)
v ||A(t+1,j)

s′ ] (mod q)

In all above cases, if the state s′ in the target vertex equals to some accept
state sω, we will simply use matrix Aω to denote it without any superscripts.
This is because the vertex (u, sω, j, t′, t) must be the terminal of the execution
path and no next vertex exists.

The reason we use slightly different forms in the equations for push and pop
transition is that we update the stack position tags of the stack elements to keep
the actual transition equations compatible with the execution graphs such that
no direct cycles happen.

4 The ABE Scheme for Bounded 1-Stack DPDAs

4.1 Construction

Setup
(
1λ, 1τ , 1η,Σε = {0, 1, ε}) On input of security parameter 1λ, upper bound

τ = τ(λ) of length of input string, upper bound η = η(λ) of running time of
the pushdown automata, and the universal alphabet Σε:
1. Pick 2τ matrices G(j)

b
$←− Z

n×m
q for j ∈ [τ ] and b ∈ {0, 1}.

2. Sample A ∈ Z
n×m
q and its trapdoor TA ∈ Z

m×m by TrapGen.

3. Pick u $←− Z
n
q .

4. Output Pub =
(
{G(j)

b }b∈{0,1},j∈[τ ],A,u
)

and Msk = TA.

KeyGen(Pub,Msk,M = (Q,Γ, δ, s0, z0, F ))] On input of Pub, Msk and a 1-Stack
DPDA M , unroll M (up to the fixed bounds) into an execution graph:
1. Prepare for the initial vertex (z0, s0, 1,−1, 0):

(a) Run TrapGen to sample matrix A(0,1)
s0 and its trapdoor.

(b) Pick S(−1,0)
z0

$←− Z
n×m
q .

(c) Sample R ∈ Z
m×2m by SampleD such that AR = [S(−1,0)

z0 ||A(0,1)
s0 ]

(mod q).
2. For a normal “push” transition δ(u, s, b) → (v, s′) that connects two ver-

tices (u, s, j, t′, t) and (v, s′, j + 1, t + 1, t + 2) through the edge b at input
position j, the algorithm does:
(a) The state matrix A(t,j)

s with trapdoor and stack matrix S(t′,t)
u are

already defined.
(b) In case s′ ∈ Q \ F , run TrapGen to sample matrix A(t+2,j+1)

s′ and its
trapdoor if such state matrix has not been defined. If s′ equals to
some accept state sω ∈ F , and the matrix Asω

has not been defined,
run TrapGen to sample it with trapdoor.

(c) Pick S(t′,t+1)
u ,S(t+1,t+2)

v
$←− Z

n×m
q for v ∈ Γ if this stack matrix has

not been defined.
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(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ3m,σ)3m

such that if s′ ∈ Q \ F :

[S(t′,t)
u ||A(t,j)

s ||G(j)
b ]R

(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||A(t+2,j+1)

s′ ] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′,t)
u ||A(t,j)

s ||G(j)
b ]R(t′,t,j)

δ = [S(t′,t+1)
u ||S(t+1,t+2)

v ||Asω
] (mod q).

3. For a normal “pop” transition δ(u, s, b) → (v, s′) that connects two ver-
tices (u, s, j, t′, t) and (v, s′, j + 1, t′′, t + 1) through the input b at input
position j, the algorithm does:
(a) The state matrix A(t,j)

s with trapdoor, stack matrices S(t′,t)
u , S(t′′,t′)

v

are already defined.
(b) In case that s′ /∈ F , run TrapGen to sample matrix A(t+1,j+1)

s′ and
its trapdoor if such state matrix has not been defined. If s′ is some
accept state sω ∈ F , and the matrix Asω

has not been defined, run
TrapGen to sample it with trapdoor.

(c) Pick S(t′′,t+1)
v

$←− Z
n×m
q if this stack matrix has not been defined.

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ4m,σ)2m

such that if s′ /∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ||G(j)

b ]R
(t′,t,j)
δ = [S(t′′,t+1)

v ||A(t+1,j+1)

s′ ] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ||G(j)

b ]R(t′,t,j)
δ = [S(t′′,t+1)

v ||Asω
] (mod q).

4. For a ε “push” transition δ(u, s, ε) → (v, s′) that connects two vertices
(u, s, j, t′, t) and (v, s′, j, t + 1, t + 2) through edge ε, the algorithm does:

(a) The state matrix A(t,j)
s with trapdoor and stack matrix S(t′,t)

u are
already defined.

(b) Run TrapGen to sample matrix A(t+2,j)
s′ and its trapdoor if s′ /∈ F

and such state matrix has not been defined. If s′ is some accept state
sω ∈ F , and the matrix Asω

has not been defined, run TrapGen to
sample it with trapdoor.

(c) Pick S(t′,t+1)
u ,S(t+1,t+2)

v
$←− Z

n×m
q if they haven’t been defined.

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ2m,σ)3m

such that if s′ /∈ F :

[S(t′,t)
u ||A(t,j)

s ]R(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||A(t+2,j)

s′ ] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′,t)
u ||A(t,j)

s ]R(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||Asω

] (mod q).
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5. For a ε “pop” transition δ(u, s, b) → (v, s′) that connects two vertices
(u, s, j, t′, t) and (v, s′, j, t′′, t+1) through the edge ε, the algorithm does:
(a) The state matrix A(t,j)

s with trapdoor, stack matrices S(t′,t)
u , S(t′′,t′)

v

are already defined.
(b) Run TrapGen to sample matrix A(t+1,j)

s′ and its trapdoor if s′ /∈ F
and such state matrix has not been defined. If s′ is some accept state
sω ∈ F , and the matrix Asω

has not been defined, run TrapGen to
sample it with trapdoor.

(c) Pick S(t′′,t+1)
v

$←− Z
n×m
q if this stack matrix has not been defined.

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ3m,σ)2m

such that if s′ /∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ]R(t′,t,j)

δ = [S(t′′,t+1)
v ||A(t+1,j)

s′ ] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ]R(t′,t,j)

δ = [S(t′′,t+1)
v ||Asω

] (mod q).

6. For all state matrices Aω of accept states sω ∈ F , run SampleD to sample
Gaussian vector dsω

such that: Asω
dsω

= u (mod q).
7. Output the decryption key as:

SkM =
(
R, {R(t′,t,j)

δ }, {dsω
}sω∈F

)

Encrypt(Pub,w,Msg) The encryption algorithm takes as input the public para-
meters Pub, a binary string w with length � ≤ τ , and a message bit
Msg ∈ {0, 1}. Denote the ith bit of w by w[i]. The algorithm then does:
1. Randomly select a vector s $←− Z

n
q .

2. Select a noise scalar ν0 ← χ and compute the scalar

c0 = s�u + ν0 + Msg�q/2	.
3. Select a noise vector ν1 ← χ(�+1)m, and compute the vector

c�
1 = s�[ A||G(1)

w[1] || G(2)
w[2] || · · · || G(�−1)

w[�−1] || G(�)
w[�] ] + ν�

1 .

4. Output the ciphertext for the attribute input string w as

Ctxw = (c0, c1) .

Decrypt(Pub,SkM ,Ctxw,w) On input Pub, decryption key SkM of automaton M ,
�-length attribute string w = w1w2 . . . w� and the ciphertext Ctxw encrypted
by w.
1. If w /∈ L(M), return an error symbol ⊥. Otherwise, unroll the execution

graph of M , find the execution path from the start state s0 to an accept
state sω. Assume M digests the first �′ ≤ � input symbols to get to sω.
Collect all the transition matrices {Rt′,t,j

δ } (including R) of the path and
the vector dsω

.
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2. Get the useful part of c1: c̄�
1 = s�[ A || G(1)

w[1] || · · · || G(�′)
w[�′] ] + ν̄�

1 .

3. Set c�
1,0 = c̄�

1

⎡

⎢
⎢
⎢
⎣

R
Im

. . .
Im

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
∈Z(�′+1)m×(�′+2)m

= s�[S(−1,0)
z0 ||A(0,1)

s0 ||G(1)
w[1]|| · · · ||G(�′)

w[�′]] +

ν̄�
1,0.

4. Sequentially apply the transition matrices to transfer c1,0 to get c�
1,end =

s�Asω
+ ν�

1,end. This can be done in an obvious way and the ciphertext
part of stack matrices that come out with Asω

at the last step is simply
discarded.

5. Set Δ = c0 − c�
1,enddsω

and output output Msg = 0 if ‖Δ‖ < q/4, or
Msg = 1 otherwise.

4.2 Correctness and Parameters

We refer to the full version of this paper for the correctness and parameters
selection of above scheme.

4.3 Security

Theorem 1. The scheme is selectively secure if the LWEn,q,χ problem is hard.

We refer to the full version of this paper for the full proof. We also remark
that as we consider attribute strings with bounded length, by relying on the
sub-exponential hardness of the LWE problem and the standard “complexity
leveraging” argument [3], above scheme is also adaptively secure.

5 Extensions to 2-Stack DPDAs (and Thus DTMs)

To extend the ABE scheme for 1-Stack DPDAs to handle two or more stacks
(thus Turing machines), the execution graphs are correspondingly extended to
represent additional memory and preserve acyclic property. This can be achieved
by adding enough (linearly many) states. The resulting execution graphs have
dimensions which are linearly more than the execution graphs of 1-Stack DPDAs
in the number of stacks. The ABE schemes for multi-stacks DPDAs (Turing
machines) are obtained by incorporating new execution graphs into matrix tran-
sition equations. Their security can be proved in a similar way of security proof
of the ABE scheme for single stack DPDAs. We show in the full version of this
paper the design of execution graphs for 2-Stack DPDAs and the matrix transi-
tion equations with respect to these graphs. The case of DPDAs with multiple
stacks (more than two) follows readily.
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6 Conclusion

In this paper, we present a (key-policy) attribute-based encryption scheme for
deterministic multi-stack pushdown automata and, therefore, Turing machines,
with polynomially bounded execution. Crucially, our scheme enjoys input-
specific decryption time from standard cryptographic assumptions, in contrast
to previous ABE schemes in which the decryption algorithms have always had
worst-case runtime. We prove the security of our scheme based on the hardness
of LWE problem in the selective security model.

An interesting open problem is to devise a technique whereby the benefits
of input-specific complexity can be achieved for different classes of ABE, such
as ABE for circuits. Another even more challenging problem is to design ABE
schemes to handle a-priori unbounded automata or machines. The problem of
handling non-deterministic Turing machines is also wide open.
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