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Abstract. We propose the first fully secure unbounded Attribute-Based
Encryption (ABE) scheme such that the key size and ciphertext size can
be directly traded off. Our proposed scheme is parameterized by a pos-
itive integer d, which can be arbitrarily chosen at setup. In our scheme,
the ciphertext size is O(t/d), the private key size is O(md), and the pub-
lic key size is O(d), where t,m are the sizes of attribute sets and policies
corresponding to ciphertext and private key, respectively.

Our scheme can be considered as a generalization that includes two
of the state-of-the-art ABE instantiations, namely, the unbounded ABE
scheme and the ABE scheme with constant-size ciphertexts proposed by
Attrapadung (Eurocrypt 2014). Indeed, these two schemes correspond
to the two extreme cases of our scheme, that is, when setting d = 1 and
when setting d as the maximum size of allowed attribute sets, respec-
tively. Furthermore, our scheme also yields a tradeoff between encryp-
tion and decryption time. Interestingly, when estimating efficiency using
numerical parameters, the decryption time is minimized at d being some-
where in the middle of the spectrum.

We believe that this tradeoff can provide advantages in applications
where size and/or time resources are concretely fixed in advance, as we
can flexibly adjust d to match available resources and thus make the most
of them. Such situations include, but are not limited to, implementations
of ABE in tiny hardware tokens.

Keywords: Attribute-based encryption · Efficiency tradeoff ·
Unbounded · Short ciphertext · Full security

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [23], is a
useful paradigm that generalizes traditional public key encryption. Instead of
encrypting to a target recipient, a sender can specify in a more general way
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about who should be able to view the message. In ABE for predicate R, which
is a boolean function R : X × Y → {0, 1}, a private key, which is issued by an
authority, is associated with an attribute X ∈ X, while a ciphertext encrypting
a message M is associated with an attribute Y ∈ Y. A key for X can decrypt a
ciphertext for Y if and only if R(X,Y ) = 1. In this paper, we focus on ABE for
boolean formulae predicate, which is one of the most useful ABE primitive, first
considered by Goyal et al. [13]. For simplicity, we mainly consider the key-policy
type of ABE [13]1. In such a scheme, a key is associated with a boolean formula (a
policy), while a ciphertext is associated with an assignment of boolean variables
(an attribute set), and the decryption succeeds if and only if the assignment
satisfies the formula. In what follows, we let t be the size of an attribute set
corresponding to a ciphertext and m be the size of a policy corresponding to a
private key.

Two of the state-of-the-art fully-secure2 ABE schemes for boolean formulae
were proposed by Attrapadung [2]:

1. The first scheme is the fully-secure unbounded ABE of [2]. Such a scheme has a
(completely) unbounded property where every parameter does not require any
maximum bound at the setup of the scheme. All the other ABE schemes for
boolean formulae in the literature either have bounds in some parameters [10,
16,18–21,26] and/or only selectively secure3 [15,17,22]. This scheme has an
obvious advantage in that the scheme has scalability in their functionality,
in particular, it works for any sizes of attribute sets and policies, and any
number of attribute multi-use in one policy. In this scheme, the ciphertext
size is O(t) (or more precisely, ct group elements for a constant c > 1) and
the key size is O(m).

2. The second scheme is the fully-secure ABE with constant-size ciphertexts
of [2]. All the other constant-size-ciphertext ABE schemes for boolean for-
mulae in the literature are only selectively secure [6] or semi-adaptively
secure4 [11,24]. This scheme has an advantage of scalability in efficiency :
it requires very short ciphertexts of size O(1), regardless of any t, which is
the size of an attribute set assigned to a ciphertext. On the downside, it
requires the maximum bound for t, say T , to be fixed at the setup (but no
bound is required for all the other parameters). Moreover, the key size is quite
large as it becomes O(mT ).

Note that the above two schemes were originally proposed in composite-order
groups in [2]. Their prime-order variants, which are considered more efficient (cf.
[14]), were then subsequently obtained in [3].
1 The other types are ciphertext-policy [8,25] and dual-policy [5] ABE.
2 Full security (or also called adaptive security) is the standard security notion for

ABE. In this notion, the adversary can adaptively query keys for any attribute X as
long as R(X,Y �) = 0 where Y � is an adversarially and adaptively chosen attribute
for the challenge ciphertext.

3 Selective security refers to a weak notion where the adversary is required to announce
the challenge ciphertext attribute Y � upfront before seeing the public key.

4 Semi-adaptive security is an intermediate notion between selective and full security.
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Due to the drawback of the first scheme in that the ciphertext size is not
constant (hence we may say that it lacks scalability in efficiency) and the draw-
backs of the second scheme in that the key size is large and the attribute set size
is bounded (and hence it lacks scalability in functionality), it is natural to seek
for a new scheme with better scalability in both efficiency and functionality.

To this end, we consider the following important open problem:

Is it possible to achieve fully-secure unbounded ABE with short ciphertext
size (less than t group elements)?

We note that constructing even only selectively secure ABE with the above
property is also an open problem.

Our Contribution. In this paper, we answer the above question affirmatively
by proposing a new fully-secure unbounded ABE scheme with a direct tradeoff
between ciphertext and key size: the ciphertext size is O(t/d) and the key size is
O(md), where the “adjusting parameter”d is any positive integer which can be
arbitrarily chosen at setup. The efficiency comparison is shown in Table 1 below.

Table 1. Comparison among fully-secure KP-ABE

Scheme |secret key| |ciphertext|
Unbounded ABE of [2,3] O(m) O(t)

Constant-size-ciphertext ABE of [2,3] O(mT ) O(1)

Our new schemes O(md) O(t/d)

† m is the size of policy associated to a private key.
t is the attribute set size associated to a ciphertext.
T is the maximum bound of t (if bounded).

Our tradeoff scheme can be thought of a generalization that includes both
the unbounded ABE and the constant-size-ciphertext ABE of [2,3] as the two
extreme cases on the spectrum over the tradeoff parameter d. That is, when
setting d = 1, we recover the unbounded ABE, while setting d = T (and thus
posing the maximum bound of t) gives us back the constant-size-ciphertext ABE.

Adjusting d also consequently results in a tradeoff between encryption time
and decryption time. We give the performance estimation in Sect. 4, where we
show the efficiency comparison in details and more concretely in Tables 2, 3 and 4.
Interestingly, as shown in Fig. 1, when estimating efficiency using numerical para-
meters, e.g., from the 254-bit Barreto-Naehrig (BN) curve, the decryption time
is minimized at d being somewhere in the middle of the spectrum.

Our Approach. Our new scheme is constructed based on Key-Policy over Dou-
bly Spatial Encryption (KP-DSE) scheme, which is a primitive introduced also
in [2] (with a prime-order version subsequently proposed in [3]). KP-DSE was
shown to imply both the unbounded ABE and the constant-size-ciphertext ABE
in [2]. We extend these implications by showing a new conversion from KP-DSE
to KP-ABE with tradeoff, which is our goal. Applying this new conversion to
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the KP-DSE schemes of [2] and [3], we obtain a new KP-ABE with tradeoff in
composite-order groups and prime-order groups, respectively.

Our idea for achieving the ciphertext of size O(t/d) is to first partition the
attribute set (of size t) associated to a ciphertext to t/d disjoint subsets each
of size d. We then associate each subset by encoding it to an affine subspace
in KP-DSE. Due to the efficiency of the concrete KP-DSE scheme of [2] where
each affine space requires a corresponding ciphertext portion of constant size,
the total ciphertext size is thus O(t/d), the number of partitioned subsets. The
fact that we require an affine subspace to encode a set of size d results in an
increasing factor d for the key size, hence the tradeoff.

We describe our approach in details in Sect. 3. Before that, we give the defi-
nition of KP-DSE in Sect. 2.

Perspective. We believe that the tradeoff property of our scheme can provide
advantages in real-world applications where size and/or time resources are con-
cretely fixed in advance, as we can flexibly adjust d to match available resources
and thus make the most of them. Such situations include, but are not limited
to, implementations of ABE in tiny hardware tokens, such as secure applications
for the Internet of Things.

2 Preliminaries

2.1 Definitions for ABE

Predicate Family. Let R = {Rκ : Xκ × Yκ → {0, 1}|κ ∈ N
c} be a predi-

cate family where Xκ and Yκ denote “key attribute” and “ciphertext attribute”
spaces and c is some fixed constant. The index κ = (n1, n2, . . . , nc) denotes some
bounds for parameters specific to each predicate family.

ABE Syntax. An attribute-based encryption (ABE) scheme for predicate fam-
ily R is defined by the following algorithms:

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
family index κ of predicate family R, and outputs a master public key PK and
a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a
message M ∈ M, and public key PK. It outputs a ciphertext CT.

• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the
master key MSK. It outputs a secret key SK.

• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes κ, all M ∈ M, X ∈ Xκ, Y ∈ Yκ such that
Rκ(X,Y ) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK) → M .
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Security. The standard notion for ABE is called full security. We refer its def-
inition to [2], as we do not work directly on it but rather use the embedding
lemma for implications below (Lemma 1).

KP-ABE for Monotone Span Program Predicates. Let U be the universe
of attributes. If |U| is of super-polynomial size, it is called large universe [13,22],
otherwise, it is small universe. This predicate is indexed by N ∈ N. In this
predicate, the key attribute domain XN is the set of all policies. A policy is
specified by a monotone span program (or access structure) (A, π) where A is
a matrix in Z

m×k
N for some m, k ∈ N, and π is a map π : [1,m] → U. The

ciphertext attribute domain is the collection of all sets, S, of attributes in U.
For a set S ⊆ U, let A|S be the sub-matrix of A that takes all the rows j such
that π(j) ∈ S. We say that (A, π) accepts S if (1, 0, . . . , 0) ∈ rspan(A|S), where
rspan() denotes the row span. That is,

RKP-ABE
N ((A, π), S) = 1 ⇐⇒ (1, 0, . . . , 0) ∈ span{Ai|π(i) ∈ S}.

In this paper, we consider unbounded KP-ABE, which is KP-ABE with large
universe such that all parameters |S|,m, k and the number of attribute re-use
(the repetition in the range π([1,m])) are unbounded. It is well known that ABE
for monotone span program implies ABE for monotone Boolean formulae [13].

2.2 KP-DSE

Our new KP-ABE scheme will use an implication from KP-DSE [2]. We briefly
review it here.

Notions for Affine Spaces. Let N,n, d ∈ N where 0 ≤ d ≤ n. Let t� be
a vertical vector in Z

n
N . Let M ∈ Z

n×d
N be a matrix whose columns are all

linearly independent. An affine space in Z
n
N specified by a pair (t,M) is defined

as t� + cspan(M), where cspan() denotes the column span; more precisely, it is

t� + cspan(M) = {t� + Mv�|v ∈ Z
d
N}.

Key-Policy over Doubly Spatial Encryption (KP-DSE). The predicate
for KP-DSE is defined as follows. The predicate family is indexed by (N,n) ∈ N

2.
Define the key attribute domain X(N,n) as the set of all pairs of an access matrix
A ∈ Z

m×k
N for any polynomial-size m, k ∈ N and a labelling map π that maps

each row in [1,m] to an affine space in Z
n
N . Define the ciphertext attribute domain

Y(N,n) as the collection of all sets, T , of affine spaces in Z
n
N . The predicate

evaluation is defined by

RKP-DSE
(N,n)

(
(A, π), T

)
= 1 ⇐⇒

(1, 0, . . . , 0) ∈ span{Ai|∃Y ∈ T s.t. π(i) ∩ Y �= ∅}.
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2.3 Embedding Lemma

The following useful lemma from [4,9] describes a sufficient criterion for implica-
tion from ABE for a given predicate to ABE for another predicate. We will use
this lemma in Sect. 3.1 for showing that KP-DSE implies KP-ABE with tradeoff,
which is our main proposal.

The lemma considers two arbitrary predicate families:

RF
κ : Xκ × Yκ → {0, 1}, RF′

κ′ : X′
κ′ × Y

′
κ′ → {0, 1},

which is parametrized by κ ∈ N
c and κ′ ∈ N

c′
respectively. Suppose that there

exists three efficient mappings

fp : Zc′ → Z
c fe : X′

κ′ → Xfp(κ′) fk : Y′
κ′ → Yfp(κ′)

which maps parameters, ciphertext attributes, and key attributes, respectively,
such that for all X ′ ∈ X

′
κ′ , Y ′ ∈ Y

′
κ′ ,

RF′
κ′(X ′, Y ′) = 1 ⇔ RF

fp(κ′)(fe(X
′), fk(Y ′)) = 1. (1)

We can then construct an ABE scheme

Π ′ = {Setup′,Encrypt′,KeyGen′,Decrypt′} for predicate RF′
κ′

from an ABE scheme

Π = {Setup,Encrypt,KeyGen,Decrypt} for predicate RF
κ

by letting

Setup′(λ, κ′) = Setup(λ, fp(κ′))
Encrypt′(PK,M,X ′) = Encrypt(PK,M, fe(X ′)),

KeyGen′(MSK,PK, Y ′) = KeyGen(MSK,PK, fk(Y ′)),
Decrypt′(CTX′ ,SKY ′) = Decrypt(CTfe(X′),SKfk(Y ′)).

Lemma 1 (Embedding lemma [4,9]). If Π is correct and secure, then so
is Π ′. This holds for both the cases of selective security and full security.

2.4 Notations

Notation for Matrix in the Exponents. Vectors will be treated as either
row or column matrices. When unspecified, we shall let it be a row vector.
Let G be a group. Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ G

n. We denote
a·b = (a1 ·b1, . . . , an ·bn), where ‘·’ is the group operation of G. For g ∈ G and c =
(c1, . . . , cn) ∈ Z

n, we denote gc = (gc1 , . . . , gcn). We denote by GLp,n the group
of invertible matrices (the general linear group) in Z

n×n
p . Consider M ∈ Z

d×n
p
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(the set of all d×n matrices in Zp). Denote the transpose of M as M�. Denote
M−� = (M�)−1. We denote by gM the matrix in G

d×n of which its (i, j)
entry is gMi,j , where Mi,j is the (i, j) entry of M . For Q ∈ Z

�×d
p , we denote

(gQ)M = gQM . Note that from M and gQ ∈ G
�×d, we can compute gQM

without knowing Q, since its (i, j) entry is
∏d

k=1(g
Qi,k)Mk,j . The same goes for

gM and Q. For X ∈ Z
r×c1
p and Y ∈ Z

r×c2
p , we denote its pairing as:

e(gX
1 , gY

2 ) = e(g1, g2)Y �X ∈ G
c2×c1
T .

Projection Maps. As used in [3],
(

Ib
0

)
denotes the (b+1)×b matrix where the

first b rows comprise the identity matrix while the last row is zero. It functions
as a left-projection map. That is, X

(
Ib
0

) ∈ Z
(d+1)×d
p is the matrix consisting of

all left d columns of X for any X ∈ Z
(d+1)×(d+1)
p . Similarly, ( 0

1 ) is the (b+1)×1
matrix where the last row is 1; it functions as a right-projection map.

3 Our Key-Policy ABE Schemes

Main Idea for Our Scheme. The main idea for our new KP-ABE scheme
is that we set an parameter d and partition the attribute set S to a disjoint
union5 as S = S1 � · · · � S� where |Sj | ≤ d for all j ∈ [1, �] and � = �|S|/d�. We
then represent each subset Sj by an affine space using an embedding method
similar to the KP-ABE with constant-size ciphertext of [2] (which extends [6]).
This method results in KP-DSE with the set of � affine spaces in Z

d+1
N . An

implementation using the KP-DSE of [2] requires O(�)-size ciphertext for the set
of � affine spaces. Hence, we will achieve the ciphertext size of O(�) = O(|S|/d)
as desired.

Partitioned KP-ABE. As an intermediate predicate family, we define “parti-
tioned KP-ABE” (for monotone span program). The purpose is only syntactic:
to have a predicate family that is indexed also by the adjustable integer d. (The
original definition has only index N specifying ZN ). More precisely, it is indexed
by (N, d) ∈ N

2. The key attribute domain is the same as normal KP-ABE. The
ciphertext attribute domain is the set of all collections of disjointed subsets of
U each with size ≤ d. The predicate evaluation is defined by

RPartition-KP-ABE
(N,d)

(
(A, π), U

)
= 1 ⇐⇒

(1, 0, . . . , 0) ∈ span{Ai|∃W ∈ U s.t. π(i) ∈ W}.

(Here, U is a collection of disjointed subsets of U each with size ≤ d.)

Partitioned KP-ABE implies Normal KP-ABE. Partitioned KP-ABE
immediately implies KP-ABE by mapping ciphertext attribute as

S �→ {S1, · · · S�}
5 We denote by ‘�’ the union of disjointed sets.
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where S = S1 � · · · � S� where |Sj | ≤ d for all j ∈ [1, �] and � = �|S|/d�. To
obtain a unique partition, we can arrange attributes in S in a lexicographical
order as S = {b1, . . . , b|S|} and let Sj = {b(j−1)d+1, . . . , bjd} for all j ∈ [1, � − 1]
(and hence, S� = {b(�−1)d+1, . . . , b|S|}). Straightforwardly, we have the following
lemma:

Lemma 2. For any monotone access structure A = (A, π), any attribute set S,
and {Sj}j defined as above, we have

RKP-ABE
N

(
(A, π), S

)
= 1 ⇐⇒ RPartition-KP-ABE

(N,d)

(
(A, π), {S1, · · · S�}

)
= 1.

Proof. This trivially holds since π(i) ∈ S iff there exists j ∈ [1, �] such that
π(i) ∈ Sj .

3.1 Implication of Partitioned KP-ABE from KP-DSE

We now show that partitioned KP-ABE is implied from KP-DSE. The conversion
is as follows.

• Mapping Parameters. We map fp : (N, d) �→ (N, d+1). That is, we let the
full dimension of affine spaces be n = d + 1.

• Mapping Key Attributes. Consider an access structure A = (A, π). Let m
be the number of rows of the access matrix A. We map

fk : A = (A, π) �→ A
′ = (A, π′)

where for i = 1, . . . , m, we let π′(i) = cspan(X(i)) where

X(i) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−π(i) −π(i)2 · · · −π(i)d

1
1

. . .
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In particular, each π′(i) is an affine space passing through the point 0� (i.e.,
it is a vector space).

• Mapping Ciphertext Attributes. Consider a disjoint collection
{S1, . . . , S�} where |Sj | ≤ d for all j ∈ [1, �]. We map

fc : {S1, . . . , S�} �→ {y(1), . . . ,y(�)}

where for j = 1, . . . , �, we let y(i) be 0-dimensional affine space (a point) as

y(j) := (aj,0, aj,1, . . . , aj,d)�.

where we define aj,ι to be the coefficient of zι in pj(z) :=
∏

y∈Sj
(z − y) =

aj,0 + aj,1z + · · · + aj,dz
d.
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We show the following lemma for the above conversion. The implication from
KP-DSE to KP-ABE will then follow from the embedding lemma.

Lemma 3. For any monotone access structure A = (A, π) and a collection
{S1, . . . , S�} where each |Sj | ≤ d, we have

RPartition-KP-ABE
d (A, {S1, . . . , S�}) = 1 ⇐⇒

RKP-DSE
fp(d)

(fk(A), fc({S1, . . . , S�})) = 1.

Proof. From the definition of the KP-DSE predicate, to prove the statement of
the theorem, it suffices to prove that for all i ∈ [1,m], j ∈ [1, �],

π(i) ∈ Sj ⇔ y(j) ∈ cspan(X(i)) (2)

Forward Direction (⇒). Suppose π(i) ∈ Sj . Thus, pj(π(i)) = 0 (by the
definition of pj). Therefore,

X(i)(a(j))� =
( − (aj,1π(i) + · · · + aj,dπ(i)d), aj,1, . . . , aj,d

)�

= (aj,0, aj,1, . . . , aj,d)�

= y(j),

where we use the fact that pj(π(i)) = aj,0 + aj,1π(i) + · · · + aj,dπ(i)d = 0 in
the second line. From this, we obtain that y(j) ∈ cspan(X(i)), which is the the
right-hand side of (2), as desired. This concludes the forward part.

Backward Direction (⇐). We prove by contrapositive. Suppose π(i) �∈ Sj .
Hence, pj(π(i)) �= 0. Suppose for contradiction that y(j) ∈ cspan(X(i)). Hence
there is a linear combination v� = (v1, . . . , vd)� such that

X(i)v� = y(j). (3)

Thus, by our definitions of X(i),y(j), we must have that
( − (v1π(i) + · · · + vdπ(i)d), v1, . . . , vd

)� = (aj,0, aj,1, . . . , aj,d)�

But this implies that pj(π(i)) = 0, a contradiction. Therefore, y(j) �∈
cspan(X(i)). This concludes the proof for the backward part.

3.2 Our KP-ABE in Composite-Order Groups

In this subsection, we apply our KP-DSE-to-KP-ABE conversion above to the
KP-DSE scheme in composite-order groups proposed in [2]. We use asymmetric
groups instead of symmetric groups as defined for the original scheme in [2].

The scheme will use a composite-order asymmetric bilinear group genera-
tor Gcomposite which outputs (G1,G2,GT , e,N, p1, p2, p3)

$← Gcomposite(λ), where
G1,G2,GT are of order N = p1p2p3. The bilinear map takes the form e :
G1×G2 → GT . Let G1,pi

,G2,pi
be the subgroup of order pi of G1,G2 respectively.

The scheme is as follows.
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• Setup(1λ, d): Generate a composite-order group parameter as (G1,G2,GT ,

e,N, p1, p2, p3)
$← Gcomposite(λ). Pick generators g1

$← G1,p1 , g2 ∈ G2,p1 , and
Z3

$← G2,p3 . Pick h = (h0, h1, . . . , hd+1, φ1, φ2, φ3, η) $← Z
d+6
N and α

$← ZN .
The public key is PK =

(
g1, g2, e(g1, g2)α, gh

1 , Z3

)
. The master secret key is

MSK = α.
• Encrypt(S,M,PK): Upon input a set S ⊆ ZN , do as follows.

1. Let � = �|S|/d�. Partition S to a disjoint union as S = S1 � · · · � S� where
|Sj | ≤ d for all j ∈ [1, �]. For all j ∈ [1, �], let aj,ι be the coefficient of zι in
pj(z) :=

∏
y∈Sj

(z − y).

2. Pick s, w, s1, . . . , s�
$← ZN . Output a ciphertext CT = (C0, C1, C2, C3, C4,

{C5,j , C6,j}j∈[1,�]) where we let C0 = (e(g1, g2)α)sM ∈ GT and

C1 = gs
1, C2 = gsη

1 ,

C3 = gsφ1+wφ2
1 , C4 = gw

1 ,

C5,j = g
wφ3+sj(h0+h1aj,0+···+hd+1aj,d)
1 , C6,j = g

sj

1

• KeyGen((A, π),MSK,PK): Upon input an access structure (A, π), where
A ∈ Z

m×k
N and π : [1,m] → ZN for some m, k ∈ N, do as fol-

lows. Parse MSK = α. Pick randomly r, u, r1, . . . , rm, v2, . . . , vk
$← ZN .

Define v1 = rφ2 and let v = (v1, . . . , vk). Compute a secret key K =(
K1,K2,K3, {K4,i,K5,i,K6,i}i∈[1,m]

)
as

K1 = gα+rφ1+uη
2 ,

K2 = gu
2 ,

K3 = gr
2,

K4,i = gAiv
�+riφ3

2 ,

K5,i = gri
2 ,

K6,i =
(
grih0
2 , g

ri

(
h2−h1π(i)

)

2 , . . . , g
ri

(
hd+1−h1π(i)d

)

2

)
.

Pick a randomness mask R
$← G

3+(d+3)m
2,p3

(hence, R is of the same length as
K). Output a secret key SK = K · R (here, ‘·’ denotes the component-wise
multiplication).

• Decrypt(CT,SK): Parse (S, (A, π)) from CT,SK. Assume (A, π) accepts S, so
that the decryption can be performed. Let I := {i ∈ [1,m]|π(i) ∈ S}. From
the property of LSSS, we have reconstruction coefficients {μi}i∈I such that∑

i∈I μiAiv
� = v1(= rφ2). Do as follows

1. For all i ∈ I, do as follows. Let ji be the index such that π(i) ∈ Sji . (There is
such an index since π(i) ∈ S for all i ∈ I). Parse K6,i = (K6,i,0, . . . ,K6,i,d).
Compute

D6,i := K6,i,0 · K
aj1
6,i,1 · · · Kajd

6,i,d.

(Also recall that aj,ι be the coefficient of zι in pj(z) :=
∏

y∈Sj
(z − y)).
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2. Compute e(g1, g2)αs = L1L2 where

L1 := e(C1,K1)e(C2,K2)−1e(C3,K3)−1,

L2 :=
∏

i∈I

(
e(C4,K4,i)e(C5,ji ,K5,i)−1e(C6,ji ,D6,i)

)μi
. (4)

3. Finally compute M ← C0/e(g1, g2)αs.

Security. The full security of the above scheme follows from the full security of
the KP-DSE scheme in [2] and the embedding lemma for our KP-DSE-to-KP-
ABE conversion. This is captured in the theorem below. We refer the Subgroup
Decision Assumptions and the Expanded Diffie-Hellman Exponent (EDHE3,
EDHE4) Assumptions to [2]. The notation AdvP

A(λ) denotes the advantage of
an adversary A against the security of primitive or assumption P , in function of
the security parameter λ. We also refer its precise definition for each assumption
in [2].

Theorem 1. The above KP-ABE is fully-secure under the Subgroup Decision
Assumption 1,2,3, the (d+1, �)-EDHE3, and the (d+1,m, k)-EDHE4 Assumption
(in asymmetric composite-order groups), where d is the adjustable integer, � =
�|S|/d�, where S is the ciphertext query, and m, k are the maximum numbers of
rows and columns of access matrices among all key queries, respectively. More
precisely, for any ppt adversary A, let q1 denote the number of queries in phase
1, there exist ppt algorithms B1,B2,B3,B4,B5, whose running times are the
same as A plus some polynomial times, such that for any λ,

AdvKP-ABEA (λ) ≤ 2AdvSD1
B1

(λ) + (2q1 + 3)AdvSD2
B2

(λ) + AdvSD3
B3

(λ)

+ q1Adv
(d+1,m,k)-EDHE4
B4

(λ) + Adv
(d+1,�)-EDHE3
B5

(λ).

Proof. This follows immediately from the KP-DSE-to-KP-ABE implication (i.e.,
Lemma 1 via Lemmas 2 and 3) and the security of KP-DSE of [2] (i.e., Theorems
1, 11 and 12 in [2]).

3.3 Our KP-ABE in Prime-Order Groups

In this subsection, we apply our KP-DSE-to-KP-ABE conversion to the KP-DSE
scheme in prime-order groups proposed in [3] (which is then converted from [2]).
The security is based on the Matrix Diffie-Hellman Assumption with parameter
b ∈ N. When b = 1, we can use the SXDH Assumption, and when b = 2, we can
use the Decision Linear Assumption.

The scheme will use a prime-order asymmetric bilinear group generator Gprime

which outputs (G1,G2,GT , e, p) $← Gprime(λ), where G1,G2,GT are of order p.
The bilinear map takes the form e : G1 × G2 → GT . The scheme is as follows.

• Setup(1λ, d): Run (G1,G2,GT , e, p) $← Gprime(λ). Pick generators g1
$← G1,

g2
$← G2. Pick H0,H1, . . . ,Hd+5,

$← Z
(b+1)×(b+1)
p . Pick B

$← GLp,b+1 ⊂
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Z
(b+1)×(b+1)
p . Choose D̃

$← GLp,b, define D :=
(

D̃ 0
0 1

) ∈ GLp,b+1 and Z :=
B−�D. Choose α

$← Z
(b+1)×1
p . Output

PK =

⎛

⎝e(g1, g2)
α�B

(
Ib
0

)
, g

B
(

Ib
0

)

1 ,

{

g
HiB

(
Ib
0

)

1

}

i∈[0,d+5]

⎞

⎠ ,

MSK =

⎛

⎝gα
2 , g

Z
(

Ib
0

)

2 ,

{

g
H�

i Z
(

Ib
0

)

2

}

i∈[0,d+5]

⎞

⎠ .

• Encrypt(S ⊂ Zp,M,PK): Upon input a set S ⊆ Zp, do as follows.
1. Let � = �|S|/d�. Partition S to a disjoint union as S = S1 �· · ·�S� where

|Sj | ≤ d for all j ∈ [1, �]. For all j ∈ [1, �], let aj,ι be the coefficient of zι

in pj(z) :=
∏

y∈Sj
(z − y).

2. Pick s0,w, s1, . . . , s�
$← Z

b×1
p . Output a ciphertext as CT = (C1,C2,C3,

C4, {C5,j ,C6,j}j∈[1,�], C0) where

C1 = g
B( s0

0 )
1 ,

C2 = g
Hd+5B( s0

0 )
1 ,

C3 = g
Hd+2B( s0

0 )+Hd+3B(w
0 )

1 ,

C4 = g
B(w

0 )
1 ,

C5,j = g
Hd+4B(w

0 )+(H0B+aj,0H1B+···+aj,dHd+1B)( sj

0 )
1 ,

C6,j = g
B( sj

0 )
1 ,

and C0 = e(g1, g2)α�B( s0
0 ) · M ∈ GT .

• KeyGen((A, π),MSK): Upon input an access structure (A, π), where A ∈ Z
m×k
N

and π : [1,m] → ZN for some m, k ∈ N, do as follows. Parse MSK = α.
Pick randomly r,u, r1, . . . , rm,v2, . . . ,vk

$← Z
b×1
p . Output a secret key SK =

(K1,K2,K3, {K4,i,K5,i,K6,i,j}i∈[1,m],j∈[0,d]) where

K1 = g
α+H�

d+2Z( r
0 )+H�

d+5Z(u
0 )

2 ,

K2 = g
Z(u

0 )
2 ,

K3 = g
Z( r

0 )
2 ,

K4,i = g
Ai,1H�

d+3Z( r
0 )+∑k

j=2 Ai,jZ( vj

0 )+H�
d+4Z( ri

0 )
2 ,

K5,i = g
Z( ri

0 )
2 ,

K6,i,0 = g
H�

0 Z( ri
0 )

2 ,

∀j∈[1,d] K6,i,j = g
(H�

j+1−π(i)jH�
1 )Z( ri

0 )
2 .
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• Decrypt(CT,SK): Suppose (A, π) accepts the set S. Let I ={i∈ [1,m]|π(i)∈S}.
Compute coefficients {μi}i∈I such that

∑
i∈I μiAi = (1, 0, . . . , 0).

Do as follows
1. For all i ∈ I, do as follows. Let ji be the index such that π(i) ∈ Sji .

(There is such an index since π(i) ∈ S for all i ∈ I). Compute

D6,i := K6,i,0 · K
aj1
6,i,1 · · · Kajd

6,i,d.

(Also recall that aj,ι be the coefficient of zι in pj(z) :=
∏

y∈Sj
(z − y)).

2. Compute e(g1, g2)α�B( s0
0 ) = L1 · L2 where

L1 := e(C1,K1)e(C2,K2)−1e(C3,K3)−1,

L2 :=
∏

i∈I

(
e(C4,K4,i)e(C5,π(i),K5,i)−1e(C6,π(i),D6,i)

)μi
.

3. Finally compute M ← C0/e(g1, g2)α�B( s0
0 ).

Security. The full security of the above scheme follows from the full secu-
rity of the KP-DSE scheme in [3] and the embedding lemma for our KP-
DSE-to-KP-ABE conversion. This is captured in the theorem below. We refer
the Matrix Diffie-Hellman Assumption and the Expanded Diffie-Hellman Expo-
nent Assumptions in prime-order subgroups (EDHE3p, EDHE4p) to [3,12],
respectively.

Theorem 2. The above KP-ABE is fully-secure under the Db-Matrix-DH,
(d+1, �)-EDHE3p, and (d+1,m, k)-EDHE4p Assumptions (in asymmetric prime-
order groups), where d is the adjustable integer, � = �|S|/d�, where S is the
ciphertext query, and m, k are the maximum numbers of rows and columns of
access matrices among all key queries, respectively. More precisely, for any ppt
adversary A, let q1 denote the number of queries in phase 1, there exist ppt algo-
rithms B1,B2,B3, whose running times are the same as A plus some polynomial
times, such that for any λ,

AdvKP-ABEA (λ) ≤ (2q1 + 3)AdvDb-MatDH
B1

(λ)+

q1Adv
(d+1,m,k)-EDHE4p
B2

(λ) + Adv
(d+1,�)-EDHE3p
B3

(λ).

Proof. This follows immediately from the KP-DSE-to-KP-ABE implication (i.e.,
Lemma 1 via Lemma 2,3) and the security of the prime-order KP-DSE of [3] (i.e.,
Theorem 3 in [3] via Theorem 11,12 in [2]).

4 Efficiency Performance

Optimizing Decryption Time. The decryption time of our scheme can be
optimized by reducing the number of pairings, which are the dominant oper-
ations. This is done by using the identity

∏
i e(ai, b) = e(

∏
i ai, b), where we



262 N. Attrapadung et al.

Table 2. Comparison for asymptotic efficiency among KP-ABE

Scheme |PK| |SK| |CT| Enc time Dec time Unbounded?

expo. pair.

Unbounded ABE of [2,3] O(1) O(m) O(t) O(t) O(m) O(m) yes

Const.-|CT| ABE of [2,3] O(T ) O(mT ) O(1) O(T ) O(mT ) O(1) no, T = max t

Our new schemes O(d) O(md) O(t/d) O(t) O(md) O(min{m, t/d}) yes

bundle the group-G1 elements ai that are paired to the same element of group
G2 (here, it is b).

For simplicity here, we consider the composite-order scheme. The prime-
order scheme can be done in a similar manner. In decryption, we can compute
the element L2 also as:

L2 = e(C4,
∏

i∈I

K4,i) ·
�∏

x=1

(
e(C5,x,

∏

i∈I
s.t.ji=x

K−μi

5,i )e(C6,x,
∏

i∈I
s.t.ji=x

Dμi

6,i)
)
. (5)

The original decryption as in Eq. (4) requires at most 2m+4 pairings, while the
above alternative via Eq. (5) requires 2� + 4 = 2t/d + 4 pairings. To minimize
the decryption time, we choose the method of which the cost is the minimum of
both.

Beside pairings, the total decryption time also include the cost for exponen-
tiations, which is at most md+m times. Hence, the total decryption time for the
composite-order scheme is c1(md+m)+ c2(min{2m+4, 2t/d+4}), where c1, c2
are the costs for one exponentiation and one pairing, respectively. When fixing
all parameters except d, this amount becomes k1d + k2/d + k3 for some con-
stants k1, k2, k3. This is minimized at d being somewhere in the middle (which
will depend on k1, k2, k3). This minimization will be depicted in Fig. 1(d) below.
We also note that the min function is reflected at the sharp rigs at the leftmost
parts of the graphs in Fig. 1(d).

Comparison for Asymptotic Efficiency. We provide a comparison of asymp-
totic efficiency among ABE schemes in Table 2. We consider fully-secure schemes
that are either completely unbounded or admitting constant-size ciphertexts.
The schemes that satisfy this criteria are the unbounded ABE of [2,3] and the

Table 3. Efficiency of our prime-order KP-ABE with b = 1. Here we use an example
with m = 40, t = 60.

Adjust d |PK| |SK| |CT| Enc time Dec time

(# of |G1|) (# of |G2|) (# of |G1|) expo(G1) expo(GT ) expo(G2) pair.

General 2d + 12 2md + 6m + 6 4t/d + 8 2t + 6t/d 1 2md + 2m min
{

4m+8,
4t/d+8

}

d = 1 14 326 248 480 1 160 168

d = 4 20 566 68 210 1 400 68

d = 20 52 1846 20 138 1 1680 20
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Table 4. Concrete efficiency of our KP-ABE from Table 3 when instantiated using BN
curves.

Adjust d |PK| |SK| |CT| Enc time Dec time

(bits) (bits) (bits) expo(G1) expo(GT ) expo(G2) pair. total

General (2d + 12) (2md + 6m + 6) (4t/d + 8) (2t + 6t/d) 1 (2md + 2m) min
{

4m+8,
4t/d+8

}

×509 ×255 ×509 ×104 ×164 ×57 ×342

d = 1 7, 126 83, 130 126, 232 49.8 ms 164 μs 9.1 ms 57.4 ms 66.5 ms

d = 4 10, 180 144, 330 34, 612 20 ms 164 μs 22.8 ms 23.2 ms 46 ms

d = 20 26, 468 470, 730 10, 180 14.2 ms 164 μs 95.7 ms 6.8 ms 102.5 ms
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Fig. 1. Efficiency of our scheme when (1) m = 40, t = 60 (blue line), (2) m = 30, t = 30
(green dashed line), (3) m = 10, t = 20 (red dotted line). (Color figure online)

constant-size ciphertext scheme also of [2,3]. All the other schemes in the liter-
ature are either only selectively-secure or bounded in some parameters.

Concrete Efficiency. We provide the concrete efficiency of our KP-ABE scheme
in prime-order groups. We use the instantiation where b = 1, to maximize
the efficiency, hence the scheme can be based on the SXDH Assumption [3].
To show concrete performance, we use an example with m = 40, t = 60 and
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vary d = 1, 4, 20 in Table 3. We note that we simply directly count the number
of respective operations. This can be further improved by considering multi-
exponentiation and multi-pairing algorithms (e.g., [27]); we omit it here.

To obtain an even more concrete picture, we instantiate with the 254-bit
Barreto-Naehrig (BN) curves in Table 4. Such curves admits the sizes of group
elements as follows: |G1| = 509, |G2| = 255, and |GT | = 2032 bits [1]. As for the
time performances in these curves, we refer to the implementation of [27], where
exponentiations in G1,G2,GT take 104, 57, 164 microseconds, respectively, while
a pairing operation takes 342 microseconds.

For ease of viewing, we also plot the graphs for the estimated efficiency in
Fig. 1 in three cases: (1) m = 40, t = 60, (2) m = 30, t = 30, and (3) m = 10, t =
20, in blue, green, and red color, respectively.

We can observe that by adjusting d we obtain a tradeoff among size and time
performances: the larger d tends to imply the larger public key and private keys
but the smaller ciphertext size and the faster encryption time. Interestingly, the
total decryption time is minimized somewhere in the middle (e.g., in the case
when m = 40, t = 60, it is optimized at d = 4).

5 Extensions

Ciphertext-Policy, Dual-Policy ABE with Tradeoff. By using the generic
dual conversion of [7], we immediately obtain also the ciphertext-policy ABE
schemes with a similar tradeoff (but somewhat dual) to our KP-ABE schemes.
Moreover, by using the generic dual-policy conversion also of [7], we obtain
the dual-policy ABE [5] with combined tradeoffs from both key-policy and
ciphertext-policy parts.

Acknowledgement. A part of this study is supported by SECOM Science and Tech-
nology Foundation.
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