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Abstract. Intrusion detection systems (IDSs) play a significant role
to effectively defend our crucial computer systems or networks against
attackers on the Internet. Anomaly detection is an effective way to detect
intrusion, which can discover patterns that do not conform to expected
behavior. The mainstream approaches of ADS (anomaly detection sys-
tem) are using data mining technology to automatically extract normal
pattern and abnormal ones from a large set of network data and dis-
tinguish them from each other. However, supervised or semi-supervised
approaches in data mining rely on data label information. This is not
practical when the network data is large-scale. In this paper, we propose
a two-stage approach, unsupervised feature selection and density peak
clustering to tackle label lacking situations. First, the density-peak based
clustering approach is introduced for network anomaly detection, which
considers both distance and density nature of data. Second, to achieve
better performance of clustering process, we use maximal information
coefficient and feature clustering to remove redundant and irrelevant fea-
tures. Experimental results show that our method can get rid of useless
features of high-dimensional data and achieves high detection accuracy
and efficiency in the meanwhile.

Keywords: Anomaly detection · Data mining · Feature selection ·
Maximal information coefficient · Density peak clustering

1 Introduction

Intrusion is a set of actions aiming to compromise the security of computer and
network components in terms of confidentiality, integrity and availability [1].
Intrusion detection techniques can be classified into two categories:misuse detec-
tion (or signature-based detection) and anomaly detection. Misuse detection
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identifies intrusions based on patterns acquired from known attacks [2]. Anom-
aly detection discovers intrusions based on significant deviations from normal
activities [3].

In early days, signature-based methods such as Snort [4], based on exten-
sive knowledge of the particular characteristics of each attack, referred to as
its signature are commonly applied. Such systems are highly effective in deal-
ing with attacks for which they are programmed to defend unknown intrusion.
Besides, they are not applicable for anomaly detection with large-scale network
data because of the famous 4V [5]:

Volume. The scale and complexity of network data is beyond the Moores law
which means the amount of traffic to be detected in every terminal increases
rapidly. String matching based signature method is a computationally intensive
task.

Variety. Network data usually is derived from various sources, where it
is described in unstructured or semi-structured way. Proper integration is
necessary to make uniform format.

Value. The value density of data is low. Anomaly detection problem usually
faces with high dimensional network data. Some features of these data are useless
in identifying anomaly.

Velocity. The detection needs response in real-time in order to detect attack or
anomaly in time.

In addition, building new signatures require human experts’ manual inspec-
tion which is not only expensive, but also induces a significant period of vul-
nerability between the discovery of a new attack and the construction of its
signatures.

Patcha et al. [6] further categorizes anomaly detection methods into three
categories: statistics-based, data mining-based and machine learning-based.
Statistics-based method is difficult to adapt to the non-stationary variation of
the network traffic, which leads to a high false positive rate [7]. To alleviates
these shortcomings, a number of ADSs employ data mining techniques [8–12].
Data mining techniques aim to discover understandable patterns or models from
given data sets [13]. It can efficiently identify profiles of normal network activi-
ties for anomaly detection, and build classifiers to detect attacks. Some earlier
work show that these techniques can help to identify abnormal network activities
efficiently.

Supervised anomaly intrusion detection approaches [8–10] highly rely on
training data from normal activities, which are commonly used as data min-
ing techniques. Since training data only contain historical activities, the profile
of normal activities can only include the historical patterns of normal behav-
ior. Therefore, new activities due to the change in the network environment or
services are considered as deviations from the previously built profile, namely
attacks. In addition, attack-free training data are not easy to obtain in real-world
networks. The ADS trained by the data with hidden intrusions usually lacks the
ability to detect intrusions.
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To overcome the limitations of supervised anomaly-based systems, ADS
employing unsupervised approaches has become a focus recently [14–17]. Unsu-
pervised anomaly detection does not need attack-free training data. In distance-
based methods, clusters are groups of data characterized by a small distance to
the cluster center. However, a data point is always assigned to the nearest center,
these approaches are not able to detect nonspherical clusters. In density-based
spatial clustering methods, one chooses a density threshold, discards as noise the
points in regions with densities lower than this threshold, and assigns to different
clusters disconnected regions of high density. However, it can be nontrivial to
choose an appropriate threshold.

Another challenge in ADS is feature selection. Many existing algorithms suf-
fer from low effectiveness and low efficiency due to high dimensionality and
large size of the data set. Hence, feature selection is essential for improving
detection rate, since it can not only help reduce the computational cost but also
improve the precision by removing irrelevant, mistaking and redundant features.
However, in amount of data mining methods, features are selected based on the
mutual information between feature and labels. Moreover, in many cases network
data contain continuous variables which is challenging to measure the relation
between features because the result greatly relies on the discretization methods.

Such limitations impose a serious bottleneck to unsupervised network anom-
aly detection problem. In this paper, we investigate anomaly detection problem
in large scale and high-dimensional network data without labels and propose
a new approach, called UFSDP (Unsupervised Feature Selection based Density
Peak clustering) to tackle it. The major contributions of this paper are summa-
rized as follows.

(1) We propose a new systematic framework that employs the density peak
based clustering algorithm for network anomaly detection. This clustering
algorithm has the advantage of extracting cluster centers and outlier points
automatically. Besides, sampling adaptation is applied to improve the time
and memory efficiency of the original clustering method in center selection
stage.

(2) An unsupervised cluster-based feature selection mechanism is proposed
before clustering procedure. We use two different ways to compute the rela-
tions for discrete and continuous attributes respectively. Different from other
feature selection mechanism, we cluster the relevant features into groups
according to their maximum redundancy from each other. Eventually redun-
dant features are removed to make the feature number as least as possible.

(3) Extensive experiments are made to evaluate the performance of proposed
method. Firstly, comparison are made over different classifiers by using orig-
inal dataset and dataset with feature reduced by proposed selection algo-
rithm. The proposed sampled-density peak clustering methodology is also
compared with other clustering algorithms to evaluate its clustering perfor-
mance in different credible metrics.

The rest of the paper proceeds as follows. Section 2 reviews related work.
Section 3 describes our methodologies including unsupervised feature selection
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and density peak clustering respectively and highlights our motivation in using
them. Section 4 presents our evaluation results and analysis. Section 5 finally
summarizes our work.

2 Related Work

2.1 Unsupervised Anomaly Detection

Most of current network anomaly detection systems are supervised learning
method. However, training data is typically expensive to obtain. Using unsuper-
vised anomaly detection techniques, the system can be trained with unlabeled
data and is capable of detecting previously unseen attacks.

Clustering, a ubiquitous unsupervised learning method, aims to group objects
into meaningful subclasses. Therefore, network data generated from different
attack mechanism or normal activities have distinct characteristics so each of
them can be distinguished from others.

KMeans, a clustering method, is employed to detect unknown attacks and
divide network data space effectively in [17]. However the performance and com-
putation complexity of KMean method are sensitive to the predefined number
of clusters and initialized cluster centers. Wei et al. [18] employs improved FCM
algorithms to obtain an optimal k.

In [19], the authors proposed an anomaly detection method. This method
utilizes a density-based clustering algorithm DBSCAN for modeling the normal
activities of a user in a host.

Egilmez et al. [16] proposed a novel spectral anomaly detection method
by developing a graph-based framework over wireless sensor networks. In their
method, graphs are chosen to capture useful proximity information of measured
data and employed to project the graph signals into normal and anomaly sub-
spaces.

In [20], a SOM-based anomaly intrusion detection system was proposed,
which could contract high-dimension data to lower dimension, meanwhile keep-
ing the primary relationship between clustering and topology. But results is
sensitive to parameters such as neuron number.

2.2 Feature Selection

The machine learning community has developed many solutions to address the
curse of dimensionality problem in the form of feature selection and feature
extraction. Different from feature extraction methods such as principal com-
ponent analysis (PCA) [21] and linear discriminant analysis (LDA) [22], feature
selection methods aim to choose a representative subset of all the features instead
of creating a subset of new features by combinations of the existing features,
which reserves the interpretability of attributes.

Feature selection can be briefly divided into three broad categories: the filter,
embedded and wrapper approaches. In terms of feature selection, filter methods
are commonly used.
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Filter algorithms have low computational complexity, but the accuracy of the
learning algorithms is not guaranteed. In [23], Peng et al. propose a minimal-
redundancy-maximal-relevance (mRMR) criterion, which adds a feature to the
final subset if it maximizes the difference between its mutual information with the
class and the sum of its mutual information with each of the individual features
already selected. Qu et al. [24] suggested a new redundancy measure and a
feature subset merit measure based on mutual information concepts to quantify
the relevance and redundancy among features. Song et al. [25] proposed a feature
filter FAST based on the mutual information between features and minimum
spanning tree is used to split features into clusters. Only one representative
feature will be selected from every cluster to form the best discriminative feature
subset. But when all weight value of edges is not high enough to arise split, it is
not applicable.

In addition, it lacks an effective way to compute the mutual information
between continuous features. Since continuous variables have unlimited values
and the probability of any of them is not defined. Equal-width [26] divides contin-
uous value into a number of bins with equal width, however it can be inaccurate
since the width is an uncertainty. Others uses parzen window [27] to estimate the
probability density distribution of two variables and employ integration compu-
tation. The actual distribution is unknown and the result highly relies on the
selection of kernel function. FSFC [28] applies a new similarity measure, called
maximal information compression index as the measurement of feature similarity
and also predefines the number of selected features in the final feature subset.

3 Methodology

3.1 Feature Selection

Feature selection is a commonly used technique to select relevant features by
reducing the data dimensionality and building effective prediction models. Fea-
ture selection can improve the performance of prediction models by alleviating
the effect of the curse of dimensionality, enhancing the generalization perfor-
mance, speeding up the learning process.

Relevance Definition. Suppose F denotes the set of whole features, Fi denotes
an element of F , C denotes the target concept and Si denotes the F -Fi. There
are mainly three kinds of features:

Definition 1 (Strong correlation). Fi is strong relevant to target concept C
if and only if

p(C|Si, Fi) �= p(C|Si) (1)

Strong relevant features can have impact on distribution of classification. Lacking
strong relevant features, the result would be inaccurate.
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Definition 2 (Weak correlation). Fi is weak relevant to target concept C if
and only if

p(C|Si, Fi) = p(C|Si), ∃S′
i ⊂ Si, p(C|S′

i, Fi) �= p(C|S′
i) (2)

A weak relevant feature impacts the distribution of classification in some condi-
tion, but not necessary.

Definition 3 (Independent correlation). Fi is an independent feature if and
only if

∀S′
i ⊂ Si, p(C|S′

i, Fi) �= p(C|S′
i) (3)

Independent features do not influence the distribution of classification, so they
are firstly removed in feature selection.

Mutual Information Calculation. In previous work [23,25], the symmetric
uncertainty is used as the measure of correlation between two features. The
symmetric uncertainty is defined as follows:

SU(Fi, Fj) =
2 ∗ Gain(Fi, Fj)
H(Fi) + H(Fj)

(4)

H(Fi) is the entropy of a discrete random variable H(Fi), if p(f) is the prior
probabilities for all values of Fi, H(Fi) is defined by:

H(Fi) = −
∑

f∈Fi

p(f)log2p(f) (5)

H(Fi, Fj) is the conditional entropy of Fi with priori knowledge of all values of
Fj . The smaller H(Fi, Fj) is, the greater Gain(Fi, Fj) is:

Gain(Fi, Fj) = H(Fi) − H(Fi|Fj) = H(Fj) − H(Fj |Fi) (6)

Gain(Fi, Fj) means the contribution made by a known variable to reduce
the uncertainty of an unknown variable, which can referred to another feature
or the target concept.

Definition 4 (Relevancy). In supervised learning methods, features with low
value of SU(Fi, C) are firstly removed as independent ones. However, in unsu-
pervised learning cases, the distribution of C are inaccessible. To deal with this
problem, another measurement called ref is introduced to replace SU(Fi, C)
and their definition are as follows:

ref(Fi, C) =
1
n

n∑

j=1

SU(Fi, Fj) (7)

ref(Fi, Fj) = SU(Fi, Fj) (8)
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Discrete attributes such as protocol type can directly be applied with afore-
mentioned formulas. But continuous attributes such as src bytes are uneasy to
directly do so since their possible values are approximately infinite, and result-
ing in value H(Fi) greater and value SU(Fi, Fj) less than discrete attributes.
As a result, it’s challenging to compute relations between continuous features.
Usually discretization operation is applied to map infinite values into finite val-
ues. However, most unsupervised discretization methods such as clustering and
equal-width compute the relation in a rough way.

In this paper, the relation information between two continuous features are
calculated using Maximal Information Coefficient (MIC) [29]. Methods such as
mutual information estimators show a strong preference for some types of rela-
tions, but fails to describe well in other cases, which makes it unsuitable for
identifying all potentially interesting relationships in a dataset. However, MIC
has the ability to examine all potentially interesting relationships in a dataset
independent of their form, which allows tremendous versatility in the search for
meaningful insights.

MIC is based on the idea that if a relationship exists between two variables,
then a grid can be drawn on the scatterplot of the two variables that divides the
data to encapsulate that relationship. Given a finite dataset D of two dimensions,
one of the dimensions named x-values and the other as y-values. Suppose x-values
is divided into x bins and y-values into y bins, and we got a x∗y grid G, given by

I ∗ (D,x, y) = argmaxI (D|G) (9)

For each pair (x,y), the MIC algorithm finds the x by y grid with the highest
induced mutual information. Then MIC algorithm normalizes the mutual infor-
mation scores and compiles a matrix that stores D|G. Then, the MIC(x,y) is the
maximum value in the matrix.

Feature Cluster. After computing MI and MIC we get ref(Fi, C) and
ref(Fi, Fj) from previous steps, then an intuitive clustering algorithm is pro-
posed to filter those features. Firstly, features with low ref(Fi, C) are removed
since those features do not make obvious contribution for identifying. We set a
threshold1 for ref(Fi, C). In this paper, we run algorithm multiple times and
choose the best one. After that, redundant features are removed according to
the value of ref(Fi, Fj). We set threshold2 for ref(Fi, Fj), if ref(Fi, Fj) exceeds
threshold2, Fi and Fj can be regarded as redundant. Then we cluster those
redundant features together. The details of the unsupervised feature selection
algorithm for continuous features are given in Algorithm1.

3.2 Density Peak Based Clustering

In distance-based methods, clusters are groups of data characterized by a small
distance to the cluster center. However, a data point is always assigned to the
nearest center, these approaches are not able to detect nonspherical clusters.
In density-based spatial clustering methods, one chooses a density threshold,
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Algorithm 1. Unsupervised continuous feature selection by MIC
Require: D={F0, F1...F40} - the given dataset without label

θ1 - threshold for irrelevance
θ2 - threshold for redundancy

Ensure: S - selected feature subset
n = Fcontinuous.size()
M [n][n] = {0} //initialize the relevance matrix M
for each pair feature {Fi, Fj} do

M [i][j] = M [j][i] = MIC[Fi][Fi]
end for
Frelevant = ∅
for i = 0 to n do

M [i][i] = M [i][i] = Avg(M [i]) // M[i][i] is the relevance score of feature Fi, equal
to the average value of M[i][0].. M[i][1]...M[i][n-1]
if M [i][i] > θ1 then

Frelevant = Frelevant ∪ Fi

end if
end for
//=====Part1:Irrelevant Feature Removal=====
Feature cluster = {} //a map
for for each Fi in Frelevant do

if Feature cluster = {} then
Feature cluster = Feature cluster ∪ {i}

else
float maxredundancy = 0.0, int maxindex = 0
for each Fj inFeature cluster do

if MIC[Fi][Fj ] > maxreduncy then
maxredundancy = MIC[Fi][Fj ]
maxindex = Fj .index

end if
end for
if maxredundancy < θ2 then

Feature cluster = Feature cluster[i] ∪ {i}
else

Feature cluster[maxindex].insert(i)
end if

end if
end for
//=====Part2: Feature Clusters Construction=====
S = ∅
for each subset S′ in Feature cluster do

Fj = maxFk∈S′M [k][k]
S = S ∪ Fj

end for
//=====Part3: Feature Selection=====
return S
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discards as noise the points in regions with densities lower than this threshold,
and assigns to different clusters disconnected regions of high density. However,
it can be nontrivial to choose an appropriate threshold.

Most clustering algorithms [14–17] need parameters predefined, such as clus-
ter number, and the detection accuracy is sensitive to those parameters. In [30],
Alex et al. develop a modern clustering method named Fast Search and Find of
Density Peaks (DP). Given data samples, there are two variables that does this
algorithm calculates for each data sample.

(1) local density ρi:
ρi measures the local density of a target point i by computing the number
of points within the fixed radius to point i. There are two ways to compute
local density.
In cut-off kernel,

ρi =
∑

j∈IS\{i}
χ(dij − dc) (10)

χ(x) =
{

1, x < 0;
0, x ≥ 0,

(11)

In Gaussian kernel,

ρi =
∑

j∈IS\{i}
e− (

dij
dc

)
2

(12)

(2) minimum distance to high density point δi:
δi is measured by computing the minimum distance between point i and
any other point with higher density. The points with higher value of local
density and distance are selected as cluster center.

Cluster Center Selection. In original density peak clustering, the density and
distance of all the data samples are computed primarily. During this procedure,
the method maintains a matrix with float number for distance in size of N*N
where N is the number of samples. When N is higher than 32000, the memory
can not store the whole matrix at one pass. Memory constraints density peak
clustering to applied in a larger scale dataset. We notice that if we downsample
the network data randomly, the whole distribution of data become sparse but
the position of cluster centers remains changed slightly. Because the original
data points with high density are still higher than other points after unbiased
downsampling. Given this, we use a portion of network data instead of whole
dataset and obtain approximate centers.

Clustering Process. After the cluster centers have been found, every remain-
ing point is assigned to the nearest center. The label assignment is performed in
a single step.
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4 Experiments and Analysis

4.1 Dataset and Preprocess

KDDCup99 dataset [31] is used as a benchmark which contains five million
connection records processed from four gigabytes of compressed binary TCP
dump data from seven weeks of network traffic. Due to the huge volume of
original dataset, we use 10 % containing about 494021 records of this KDDCup99
dataset which is publicly available for experimental purpose. Attacks are broadly
categorized in four groups such as Probes (information gathering attacks), DoS
(denial of service), U2R (user to root) and R2L (remote to local). Each labeled
record consists of 41 attributes (features) as depicted in Table 1 and one target
value. Target value indicates the attack category name.

Algorithm 2. Data clustering by sampled Density-Peak algorithm
Require: D={F0, F1...Fn} - the dimension reduced dataset without label

m - sample reduce factor Percent - position of dc

θ1 - threshold for density θ2 - threshold for distance
Ensure: label - labels of data

for i = 0 to N do
if random.(0, m) == 0 then

Sample.insert(D[i])
end if

end for
=====Part1:Choose samples for centers =====
List LL
for each pair (Sample[i], Sample[j]) in Samples do

dist[i][j] = eculidean distance(Sample[i], Sample[j])
LL.append(dist[i][j])

end for
dc = percent ∗ sorted(LL)
for each i in Sample do

Rho[i] = countj∈Sample ∩ dist[i][j]<dc(j)
Delta[i] = minj∈Sample ∩ Rho[j]>Rho[i](dist[i][j])

end for
for each i in Sample do

if Rho[i] > θ1 ∩ Delta[i] > θ2 then
Center.insert(i)

end if
end for
=====Part2:Cluster center selection=====
Label = [N ]
for each i in D do

Label[i] = minj∈Centers(eculidean distance(D[i], Center[j]))
end for
=====Part3:Labeling=====
return Label
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Table 1. Summay of the 41 attributes in KDDCup99 data sets

No Feature name Type No Feature name Type

1 duration C 22 is guest login D

2 protocol type D 23 count C

3 service D 24 src count C

4 flag D 25 serror rate C

5 src bytes C 26 srv serror rate C

6 dst bytes C 27 rerror rate C

7 land D 28 srv rerror rate C

8 wrong fragment C 29 same srv rate C

9 urgent C 30 diff srv rate C

10 hot C 31 srv diff host rate C

11 num failed logins C 32 dst host count C

12 logged in D 33 dst host srv count C

13 num compromised C 34 dst host same srv rate C

14 root shell D 35 dst host diff srv rate C

15 su attempted D 36 dst host same src port rate C

16 num root C 37 dst host srv diff host rate C

17 num file creations C 38 dst host serror rate C

18 num shells C 39 dst host srv serror rate C

19 num access files C 40 dst host rerror rate C

20 num outbound cmds C 41 dst host srv rerror rate C

21 is hot login D

Table 2. Specific of KDDCup99 10 percent

Attack category Specific classes No. of records

Normal normal 97278

DoS back,land,neptune,pod,smurf,teardrop 391458

Probe ipsweep,nmapportsweep,satan 4107

R2L ftpwriteguesspasswd,imap,multihop,phf,spy,warezclient... 1126

U2R bufferoverflow,loadmodule,perl,rootkit 52

Total 494021

Since attributes in the KDD datasets include forms of continuous, discrete
and symbolic with significantly varying resolution and ranges. In feature selection
step, entropy and mutual information between discrete and symbolic attributes
are computed without preprocessing. While in clustering stage, symbolic and dis-
crete data are normalized and scaled. Firstly symbolic features like protocol type,
services, flags and attack names were mapped to integer values ranging from
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0 to N − 1 where N is the number of symbols. Secondly, min-max normal-
ization process is implemented. Each of feature is linearly scaled to the range
of [0.0,1.0] for the fairness between different attributes. As we see in Table 2,
the 10 % of KDDCup99 is an imbalanced dataset, with ‘neptune’, ‘normal’ and
‘smurf’ greatly higher than other kinds. Therefore we downsample three kinds
to ensure the relative balance with other attributes.

4.2 Performance Evaluation

To evaluate the effectiveness and performance of our proposed method, simu-
lation experiments have been carried out. All experiments are executed on a
computer with Intel I5 CPU, CPU clock rate of 3.20 GHz, 4 GB main memory.
The algorithm proposed is implemented with Winpython-64bit using program-
ming language Python 2.7.9. Several valuable utilities, MINE package [32] and
Python open source machine learning library Scikit-learn, Numpy, SciPy, Mat-
plotlib [33] are adopted during experiments.

In feature selection stage, we present the experimental results in terms of
the classification accuracy and the the time gain from reduced data to original.
Parameters of Alrogithm 1 are setup as following: D=KDDCup99 10 percent,
θ1=0.2, θ2=0.5. After running Algorithm1, we obtained selected discrete feature
subset {2, 3, 4, 12} and continuous feature subset {1, 8, 10, 23, 24, 25, 26, 27, 28,
29, 32, 33}, totally 16 features with 60.97% reduction compared to original fea-
tures numbers. Our experiment is set up as follows:

1. Comparison is carried out over our unsupervised method with other feature
selection approaches, including supervised such as RFE, ExtraTreeClassifier.

2. Five classification algorithms are employed to classify data before and after
feature selection. They are the tree-based DecisionTreeClassifier, ensemble
learning method ExtraTreesClassifier, Random Forest Classifier algorithm
and AdaboostClassifier and optimal margin-based Support Vector Machine,
respectively.

3. We sampled those three categoreis to obtain a balanced dataset and the total
number of samples is about 20000. Given that the result can be different every
time, we run the comparision experiments 100 times on the same machine and
then obtain average measured values.

Figure 1 records the classification accuracy of five classifier achieved on datasets
reduced by four feature selection methods. From it we observed that

1. The original data without feature selection achieve the highest accuracy in
most classifier situation since it reserves all information of the whole data.

2. Most feature selection methods can achieve a high accuracy and is close to
original data. In most case, ensemble learning model, Random Forest and
AdaBoost methods can achieve better detection accuracy compared with
other model, such as Decision Tree, Support Vector Machine.
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Fig. 1. Classification accuracy over different feature selection mehods

3. Compared with other supervised feature selection, MIC based-unsupervised
feature selection acquire relatively high detection accuracy which is very close
to the ExtraTreesClassifier with 0.4% gap and to the original data with
0.6% gap. Moreover, UFS-MIC achieves 3.3% better than another super-
vised method RFE. The result shows that with absence of labels, the detec-
tion accuracy of proposed method is comparable with supervised approaches
and thus suitable for network anomaly detection.

In the meanwhile, we record the time of running every classifier both fea-
tures are selected and not. The detailed statistics in Table 3 illustrate that the
proposed method efficiently reduces the time of running classification method
on the reduced data. The average runtime benefit is considerable 14.44% among
different classifiers. In Decision Tree Classifier model, the benefit of 30.63% is
impressive.

Table 3. Runtime comparison between two datasets

Orignal data Reduced data Time reduced

DecisionTreeClassifier 0.2520 0.1748 30.63 %

RandomForestClassifier 0.3969 0.3537 10.88 %

ExtraTreesClassifier 0.3782 0.3370 10.89 %

SupportVectorMachine 6.6171 5.8828 11.09 %

AdaBoostClassifier 22.4513 20.4912 8.73 %

Average 6.0191 5.4479 14.44 %

5 Conclusion

In this paper, we propose a two-stage framework for network anomaly detection.
High-dimensional data commonly happens in network anomaly detection prob-
lems. Methods in solving these problem may suffer from curse of dimensionality.
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In our first stage, we propose a sophisticated feature section method to
get ride of irrelevant features and redundant features. By employing MIC app-
roach, we solve the difficulty in calculating mutual information for continuous
attributes. The experimental results show that this method achieves compara-
ble accuracy with supervised methods and can effectively reduce the runtime of
those methods with little sacrificing.

In the second stage, we introduce density peak based cluster. we have made
a tradeoff that using fraction instead of the whole data samples to determine
cluster centers approximatively. Experimental result shows that this method is
efficient and achieve higher accuracy than other existing unsupervised methods
generally.
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