Tuple Spaces Implementations
and Their Efficiency

Vitaly Buravlev®™), Rocco De Nicola, and Claudio Antares Mezzina

IMT School for Advanced Studies Lucca, Piazza S. Francesco, 19, 55100 Lucca, Italy
{vitaly.buravlev,rocco.denicola,claudio.mezzina}@imtlucca.it

Abstract. Among the paradigms for parallel and distributed comput-
ing, the one popularized with Linda and based on tuple spaces is the
least used one, despite the fact of being intuitive, easy to understand
and to use. A tuple space is a repository of tuples, where process can
add, withdraw or read tuples by means of atomic operations. Tuples may
contain different values, and processes can inspect the content of a tuple
via pattern matching. The lack of a reference implementations for this
paradigm has prevented its widespread. In this paper, first we do an
extensive analysis on what are the state of the art implementations and
summarise their characteristics. Then we select three implementations
of the tuple space paradigm and compare their performances on three
different case studies that aim at stressing different aspects of comput-
ing such as communication, data manipulation, and cpu usage. After
reasoning on strengths and weaknesses of the three implementations, we
conclude with some recommendations for future work towards building
an effective implementation of the tuple space paradigm.

1 Introduction

Distributed computing is getting increasingly pervasive, with demands from var-
ious applications domains and highly diverse underlying architectures from the
multitude of tiny things to the very large cloud-based systems. Several para-
digms for programming parallel and distributed computing have been proposed
so far. Among them we can list: distributed shared memory, message passing,
actors, distributed objects and tuple spaces. Nowadays, the most used paradigm
seems to be message passing, with MPI [2] being its latest incarnation, while the
least popular one seems to be the one based on tuple space that was proposed
by David Gelernter for the Linda coordination model [8].

As the name suggests, message passing provides coordination abstractions
based on the exchange of messages between distributed processes, where mes-
sage delivery is often mediated via brokers and messages consist of a header
and a body. In its simplest incarnation, message-passing provides a rather low-
level programming abstraction for building distributed systems. Linda, instead
provides a higher level of abstraction by defining operations for synchronization
and exchange of values between different programs that can share information
by accessing common repositories named tuple spaces.

© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing Switzerland 2016. All Rights Reserved

A. Lluch Lafuente and J. Proenga (Eds.): COORDINATION 2016, LNCS 9686, pp. 51-66, 2016.
DOI: 10.1007/978-3-319-39519-7_4

52 V. Buravlev et al.

< “goofy”, 4,10.4 >

<34,<.>>

< “donald”, 6, 5.0 >
<10,<..>>

. eval(....) rd(<“goofy”, _, _>)

The key ingredients of Linda are few basic operations which can be embed-
ded into different programming languages. These are atomic operations used for
writing (out), withdrawing (in), reading (rd) tuples into/from a tuple space.
The operations for reading and withdrawing select tuples via pattern-matching.
Another operation eval is used to spawn new processes. The figure above illus-
trates an example of tuples space with different, structured, values. For example
tuple (“goofy”,4,10.4) is produced by a process via the out((“goofy”,4,10.4))
operation, and it is read by the operation rd(“goofy”, _, _) after pattern-
matching: that is the process reads any tuple of three elements whose first one is
exactly the string “goofy”. Moreover, tuple (10, (...)) is consumed (atomically
retracted) by operation in(10, z) which consumes a tuple whose first element is
10 and binds its second element (whatever it is) to the variable x. Patterns are
sometimes referred as templates.

The simplicity of this coordination model makes it very intuitive and easy to
use. Some synchronization primitives, e.g. semaphores, barrier synchronization,
can be implemented easily in Linda (cf. [6], Chapter 3). Unfortunately Linda’s
implementations of tuple space have turned out to be quite inefficient, and this
has led researchers to opt for different approaches such Open MP or MPI, which
are nowadays offered, as libraries, for many programming languages. When con-
sidering distributed applications, the limited use of Linda coordination model
is also due to the need of keeping tuple spaces consistent. In fact, in this case,
control mechanisms that can affect scalability are needed [7].

In our view, tuple spaces can be effectively exploited as a basis for the broad
range of the distributed applications with different domains (from lightweight
applications to large cloud based systems). However, in order to be effective, we
need to take into account that performances of a tuple space system may vary
depending on the system architecture and the type of interaction between its
components. The aim of this paper is to examine the state of the art implemen-
tations of tuple spaces, and to find out strengths and weaknesses.

We start by cataloguing the existing implementations according to their fea-
tures, and then we focus on the most recent Linda based systems that are
still maintained, while paying specific attention to those featuring decentral-
ized tuples space. For the selected systems, we compare their performances on

Tuple Spaces Implementations and Their Efficiency 53

three different case studies that aim at stressing different aspects of computing
such as communication, data manipulation, and cpu usage. After reasoning on
strength and weakness of the three implementations, we conclude with some rec-
ommendation for future work towards building effective implementation of the
tuple space paradigm.

2 Tuple Space Systems

In this Section, first we review several existing tuple space systems by briefly
describing each of them, and single out the main features of their implemen-
tations, then we summarise these features in Table 1. Later, we focus on the
implementations that enjoy the characteristics we consider important for a tuple
space implementation: code mobility, distribution of tuples and flexible tuples
manipulation.

JAVASPACES. JAVASPACES [13] is one of the first implementations of the tuple
space developed by Sun Microsystems. It is based on a number of Java tech-
nologies (Jini, RMI). As a commercial system, JAVASPACES supports transac-
tions and mechanism of tuple leases. A tuple, called entry in JAVASPACES, is an
instance of a Java class and its fields are the public fields of the class. This means
that tuples are restricted to contain only objects but not primitive values. The
tuple space is implemented by using a simple Java collection. Pattern matching
is performed on the byte level, and the byte level comparison of data supports
object-oriented polymorphism.

TSPACES. TSPACES [12] is an implementation of the Linda model at the IBM
Almaden Research Center. It combines asynchronous messaging with database
features. Like JAVASPACES, TSPACES provides transactional support and mech-
anism of tuple leases. Moreover, the embedded mechanism for access control to
tuple spaces is based on access permission. It checks whether a client is able
to perform specific operations in the specific tuples space. Pattern matching is
performed using either standard equals method or compareTo method. Pat-
ter matching uses SQL-like queries, allowing to match tuples regardless of their
structure (e.g. the order in which fields are stored).

GIGASPACES. GIGASPACES [9] is a contemporary commercial implementation of
tuple space. Nowadays, the core of that system is GIGASPACES X AP, a scale-out
application server and any user application should interact with it for creating
and manipulating its own tuple space. The main areas where GIGASPACES can be
applied are concerned with big data analythics. GIGASPACES main features are:
linear scalability, optimization of RAM usage, synchronization with databases
and several database-like operations such as complex queries, transactions and
replication.

TUPLEWARE. TUPLEWARE [1] is specially designed for array-based applications
in which an array is decomposed into several parts each of which can be processed
in parallel. It aims at developing a scalable distributed tuple space with good

54 V. Buravlev et al.

performance on a computing cluster and provides clear and simple programming
facilities for dealing with distributed tuple space as well as with centralized one.
The tuple space is implemented as a hashtable, containing pairs consisting of a
key and a vector of tuples. Due to the nature of Jave hashtable, it is possible to
access concurrently several elements of the hashtable, since synchonisation is at
the level of hashtable element. To speed up the search in the distributed tuple
space, an algorithm based on the history of communication is used. Its main aim
is to minimize the number of communications between nodes for tuples retrieval.
The algorithm uses success factor, a real number between 0 and 1, expressing
the likelihood of the fact that a node can find a tuple in the tuple space of other
nodes. Each instance of TUPLEWARE calculates success factor on the basis of
past attempts to get information from other nodes and tuples are first searched
in nodes with greater success factor.

GRINDA. GRINDA [5] is a distributed tuple space which was designed for large
scale infrastructures. It combines Linda coordination model with grid architec-
ture aiming at improving performance of distributed tuple space, especially with
a large amount of tuples. To boost the search of tuples, GRINDA utilizes spatial
indexing schemes (X-Tree, Pyramid) which are usually used in spatial databases
and Geographical Information Systems. Distribution of tuple spaces is based on
the grid architecture and implemented using structured P2P network (based on
Content Addressable Network and tree based).

BrossoMm. BrossoM [15] is a C++ implementation of Linda which was devel-
oped to achieve high performance and correctness of the programs using Linda
model. In BLossoM all tuple spaces are homogeneous with predefined structure,
and this allows spending less time for type comparison during the search. To
improve scalability, BLOSSOM uses distributed tuple spaces and each processor
is assigned a particular tuple space by considering tuple values. The technique of
prefetching allows a process to send a request for some tuples to the tuple space
and to continue its work while the search continues. When the process needs the
requested tuples, it receives them without waiting and spending time for their
search which have been already done.

DTupLES. DTUPLES [10] is designed for peer-to-peer networks and based on
distributed hash table (DHT), a scalable and efficient approach. Key points of
DHT are autonomy and decentralization. There is no central server and each
node of DHT is in charge of storing a part of hash table and of keeping rout-
ing information about other nodes. As the basis of the DTH’s implementation
DTUPLES uses FreePastry'. DTUPLES also supports transactions and guaran-
tees fault-tolerance via replication mechanisms. DTUPLES supports multi tuple
spaces and distinguishes public and subject tuple spaces. Public tuple space is a
space shared among all the processes and all of them can perform any operation
on it. Subject tuple space is a private space accessible only by the processes that
are bound to it. Any subject space can be bound to several processes and can

! FreePastry is an open-source implementation of Pastry, a substrate for peer-to-peer
applications (http://www.freepastry.org/FreePastry/).

http://www.freepastry.org/FreePastry/

Tuple Spaces Implementations and Their Efficiency 55

be removed if no process is bound to it. Due to the two types of tuple spaces,
pattern matching is specific for each of them. Templates in the subject tuple
space can match tuples in the same subject tuple space and in the common
tuple space. However, the templates in the common tuple space cannot match
the tuple in the subject tuple spaces.

LuATS. LUATS [11] is a reactive event-driven tuple space system written in Lua.
Its main features are associative mechanism of tuple retrieving, fully asynchro-
nous operations and support of code mobility. LUATS provides centralized man-
agement of the tuple space which can be logically partitioned into several parts
using indexing. LUATS combines Linda model with event-driven programming
paradigm. This paradigm was chosen to simplify program development which
allows avoiding the use of synchronization mechanisms for tuple retrieval and
makes more transparent programming and debugging of multi-thread program.
Tuples can contain any data which can be serialized in Lua, including strings
with function code. In order to obtain a more flexible and intelligent search,
function code can be sent to the server and once executed it can returns the
matched tuples. Reactive tuple space is implemented as a hashtable, in which
along with data also information supporting the reactive nature of that tuple
space (templates, client addresses, ids of callback and so on) is stored.

Kram. Kram [3] (the Kernel Language for Agents Interaction and Mobility) is
an extension of Linda supporting processes migration. The emphasis of KLAIM
is on process mobility, which means that processes as any data can be moved
from one locality to another and they can be executed in any localities. Klava is
a Java implementation of KLAIM [4]. KLAIM supports multiple tuple spaces and
operates with explicit localities where processes and tuples are allocated. In this
way, several tuples can be grouped and stored in one locality. Moreover, all the
operations on tuple spaces are parametric to localities. Emphasis is put also on
access control which is important for mobile applications. For this reason KLAIM
introduces type system which allows checking whether a process can perform an
operation at specific localities.

In order to compare the implementations we have discussed so far, we have
singled out the following criteria:

Distributed Tuple Space. This criterion denotes whether tuple spaces are
stored in one single node of the distributed network or they are spread across
the network.

Decentralized Management. Distributed systems rely on a node that controls
the others or the control is shared among several nodes. Usually, systems with
the centralized control have bottlenecks which limit their performance.

Tuples Clustering. This criterion determines whether some tuples are grouped
by particular parameters that can be used to determine where to store them
in the network.

Domain Specificity. Many of implementations have specific area in which they
can be used. If the implementation is domain specific it can be good because
it is more suitable for it and has an advantage over other ones. On another
side, this feature could be considered a limitation if one aims at generality.

56 V. Buravlev et al.

Table 1. Results of the comparison

JSP | TSP |GSP | TW | GR | BL | DTP | LTS | KL

Distributed tuple space ? v v VY v
Decentralized management ? v v v

Tuple clustering ? v v v
Domain specificity v v
Scalability v v v v

Security v v v
eval operation v v

JAVASPACES (JSP), TSPACES (TSP), GIGASPACES (GSP), TUPLEWARE
(TW), GriNDA (GR), BLossom (BL), DTupLES (DTP), LUuATS (LTS),
Kram (KL)

Scalability. This criterion implies that system based on particular Linda imple-
mentation can cope with the increasing amount of data and nodes while
maintaining acceptable performance.

Security. This criterion specifies whether an implementation has security fea-
tures or not.

eval Operation. This criterion denotes whether the tuple space system has
implemented the eval operation.

Table 1 summarises the result of our comparison: v' means that the imple-
mentation enjoys the property and ? means that we were not able to provide an
answer, since the source code was not available.

An extra requirement to be able to compare implementations (especially in
terms of time) is that they have to be written in the same language. We have
chosen Java, since nowadays it is the most used language. Moreover, using a
single programming language allows us to develop case studies as skeletons:
the code remains the same for all the implementations, only the invocations of
different library methods do change. This choice, guarantees also the possibility
of performing better comparisons of the time performances exhibited by the
different tuple systems which could be significantly depend the chosen language.

After considering the results in Table 1, to perform our detailed experiments
we have chosen: TUPLEWARE which enjoys most of the selected features; KLAIM
since it offers distribution, clustering of tuple spaces and code mobility. Finally,
we have chosen GIGASPACES because it is the most modern among the com-
mercial systems; it will be used as a yardstick to compare the performance of
TUPLEWARE and KraimM. We would like to add that DTUPLES has not been
considered for the more detailed comparison because we have not been able to
obtain its libraries or source code, and that GRINDA has been dropped because
it seems to be the less maintained one.

In all our implementations of the case studies, we have structured the sys-
tems by assigning each process a local tuple space. Because GIGASPACES is a

Tuple Spaces Implementations and Their Efficiency 57

centralized tuple space, in order to satisfy this rule we do not use it as central-
ized one, but as distributed: each process is assigned its own tuple space in the
GIGASPACES server.

3 Experiments

3.1 Case Studies

In order to compare different tuple space systems we have chosen 3 case stud-
ies: Password search, Sorting and Ocean model. The first case study is a com-
munication intensive task where the number of tuples is large and it requires
doing many reading and writing operations. The second case study is compu-
tation intensive, since each node spends more time for sorting elements than
for communicating with the other nodes. This case study has been considered
because it needs structured tuples that contain both basic values (with primitive
type) and complex data structures that impact on the speed of the inter-process
communication. The third case has been taken into account since it introduces
particular dependencies among nodes, which if exploited can improve the appli-
cation performances. This was considered to check whether adapting a tuple
space system to the specific inter-process interaction pattern of a specific class
of the applications could lead to significative performance improvements. All the
case studies are implemented using master-worker paradigm [6]. Now we briefly
describe them.

Password Search. The main aim of the distributed application for password
search is to find a password using its hashed value in the predefined distributed
database. We have generated that database in the form of the files containing
pairs of password and hashed value, for each password. The application creates
a master process and several worker processes: the master keeps asking to the
workers passwords corresponding to a specific hashed values, by issuing tuples
of the form:

(“search_task”, dd157c¢03313e452ae4a7ab5b72407b3a9)

Each worker first loads its part of the distributed database, and after, it obtains
from the master a task to look for the password corresponding to a hash value.
Once it has found the password, it sends the result back to the master process,
with a tuple of the form:

(“found_password”, dd157¢03313e452ae4a7a5b72407b3a9, 7723567)

For multi tuple spaces implementations it is necessary to start searching in one
local tuple space and then to check the tuple spaces of other workers. The appli-
cation terminates its execution when all the tasks have been processed and the
master has received all results.

58 V. Buravlev et al.

Sorting. This distributed application consists of sorting arrays of integers. The
master is responsible for loading initial data and for collecting the final sorted
data, while workers are directly responsible for the sorting. At the beginning, the
master loads predefined initial data to be sorted and sends them to one worker
to start the sorting process. Afterwards, the master waits for the sorted arrays
from the workers: when any sub-array is sorted the master receives it and builds
the whole sorted sequence when all sub-arrays are collected. The behavior of
workers is different; when they are instantiated, each of them starts searching
for the unsorted data in local and remote tuple spaces. When a worker finds a
tuple with data, it checks whether it is possible to sort these data (the size of the
data is less than particular threshold). If it is possible to sort them, the worker
does the computation, sends the result to the master and starts searching for
other unsorted data. Otherwise, the worker splits the array into two parts: one
part is stored into its local tuple space while the other is processed.

Ocean Model. The ocean model is a simulation of the enclosed body of water.
The core of that case study was given in [1]. The two-dimensional surface of water
in the model is represented as a 2-D grid and each cell of the grid represents one
point. The parameters of the model are current velocity and surface elevation
which are based on a given wind velocity and bathymetry. In order to parallelize
the computation, the whole grid is divided into vertical panels, and each worker
owns one panel in order to compute its parameters. The aim of the case study
is to simulate the body of water during several time-steps. At each time-step,
in order to compute the new panel parameters, each worker has to take into
account its neighbouring panels.

The mission of the master and workers are similar to the previous case studies.
In the application the master instantiates the whole grids, divides it into parts
and sends them to the workers. After all iterations, it receives all parts of the grid.
Each worker receives its share of the grid and at each iteration it communicates
with workers which have adjacent grid parts in order to update and recompute
the parameters of its model; in the end it sends its data to the master.

Implementing Case Studies. Since we have chosen Java-based tuple space sys-
tems, all case studies are implemented in Java. Implementations of the three
case studies require the use of synchronization to avoid conflicts while accessing
to the same tuple space. GIGASPACES and TUPLEWARE have built in synchro-
nization mechanisms, while KLAIM does not. To cope with it, for KLAIM we
implemented synchronizations, using standard Java synchronized blocks [14], at
the node/process level instead of modifying the source code of the core operation
and applied it to local tuple space.

There is a difference in the implementation of the search among distributed
tuple spaces. TUPLEWARE has a built in operation with notification mechanism:
it searches in local and remote tuple spaces once and then waits for the notifi-
cation that the wanted tuple appears in one of the tuple spaces. The implemen-
tation of this operation for KLAIM and GIGASPACES requires to continuously
check each tuple space until the wanted tuple is found.

Tuple Spaces Implementations and Their Efficiency 59

3.2 Methodology

All the conducted experiments are parametric with respect to two parameters.
The first one is the number of workers taken into account with values 1, 5,10, 15
and it tests how the different implementations scale up with concurrency. The
second parameter is application specific, but its meaning is the same: testing the
implementation when the workload increases. For the case study Password search
we vary the number of the entries in the database (10000, 1000000 and 1 million
passwords) where it is necessary to search the password. This parameter directly
affects the number of local entries each worker has. Moreover, for this case study
the number of password to find was fixed to 100. For the Sorting case, the second
parameter is the number of elements in an array to be sorted (100000, 1 million,
10 million elements). In this case the number of elements does not correspond
to the number of tuples because parts of array are transferred also as arrays of
smaller size. For the case study Ocean model the second parameter is the grid
size (300, 600 and 1200) which is related with computational size of the initial
task.

Remark 1 (Ezecution Environment). Our test were conducted on a server with
4 processors Intel Xeon E5620 (4 cores, 12 M Cache, 2.40 GHz, Hyper-Threading
Technology) with 32 threads in total, 40 GB RAM and installed Ubuntu 14.04.3.
All applications are programmed in Java 8 (1.8.0).

Measured Metrics. For measurement of metrics Clarkware Profiler? is used. We
use manual method of profiling and insert methods Profiler.begin(label) and
Profiler.end(label) surrounding parts of the code we are interested into pro-
gram code in order to begin and stop counting time respectively. This sequence
of the actions can be repeated many times and in the end we receive report
which includes the number of calls, overall and average time. For each metrics
the label is different and it is possible to use several of them simultaneously.
Each set of experiments was conducted 10 times with randomly generated input
and average values of each metrics were computed. To extensively compare the
different implementations, we have chosen the following measures:

Local writing time: required time to write one tuple into local tuple space.

Local reading time: required time to read or take one tuple from local tuple
space using template. The parameter checks how fast pattern matching works.

Remote writing time: time of the writing to the tuple space plus the time of
communication with process associated with tuple space.

Remote reading time: similarly to the previous one, this time is a sum of the
time of the search in tuple space and the time of the communication with it.

Search time: when the application has several workers we introduce the time
which is required to find a tuple in a several separated tuple spaces.

2 The profiler was written by Mike Clark; source code is available in GitHub.com:
https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/
profiler.

https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/profiler
https://github.com/akatkinson/Tupleware/tree/master/src/com/clarkware/profiler

60 V. Buravlev et al.

Total time: total execution time. This time does not include initial creation of
tuple spaces or starting tuple space server as in the case of GIGASPACES.
Number of visited nodes: number of visited before a necessary tuple was

found.

Please notice that, all plots used in the paper report results of our experi-
ments in a logarithmic scale. When describing the outcome, we have only used
those plots which are more relevant to evidence the difference between the three
tuple space systems3.

3.3 Results

Password Search. As shown in Fig.1 GIGASPACES exhibits better perfor-
mances than the other two tuple space systems.

Figure 2 depicts the local writing time for each implementation, with different
numbers of workers. As we can see, by increasing the number of workers (which
implies reducing the amount of local data to consider), the local writing time
decreases. This is more evident in TUPLEWARE, which really suffers when a big
number of tuples (e.g. 1 million) is stored in a single local tuple space. The
writing time of KLAIM is the lowest among other systems and does not change
significantly during any variation in the experiments.

1000000

100000 A
10000 0 = =
@ — / - ¢
£ 1000 * v ~—Tupleware
=
100 - GigaSpaces
=>=KLAIM
10
1
proc. num. 1 5 10 15 1 5 10 15
num. of pass. 100000 100000 100000 100000 M im im M

Fig. 1. Password search. Local total time

Local reading time is shown in Fig. 3 and KLAIM is the one that exhibits the
worst performance for searching in local space. Indeed, if there is just one worker,
the local reading time is 10 times greater than TUPLEWARE. We conjecture
that the pattern matching mechanism of KLAIM is less effective than others.
By increasing the number of workers the difference becomes less evident, even
if it remains four times bigger than TUPLEWARE. Since this case study requires
little synchronization among workers, performance improves when the level of
parallelism (the number of workers) increases.

3 Plots with more detailed (numeric) information are reported as bar charts at http://
sysma.imtlucca.it/coord16_appendix/.

http://sysma.imtlucca.it/coord16_appendix/
http://sysma.imtlucca.it/coord16_appendix/

Tuple Spaces Implementations and Their Efficiency 61

1.0000

0.1000 —

° \ ~@—Tupleware

—_
£
= R ﬂ —o—GigaSpaces
—

0.0100 //‘ = KLAIM
0.0010

proc. num. 1 5 10 15

Fig. 2. Password search. Local writing time (1 million passwords)

1000.0000

100.0000 \\x\
X
@ o 0 ~@—Tupleware
g —e-
= =—— GigaSpaces
10.0000 === KLAIM
1.0000
proc. num. 1 5 10 15

Fig. 3. Password search. Local reading time (1 million passwords)

10000.0000

1000.0000

E R &> > ~-Tupleware
& 100.0000 ==
—¢—GigaSpaces
£ — 8P
==KLAIM
10.0000
1.0000
proc. num. 1 5 10 15

Fig. 4. Password search. Search time (1 million passwords)

Search time is similar to local reading time, but takes into account searching
in remote tuple spaces. When considering just one worker, the search time is
the same as the reading time in local tuple space, however, when the number of
workers increases the search time of TUPLEWARE and KLAIM grows faster than
the time of GIGASPACES. Figure4 shows that GIGASPACES is more sensitive to
the number of tuples than to the number of accesses to the tuple space.

It is worth to remark that the local tuple spaces of the three systems exhibit
different performances depending on the operation on them: the writing time of
KLAM is always significantly smaller than the others, while the pattern matching
mechanism of TUPLEWARE allows faster local searching.

62 V. Buravlev et al.

Sorting. Figureb shows that GIGASPACES exhibits significantly better execu-
tion time when the number of elements to sort is 1 million. When 10 million
elements are considered and several workers are involved, TUPLEWARE exhibits
a more efficient parallelization and thus requires less time.

1000000

10000 (

—
E 1000 i—— : ——Tupleware
=
100 ==i=GigaSpaces
== KLAIM
10
1
proc. num. 1 5 10 15 1 5 10 15
num. of elem. 1M iMm iMm M 10M 10M 10M 10M

Fig. 5. Sorting. Total time

This case study is computation intensive but requires also exchange of struc-
tured data and, although in the experiments a considerable part of the time is
spent for sorting, we have that performances do not significantly improve when
the number of workers increases.

1000.0000
X
100.0000 %
M 10.0000 —@i—Tupleware
£
s === GigaSpaces
1.0000 L
== KLAIM
0.1000 >/
0.0100
proc. num. 1 5 10 15

Fig. 6. Sorting. Local writing time (10 million elements)

The performance of KLAIM is visibly worse than others even for one worker.
In this case, the profiling of the KLAIM application showed that a considerable
amount of time was spent to transmit initial data from the master to the worker.
Inefficient implementation of data transmission seems to be the reason the total
time of KLAIM differs from the total time of TUPLEWARE.

By comparing Figs.2 and 6, we see that, when the number of workers
increases, GIGASPACES and KLAIM suffer more from synchronization in the cur-
rent case study than in the previous one; there no other operation was performed
in parallel to writing and thus no conflict handling was required.

Tuple Spaces Implementations and Their Efficiency 63
100000.0000
10000.0000)(—___/'_)?____x
1000.0000
100.0000 ///4! —=—Tupleware
10.0000 ==i=GigaSpaces
1.0000 / ——KLAIM
0.1000 /

0.0100
proc. num. 1 5 10 15

time

Fig. 7. Sorting. Search time (10 million elements)

In addition to experimenting with case studies, we measured the time
required by reading and writing operations on remote tuple space for all three
systems. For KLAIM and TUPLEWARE these times were similar and significantly
greater than those of GIGASPACES. KLAIM and TUPLEWARE communications
rely on TCP and to handle any remote tuple space one needs to use exact
addresses and ports. GIGASPACES, that has a centralized implementation, most
likely does not use TCP for data exchange but relies on a more efficient memory-
based approach.

As shown in Fig. 7, search time directly depends on the number of the workers
and grows with it. Taking into account that KLAIM and TUPLEWARE spend
more time accessing remote tuple space, GIGASPACES suffers more because of
synchronization. KLAIM has the same problem, but its inefficiency is hampered
by data transmission cost.

Ocean Model. This case study was chosen to examine behavior of tuple sys-
tems when specific patterns of interactions are used. Out of the three considered
systems, only TUPLEWARE has a method for reducing the number of visited
nodes during search operation which helps in lowering search time. Figure8
depicts the number of visited nodes for different grid size and different number
of workers. The curve depends only weakly on the size of the grid for all systems,
and much more on the number of workers. Indeed, from Fig. 8 we can appreciate
that TUPLEWARE performs a smaller number of nodes visits, and that when the
number of workers increases the difference is even more evident?.

The difference in the number of visited nodes does not affect significantly
the total time of execution (Fig.9) mostly because the case study requires many
read operations from remote tuple spaces (Fig.10). But, as it was mentioned
before, GIGASPACES implements read operation differently from TUPLEWARE
and KLAIM and it is more effective when working on a single computer.

Figure 9 provides evidence of the effectiveness of TUPLEWARE when its total
execution time is compared with the KLAIM one. Indeed, KLAIM visits more

4 Figure 8, the curves for KLAIM and GIGASPACES are overlapping and purple wins
over blue.

64 V. Buravlev et al.

100000
10000 W

1000

~@—Tupleware

100 —4—Gigaspaces

10 ==KLAIM
1
proc. num. 5 10 15 5 10 15 5 10 15
grid size 300 300 300 600 600 600 1200 1200 1200

Fig. 8. Ocean model. Number of visited nodes (Color figure online)

1000000 —

100000 %—lv__—‘f
10000 — : > —
E 1000 W' ——Tupleware
- 100 =—4—Gigaspaces
10 === KLAIM
1
proc. num. 5 10 15 5 10 15 5 10 15
grid size 300 300 300 600 600 600 1200 1200 1200
Fig. 9. Ocean model. Total time
1000.0000
oooopy S — W g @
10.0000
.§ 1.0000 ~#—Tupleware
- 0.1000 —— Gigaspaces
0.0100 T = ‘A'\\‘___r, —o TeKAM
0.0010
proc. num. 5 10 15 5 10 15 5 10 15
grid size 300 300 300 600 600 600 1200 1200 1200

Fig. 10. Ocean model. Remote reading time

nodes and spends more time for each read operation, and the difference increases
when the grid size grows and more data have to be transmitted.

This case study suggests that devising an appropriate mechanism for taking
advantage of the underlying communication pattern can make cooperative work
of distributed tuple spaces more effective.

4 Conclusions

Distributed computing is getting increasingly pervasive, with demands from var-
ious applications domains and highly diverse underlying architectures from the

Tuple Spaces Implementations and Their Efficiency 65

multitude of tiny things to the very large cloud-based systems. Tuple spaces cer-
tainly feature valuable characteristics to help develop scalable distributed appli-
cations/systems. This paper has first surveyed and evaluated a number of tuple
space systems, then it has analyzed more closely three different systems. We
considered GIGASPACES, because it is one of the few currently used commercial
products, KLAIM, because it guarantees code mobility and flexible manipulation
of tuple spaces, and TUPLEWARE, because it is the one that turned out to be the
best in our initial evaluation. We have then compared the three system by evalu-
ating their performances over three case studies: a communication-intensive one,
a computational-intensive one, and one with a specific communication pattern.

Our work follows the lines of [16] but we have chosen more recent implemen-
tations and conducted more extensive experiments.

The commercial system GIGASPACES differs from the other two systems for
the use of a memory based interprocess communication for data exchange, that
guarantees considerably smaller access time to data. Therefore, using this mecha-
nism in the scope of one machine can increase effectiveness of work when different
tuple spaces are needed. When working with networked machines, it is not possi-
ble to use that mechanism and we need to use approaches to reduce the number
of inter-machine communication (e.g. TUPLEWARE approach) and to make that
communication effective. Another issue to which we need to pay to attention is
related to the implementation of local tuple spaces including pattern matching
algorithms and mechanisms to prevent conflicts when accessing the spaces.

Performances of a tuple space system vary depending on the chosen system
architectures and on the type of interaction between their components. We did
not consider different architectures but we noted problems (data transmission,
synchronization, etc.) which may occur in different systems for different types
of interaction. We plan to use the results of this work as the basis to design an
efficient tuple space system which offers programmer the possibility of selecting
(e.g. via a dashboard) the desired features of the tuple space according to the
specific application. In this way, one could envisage a distributed middleware
with different tuple spaces implementations each of them devised with the best
characteristic, in terms of efficiency, to perform the required tasks.

References

1. Atkinson, A.: Tupleware: A Distributed Tuple Space for the Development and Exe-
cution of Array-based Applications in a Cluster Computing Environment. Univer-
sity of Tasmania School of Computing and Information Systems thesis, University
of Tasmania (2010)

2. Barker, B.: Message Passing Interface (MPI). In: Workshop: High Performance
Computing on Stampede (2015)

3. Bettini, L., Kannan, R., De Nicola, R., Ferrari, G.-L., Gorla, D., Loreti, M., Moggi,
E., Pugliese, R., Tuosto, E., Venneri, B.: The Klaim project: theory and practice.
In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88-150. Springer, Heidelberg
(2003)

4. Bettini, L., De Nicola, R., Loreti, M.: Implementing mobile and distributed appli-
cations in X-Klaim. Scalable Comput. Pract. Experience 7(4), 13-35 (2006)

66

10.

11.

12.
13.

14.

15.

16.

V. Buravlev et al.

Capizzi, S.: A Tuple Space Implementation for Large-Scale Infrastructures. Depart-
ment of Computer Science Univ. Bologna thesis, University of Bologna (2008)
Carriero, N., Gelernter, D.: How to Write Parallel Programs - A First Course. MIT
Press, Cambridge (1990)

Ceriotti, M., Murphy, A.L., Picco, G.P.: Data sharing vs. message passing: Synergy
or incompatibility? an implementation-driven case study. In: Proceedings of the
2008 ACM Symposium on Applied Computing, pp. 100-107 (2008)

Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80-112 (1985)

GigaSpaces. Concepts - XAP 9.0 Documentation - GigaSpaces Documentation-
Wiki. http://wiki.gigaspaces.com/wiki/display /XAP9/Concepts (2016). Accessed
25 Jan 2016

Jiang, Y., Jia, Z., Xue, G., Dtuples, J.Y.: A distributed hash table based tuple
space service for distributed coordination. Fifth International Conference on Grid
and Cooperative Computing 2006, GCC 2006, pp. 101-106 (2006)

Leal, M.A., Rodriguez, N., Terusalimschy, R.: Luats a reactive event-driven tuple
space. J. Univ. Comput. Sci. 9(8), 730-744 (2003)

Lehman, T., McLaughry, S., Wyckoff, P.: Tspaces: The next wave, vol. 8 (1999)
S. Microsystems. JS - JavaSpaces Service Specification. https://river.apache.org/
doc/specs/html/js-spec.html (2016). Accessed 25 Jan 2016

Oracle. The Java Tutorials. https://docs.oracle.com/javase/tutorial/essential/
concurrency/sync.html (2015). Accessed 25 Jan 2016

Van Der Goot, R.: High Performance Linda Using a Class Library. Ph.D thesis.
Erasmus Universiteit Rotterdam (2001)

Wells, G., Chalmers, A., Clayton, P.G.: Linda implementations in java for concur-
rent systems. Concurrency Pract. Experience 16(10), 1005-1022 (2004)

http://wiki.gigaspaces.com/wiki/display/XAP9/Concepts
https://river.apache.org/doc/specs/html/js-spec.html
https://river.apache.org/doc/specs/html/js-spec.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

	Tuple Spaces Implementations and Their Efficiency
	1 Introduction
	2 Tuple Space Systems
	3 Experiments
	3.1 Case Studies
	3.2 Methodology
	3.3 Results

	4 Conclusions
	References

