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Abstract. We present an analysis of how pointing performance in in-air un-
instrumented pointing can be improved, towards throughput equal to the mouse.
Pointing using a chopstick is found to achieve the highest average throughput,
with 3.89 bps. This is a substantial improvement over using the finger to point at
the screen. Two potential reasons for the throughput gap between chopstick and
finger operation were explored: the natural curvature of human fingers and
tracking issues that occurs when fingers bend toward the device. Yet, neither one
of these factors seems to significantly affect throughput. Thus other, yet unex‐
plored factors must be the cause. Lastly, the effect of unreliable click detection
was also explored, as this also affects un-instrumented performance, and was
found to have a linear effect.

Keywords: Human-computer interaction · Fitts’ law · Pointing tasks · Leap
motion

1 Introduction

Un-instrumented in-air interaction has rapidly gained popularity with the introduction
of a number of new interaction devices. Potential applications for un-instrumented in-
air pointing include interaction in environments where mouse is inadvisable, such as
while cooking, mobile computing, medical scenarios [9], and interaction on large wall
displays.

The associated tracking devices for in-air interaction enable new and interesting
interaction possibilities, including gestures and multi-finger interaction. Yet, previous
work [7] has identified that the raw pointing throughput for in-air pointing is substan‐
tially less than for the mouse. Thus, it is unclear whether un-instrumented pointing has
the potential to match (much less exceed) mouse throughput levels. It is also unclear
what aspects of un-instrumented pointing tracking need to be improved to possibly reach
mouse-like levels.

Fitts’ Law [17] implies that the further away or the smaller a target is, the harder
it will be to select. Building on decades of research, the ISO 9241-9 standard [14]
standardizes Fitts’ law experimental methodologies. It defines throughput T as the
primary measure of performance, calculated as T = log2(De/We + 1)/MT, where, De
is the effective distance and We the effective width. These effective values measure
the task that the user actually performed, not the one that she or he was presented
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with [17]. This reduces variability in identical conditions, which facilitates compari‐
sons between different Fitts’ law studies.

1.1 Related Work

Ray pointing is a method for pointing at objects, where the user moves a tracked arm
or finger or a tracked object, such as a pen or laser pointer, and orients it in the direc‐
tion she or he wishes to point to. The first object along that ray is then highlighted and
selected when the user indicates selection, e.g., through a button click. Ray pointing
remains a popular selection method for large screen and virtual reality systems. Many
studies have investigated this technique in large displays [8, 13, 15, 18, 29, 33],
Virtual Reality [11, 14, 24, 27], or tabletop scenarios [5]. All these comparisons used
devices.

Ray pointing uses 3D input to afford control over a 2D cursor. Effectively users rotate
the wrist (or finger) to move the cursor. Early work on finger-pointing used optical
tracking [10]. Balakrishan and MacKenzie [4] identified that a finger affords about 75 %
of the bandwidth relative to the wrist. Either moving the finger or the whole hand to
control the cursor affords efficient pointing [3]. Yet, tracking very small hand rotations
with 3D tracking systems with sufficient accuracy is difficult, as tracking noise is
magnified increasingly along the ray. This is the most likely explanation why ray
pointing is inferior to other pointing methods in small-scale environments, such as
desktops, e.g., [27].

Gallo et al. [9] explored an un-instrumented hand tracking device in a medical
context, where sterility is a major concern. Several approaches used various camera
systems [14, 19]. In another work [12], the authors look at the requirements of un-
instrumented tracking systems and their FingerMouse application used a one-second
dwell time for selection. Song et al. [24] used finger pointing to select and move virtual
objects. None of the above work evaluates the performance of un-instrumented in-air
pointing with the throughput measure as defined by the ISO standard. The exception
identified that its throughput was slightly less than 3 bps [7]. This is substantially lower
than standard mouse throughput, which is often found to be approximately 4 bps.

1.2 Motivation and Contributions

This paper explores several open explanations for the lower throughput of un-instru‐
mented pointing relative to the mouse [7]. We first evaluated the throughput of a (rigid)
chopstick as pointing device, which might have a tracking advantage over a regular
finger. It is longer, more cylindrical, and allows for a grip that may offer better directional
control. Next, we evaluated pointing throughput of a finger with and without a rigid cast
to determine if forcing the finger into a more cylindrical shape would improve tracking.
Finally, we investigated the effect of click detection reliability on throughput, as this is
another issue that can decrease performance in in-air interaction. Our contributions are:

• An evaluation of the selection performance of a rigid pointing device (chopstick).
• An evaluation of the selection performance of a perfectly cylindrical finger (cast).
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• An analysis on the effect unreliable bent finger tracking has on selection performance.
• An evaluation of the effect selection reliability on throughput.

We deliberately chose the Leap Motion for our work, as it is currently one of the
best devices for tracking un-instrumented fingers. We considered attaching individual
markers to fingers with an optical tracking system. Yet, tracking orientations of fingers
requires a large tracking target, which may slow down movements and cause fatigue.

1.3 Pilot Study

Looking at various options to improve tracking robustness, we found that the Leap
Motion API supports also long, thin, rigid, cylindrical objects, such as pencils. Based
on advice from the Leap Motion forum, we picked a chopstick. We hypothesized that
using a chopstick would also increase throughput because it can be held more stably in
a pencil grip, i.e., between three fingers.

We recruited 8 participants (mean age 21 years, SD 4.4 years). Two participants
were male and all right handed. The Leap Motion sensor was placed directly in front
of the display. The Leap Motion software used for this first study was version
1.0.9 + 8410 and the hardware device was LM-010. We used USB3 and Vsync was
turned off in all conditions to minimize latency. Both choices increase interaction
performance [6], to avoid the potential impact of large differences in latency on
pointing performance [22, 24]. End-to-end latency with the Leap Motion was 48 ms,
and with the Microsoft IntelliMouse Optical 32 ms. We used the default pointer speed
of Windows 7. The software used for this study was FittsStudy [32]. We only added
support to read data from the LeapMotion.

Fig. 1. The setup of the pilot study (left), issues observed with tracking bent fingers (right)

For this experiment there were two input conditions for selecting targets for the
participants to use: the Chopstick and the Mouse. The Chopstick method required the
user to hold a standard disposable wooden chopstick in her or his dominant hand, held
like a pencil. Targets were then selected by aiming the tip of the chopstick toward the
target on the screen. The Mouse method required the user to operate a computer mouse
as they normally would. After targets had been acquired using one of these two methods,
targets were selected using the left click button in the Mouse method and the spacebar
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on the keyboard in the Chopstick method. The spacebar was operated by the non-
dominant hand of the participant and was placed in a comfortable operating position so
that the dominant hand used for object acquisition was not obstructed Fig. 1 left illus‐
trates the setup.

First, each participant was given a brief background questionnaire, to record gender,
age, and handedness. Then, the participant was introduced to the Chopstick condition
and shown how it worked. Participants were required to use a pencil grip for holding
the chopstick. After comfortable with basic operation, one of the input conditions was
explained to the participant. The order of the input methods was counterbalanced so that
each of the possible orders was represented equally. When participants were comfortable
with the input method, they completed a series of Fitts’ law selection tasks using either
the mouse or the chopstick in her or his dominant hand. Ten blocks of 9 Fitts’ law
conditions with 11 trials were completed with the ISO methodology for a total of 990
trials per condition. Target widths were 32, 64, and 96 pixels and amplitudes 256, 384,
and 512 pixels. Then the next input method was presented and the above process
repeated. At the end of the experiment, participants were given a brief questionnaire
about any discomfort they might have experienced while using un-instrumented tracking
and the mouse.

Data was first filtered for obvious participant errors, such as hitting the spacebar
twice on the same target or pausing in the middle of a circle (less than .004 % of data
collected). For all other analysis and following the ISO standard, we recorded an error
whenever the cursor was outside the target upon selection, regardless if this occurred
due to human or system, i.e., tracking error. As our data is not normally distributed and
fails Levene’s test for homogeneity, we conducted ANOVA tests after a Aligned Rank
Transform (ART) for nonparametric factorial data analysis, [31].

In terms of throughput there was a significant effect for device used (F1,7 = 19,
p < .001) with a power (1 – β) of .97 and a large effect size (η2) of .25. For a graph of
average throughput values see Fig. 2 (3.54 bps for the chopstick and 4.13 bps for the
mouse). There was a significant effect for device used for movement time (F1,7 = 18,
p < .01) with a power (1 – β) of 0.95 and a very small effect size (η2) of .05. See Fig. 2
for average movement times. There was a significant effect for device used on error rate
(F1,7 = 8, p < .05) with a power (1 – β) of .68 and a negligible effect size (η2) of .01.
The mean error rate was 9.8 % for the chopstick and 3.9 % for the mouse. There was no
observed statistically significant learning affect across all blocks (F9,63 = 14, p < .001)
with a power (1 – β) of .99 or in the learning curve between devices (F9,142 = 0.83, ns).
Figure 2 shows performance over time. Device used (chopstick or mouse) crossed with
ID value had no significant effect on throughput (F6,97 = 0.02, ns). Figure 2 shows
average movement times for each ID value. The R2 values show an excellent fit with
Fitts’ law.

The throughput for the chopstick still has a .39 bps difference in throughput from
the mouse by the last block (3.89 vs. 4.28 bps). Yet, latencies in our conditions were in
a region (below 50 ms) where they does not seem have a significant effect [22]. This
makes it unlikely that latency alone can explain the result. The potential confound of
using the mouse and its button with one hand vs. clicking the space bar with the other
hand in the chopstick condition is also an unlikely explanation [7]. The error rate for the
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chopstick is substantially higher in our current study, either due to limitations in tracking
by the Leap Motion or human limits on the ability to point precisely at a distance.
Currently we do not have enough information to reliably distinguish between these two
causes.

Fig. 2. Graph of average throughput (left) and movement times (middle) for chopstick and mouse.
Error bars show standard deviation. Difference is statistically significant. Graph of learning over
time (right). Average throughput for each block is displayed. Power curve is fitted to data.

Our results shows that a well-chosen in-air pointing device can achieve high pointing
performance: 3.89 bps. That is within the lower end of throughput values observed for
the mouse (3.7 bps – 4.9 bps) [25]. With more practice this value may increase further.
Interestingly, two participants reached a crossover point where the chopstick achieved
a throughput greater than the mouse. An expert user (not a participant), who had been
practicing various pointing methods for four months, achieved an average throughput
of 4.75 bps with the chopstick and 4.73 bps with the mouse. Yet, while mouse-like levels
appear to be attainable with more training, such amounts of training are daunting. Still,
we cannot rule out that the chopstick will match the mouse in the long term. In this pilot
we did not observe noticeable fatigue effects. The chopstick achieved a throughput of
3.89 bps by the last block, much more than finger operation in prior work [7]. Even
accounting for differences in latency (48 ms with our chopstick vs. 63 ms with the finger
in [7]), this gap is still substantial. The reason behind this are further explored in the
next study.

2 User Study 1

The main objective of this user study was to determine if a perfectly cylindrical, rigid
finger would be capable of achieving the same levels of throughput seen with a chopstick
in a comparable environment. After all, one possible explanation for the chopstick’s
superior performance is its rigid cylindrical nature, making it potentially easier to track.
In pilot studies we identified that finger direction tracking reliability of the Leap Motion
decreased, if the finger was bent too far towards the tracking device. See Fig. 1, right
for a depiction of this problem. In this figure, the top two frames show a straight finger
and the corresponding finger direction arrow. Subsequent frames show results with
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increasing finger bend, where the direction deviates more and more. Moreover, we
observed that some users had significantly more curved fingers than others. An example
for this finger curve is visible in the index finger in Fig. 3, rightmost image.

Fig. 3. Pictures of the four input conditions. From top left to bottom right: Cast Normal, Cast
Side, Normal, and Side

We also speculated that finger tracking might behave differently depending on whether
the users held their hands palm facing down or rotated 90° inwards. We included such
conditions here as it might be easier for the device to track the position of the finger and
determine the pointing direction – if finger curvature plays a significant role.

2.1 Input Conditions

For this user study there were four input conditions for selecting targets for the partici‐
pants to use. These were the Cast Normal, the Cast Side, the Normal, and the Side
method, as shown in Fig. 3. The Cast Normal method required the user to wear a paper
“cast” around her or his dominant pointer finger. This cast was specially designed and
adapted to each user’s finger. A piece of regular computer paper was cut so that it was
wide enough to wrap around the user’s finger and long enough to cover the finger to the
tip. This piece of paper was then wrapped around the user’s finger and taped with clear
adhesive tape to form the “cast”. The finger was held in the “normal” pointing orientation
with the bottom of the user’s palm facing down. In the Cast Side method, the “cast” was
again worn on the user’s finger but this time the finger was held in the “side” position
with the user’s palm perpendicular to the desk. The Normal method required the user to
hold their hand with the palm facing down, toward the desk, without a cast. In the Side
condition the user’s palm was held perpendicular to the desk, again without a cast. In
all conditions, after targets had been acquired through pointing, selection was indicated
via the spacebar on the keyboard. The spacebar was operated by the non-dominant hand
of the participant and was placed in a comfortable operating position so that the dominant
hand used for object acquisition was not obstructed. We hypothesized here that if finger
cast performance reaches chopstick levels, then the grip style is likely not the cause of
the chopstick’s performance. In this case, rigidity would be a more likely explanation.

2.2 Participants and Procedure

We recruited 8 different participants for this study (mean age 20 years, SD 2.3 years).
Three participants were male and all but one were right handed. First, participants were
given a brief background questionnaire which recorded gender, age, and handedness.
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Next, a “cast” was created for each participant as described in the Input Conditions.
Then, the participant was introduced to the finger tracking system and the experimenter
demonstrated how it worked. After was comfortable with basic operation, one of the
input conditions was explained to the participant. The order that participants were
exposed to each of the input methods was determined by a Latin Square design. Once
comfortable with the current input method, the participant completed a series of Fitts’
law selection tasks using one of the four input conditions. Five blocks of 9 Fitts’ law
conditions with 11 trials per condition for a total of 495 trials were completed, again
using the ISO methodology. Target widths of 32, 64, and 96 and target amplitudes of
256, 384, and 512 pixels were used. The participant was then presented with the next
input method and so on.

2.3 Results

Data was first filtered for errors, such as hitting the spacebar twice on the same target
or unusually long pauses (less than .01 % of total data). The data is not normally distrib‐
uted and fails Levene’s test for homogeneity, and we again used ART before ANOVA.

There was no significant effect for the used interaction method (F3,21 = 1.35, p ; .05)
on throughput, nor for any pair of conditions. See Fig. 4 for average throughput values.

Fig. 4. Graph of average throughput values (left) and movement time (middle) and Fitts’ law
model (right) for each condition. Error bars show standard deviation.

There was no significance effect for the used interaction method (F3,21 = 2.57,
p > .05) on movement time, nor for any pair of conditions. See Fig. 4 for average
movement times. The used interaction method had no significant effect on error rate
(F3,21 = 0.27, ns). The four conditions had error rates of 14 %, 12 %, 13 % and 13 %
respectively. Across all blocks there was no significant effect on learning
(F4,28 = 1.15, p > .05) and no effect on learning crossed with the used interaction
method (F12,145 = 1.64, p > .05). The used interaction method crossed with ID had no
significant effect on throughput (F18,207 = 1.03, p > .05). See Fig. 4 for the data for
all conditions. The equations and fit values for the Fitts’ law models are as follows:
Cast Normal: y = 310.58 x – 7.9434, R2 = 0.9857, Cast Side: y = 356.31 x – 26.25,
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R2 = 0.9743, Normal: y = 337 x – 49.201, R2 = 0.9826, Side: y = 329.88 x – 8.9465,
R2 = 0.9879, again all conforming to Fitts’ law.

2.4 Discussion

This study indicates that the cast conditions are similar to finger tracking. Therefore, it
is unlikely that the natural curvedness and potential flexibility of a human finger cause
lower pointing throughput relative to a rigid object. Yet, there is still a 15 + % difference
(0.6 bps) between the throughputs of finger operation and chopstick operation that
remains unaccounted for. The higher throughput from the pilot study must thus be due
to some other factor, such as tracking a longer object or the different grip on the chop‐
stick. Our results largely confirm the results of previous work [4], but also extend it
through our use of the ISO methodology, which removes the effect of the speed-accuracy
tradeoff.

Moreover, informal observations during this experiment identify fatigue as a poten‐
tial issue, similar to [7]. This may be due to the duration of the experiment, which lasted
about one hour. After all, many people are not used to using their index finger for long
periods as a pointing “instrument”. Still, performance did not drop noticeably in later
trials.

3 User Study 2

To further investigate the potential of in-air interaction, we decided to look at the effect
that varying degrees of click detection reliability have on throughput. After all, even a
device that affords highly precise pointing may suffer if the selection of targets cannot
be indicated reliably. To accurately and reproducibly control the level of reliability, we
decided to perform this study with a mouse, as its buttons are normally 100 % reliable.
The results of such an experiment can then be used to infer the potential performance
impact of a selection method that is not 100 % reliable, such as in in-air “click”.

3.1 Participants, Setup and Procedure

We recruited 10 different participants for this study (mean age 23 years, SD 4.7 years).
Four participants were male and all but one were right handed. The left-handed person
preferred to operate the mouse with the right hand. The mouse used was a Microsoft
IntelliMouse Optical set to the default pointer speed on the Windows 7 operating system.
The system used with the mouse had an end-to-end latency of 28 ms (Vsync was off).
The software used for conducting the Fitts’ law tasks was again FittsStudy [32].

First, the participant was given a brief background questionnaire to record gender,
age, and handedness. Then, the participant was informed that the mouse button used for
clicking would not always be reliable and that sometimes it might need to be clicked
again. We chose to inform participants in advance to avoid potential confounds due to
side effects of frustration. We tested five levels of reliability: 100 %, 99 %, 98 %, 95 %,
and 90 %, to keep frustration levels at an acceptable level. The order that participants
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received each of these conditions was counterbalanced so that each of the possible orders
was represented equally. Participants then completed 2 blocks of 12 Fitts’ law conditions
with 11 trials per condition for a total of 264 targets with the ISO methodology. Target
widths of 16, 32, 64, and 96 pixels and amplitudes of 256, 384, and 512 pixels were
used.

3.2 Results

As our data is not normally distributed and fails Levene’s test for homogeneity, all
ANOVA tests were again conducted on data transformed using ART.

There was a significant effect for reliability level (F4,36 = 7, p < .001) on throughput
with a power (1 – β) of .99 and a medium effect size (η2) of .09. A Tukey-Kramer
Multiple-Comparison test identified two statistically different groups. Group one
consists of 90 % and 95 % reliability and group two of 98 %, 99 %, and 100 % reliability.
See Fig. 5 for average throughput values. There was a significant effect for reliability
level (F4,36 = 8, p < .001) on movement time with a power (1 – β) of .99 and a very
small effect size (η2) of .01. A Tukey-Kramer Multiple-Comparison test again identified
two statistically significant groupings. However, the groupings were different than the
throughput groupings. Group one consisted of 90 %, 95 % and 98 % reliability and group
two consisted of 98 %, 99 % and 100 % reliability. In other words, 98 % was not statis‐
tically different from all other conditions. See Fig. 5 for average movement times.

Fig. 5. Average throughput values (left) and movement times (right) for each reliability level.
Error bars show standard deviation. A linear trendline and its corresponding equation is also
shown.

The used reliability level had no significant effect on error rate (F4,9 = 1.86,
p > .05). The mean error rates for the 90 % to 100 % conditions were 4.2 %, 1.4 %, 3.7 %,
4.8 % and 0.8 % respectively. Across all blocks, there was no significant effect on
learning (F1,18 = 0.05, ns) and no effect on learning crossed with level of reliability
(F4,85 = 1.08, p > .05). Reliability level crossed with ID had no significant effect on
throughput (F32,428 = 6, p > .05). See Fig. 5 for the data for all conditions. The equations
for the Fitts’ law models are as follows: 90 %: y = 170.82 x + 155.98, R2 = 0.988, 95 %:
y = 148.78 x + 212.89, R2 = 0.988, 98 %: y = 167.44 x + 95.258, R2 = 0.987, 99 %:
y = 156.39 x + 103.94, R2 = 0.996, 100 %: y = 141.48 x + 138.47, R2 = 0.998.
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3.3 Discussion

These results indicate that there is a roughly linear drop-off in pointing performance as
a selection technique becomes more unreliable. The 90 % and 95 % conditions performed
significantly worse than 98 % and above in terms of throughput. We see this as an
indication (but not as proof) that any click-gesture recognition system that is 95 % reli‐
able or less is going to noticeably and negatively impact interaction performance with
a system. While there was no significant difference in performance between 100 %, 99 %,
and 98 %, some participants did still notice when they were not at 100 % condition. This
indicates that while a system with reliability above 95 % might not suffer much in terms
of throughput, failures might still be noticeable to the users. Small amounts of errors
might be less notable in systems without force feedback or where users expect it to be
unreliable.

From observations during the experiment we also identified a behavioural difference
for many in the 90 % condition: most participants would pause after selecting a target
before the next one. Thus, it seemed like the participants expected failure rather than
success in the 90 % condition. We suspect that as the reliability gets even lower all
participants would anticipate a failure, not just most of them.

Perfect reliably in un-instrumented in-air pointing with a single camera is very diffi‐
cult. Even very recent work does not achieve 100 % reliability [23]. Thus on top of
tracking issues one must also factor in a loss in throughput due to click detection unre‐
liability.

4 Overall Discussion

We explored several possibilities for the lower throughput of un-instrumented pointing
relative to the mouse, as identified by previous work [7]. First, we identified that pointing
with chopsticks can approach the performance traditionally seen with mice. This points
to new interesting avenues for future user interfaces. We also evaluated finger pointing
with and without a rigid cast. Given that we found no significant difference, it is unlikely
that the rigidity of the input device is the primary explanation. This leaves the length of
the chopstick or the grip style as possible explanations. Finally, we evaluated the effect
of click detection reliability on throughput, another potential issue in in-air interaction.
Our results indicate that in-air “click” detection must have between 95 and 98 % relia‐
bility, for in-air interaction to have the potential to perform as well as a mouse.

5 Conclusion

In this paper we evaluated several factors that were hypothesized to affect pointing
performance: the shape of the finger, finger bend tracking difficulties, and click detection
reliability. Moreover, we showed that by using a chopstick, users could reach the lower
end of the range of pointing throughputs seen with the mouse. We also identified that
finger curvedness or rigidity have no effect on pointing throughput with the Leap Motion.
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Finally, we showed that unreliable selection techniques affect performance
(approximately) linearly and identified key values between 90 % and 100 % reliability.
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