
Designing Responsive Interactive Applications
by Emotion-Tracking and Pattern-Based Dynamic

User Interface Adaptation

Christian Märtin(✉), Sanim Rashid, and Christian Herdin

Faculty of Computer Science, Augsburg University of Applied Sciences, An der Hochschule 1,
86161 Augsburg, Germany

{Christian.Maertin,Sanim.Rashid,Christian.Herdin}@hs-augsburg.de

Abstract. Model-based user interface development environments (MB-UIDEs)
can be enhanced by pattern-based frameworks to allow for richer design capa‐
bilities and more flexible responsive behavior during the runtime of the imple‐
mented target application. In this paper an experimental system prototype for
integrating facial analysis and eye-tracking into a pattern-based dynamic user
interface adaptation process is discussed. The resulting system evaluates the
emotional state of the system users to trigger the HCI-pattern-based adaptation
of the user interface. By monitoring the emotional states of the users over longer
time periods, while the system changes its behavior and its appearance, conclu‐
sions about the perceived quality dimensions of the interactive application
can be drawn.

Keywords: Model-based development · MB-UIDE · Pattern-based development ·
HCI-patterns · Responsive design · Eye tracking · Facial analysis · Emotion
tracking · Adaptive user interface

1 Introduction and Related Work

Model-based approaches have a rich history in HCI and can be fruitfully applied for
building media-rich and flexible interactive systems [12]. In addition to classic model-
based and model-driven approaches, in recent years the descriptive characteristics and
powers of HCI patterns [11, 14], pattern languages [4, 9], and generic software pattern-
based approaches, [10], were increasingly exploited for modeling structure, behavior,
and presentational aspects of interactive systems.

The PaMGIS framework [5, 7] combines the model-based user interface develop‐
ment paradigm with a pattern-based modeling and design approach conforming to the
CAMELEON reference model [2]. In PaMGIS the modeling and semi-automated
construction of interactive applications is centered around a pattern repository that
allows storage of and access to domain-independent and domain-dependent HCI pattern
languages that are specified in the PPSL pattern specification language [6]. These
patterns can be exploited for advanced user interface modeling and design purposes
together with various other model types and modeling artifacts, e.g. task models [13],
user models, context models, and environment models. So far, applications for various

© Springer International Publishing Switzerland 2016
M. Kurosu (Ed.): HCI 2016, Part III, LNCS 9733, pp. 28–36, 2016.
DOI: 10.1007/978-3-319-39513-5_3

application areas, e.g. web-shops, knowledge sharing systems and travel information
systems have been constructed using the PaMGIS approach and tool environment. For
these areas not only usable and functional application prototypes could be developed,
but also the mapping of the same abstract and semi-abstract models to different target
platforms and target devices was demonstrated.

In this paper we aim to go a step further in our view of the usefulness of the pattern-
based modeling approach for interactive system design. In order to arrive at true context-
aware software services, new software engineering approaches are required that couple
standard or agile requirements engineering techniques with methods that monitor the
users’ behavior, emotions, and possibly their changing mental states at runtime in order
to decipher their intentions during their interaction with software services in a sequence
of situations starting with the desire to reach a certain goal and finishing with the goal-
satisfying situation. For studying the requirements engineering process and the software
engineering life-cycle for situation-aware software, the Situ framework was constructed
[3]. Studies with the Situ framework involve the monitoring of humans-in-the-loop and
could produce so called Situ_patterns and building blocks for runtime adaptation of the
observed software services. The information gathered could later be used for situation-
responsive design without the direct monitoring of a user’s mental states.

In the more elementary approach, presented in this paper, we aim at demonstrating
that a pattern-based approach generally is apt for arriving at adaptive interactive appli‐
cations with highly responsive design and runtime-reconfiguration capabilities. For this
purpose we use abstract and semi-abstract HCI-patterns from our repository as models
and templates for runtime-adaptive user interfaces. Our experimental system controls
the choice of layout and presentation characteristics by evaluating user behavior and
user emotions during runtime. The feasibility of this new approach is demonstrated for
a prototypical interactive application, where the PaMGIS pattern repository is coupled
with highly interactive system components for behavior and emotion evaluation based
on face reading and eye-tracking technology.

2 Application Prototype

The aim of this project was to develop a prototype which is able to adapt a web page
dynamically in order to control the user experience, so that the interests and satisfaction
of the user persist as long as possible. The adaptation should happen on the basis of
facial analysis and the gaze motion. For changing the appearance of the user interface
the PaMGIS pattern repository can be accessed dynamically. To gain deep insights into
consumer behavior, eye tracking was used as a sensor technology. For the facial analysis
the FaceReader 6.1, developed by Noldus, was used. The resulting software system can
be seen as a test bed for studying user emotions and mental states of users during inter‐
action with web applications. It can also be used for evaluating the impact of runtime-
adaptable user interfaces on the mood and mental states of users.

Designing Responsive Interactive Applications by Emotion-Tracking 29

2.1 Technologies and Tools

As one of our goals was the rapid development of the target system with state-of-the art
software technologies, the following tools and systems were used for the implementation
of the prototype. The ASP.NET MVC web application framework, developed by Micro‐
soft, implements the Model-View-Controller (MVC) pattern. The open-source Java‐
Script Framework AngularJS was used for running the resulting single page application.
AngularJS basically does not implement the MVC in the traditional sense, but rather
close to the MVVM (Model-view-view-model) pattern. With AngularJS, HTML DOM
can be extended with additional attributes, to be more responsive to user actions.
Furthermore it allows rapid prototyping by supporting data binding and dependency
injection. All the relevant application parts are implemented within the browser. There‐
fore a complete client-side solution is created that is ideally fit for coupling it to any
server technology [1] and eases all aspects of implementing user privacy. The Cascading
Style Sheets (CSS) describe the design of the elements from the HTML page. The
elements are derived from HCI patterns. They represent the platform-dependent final
user interface and can be retrieved from the pattern repository at runtime.

The facial expression analysis software FaceReader 6.1 was employed for analyzing
users’ emotions. The software tracks six different basic facial expressions (happy, sad,
surprised, disgusted, angry and scared) [8]. The gaze directions, head orientation and
person characteristics (gender and age) can also be logged automatically [8]. An Appli‐
cation Programming Interface is also included in the FaceReader 6.1 software. The
language binding assembly for the .NET Framework is the FaceReaderAPI.dll. This API
serves as an interface between the different software programs and eases integration.
The framework allows other software components to respond instantly to the emotional
state of the participant. The API includes real-time export of detailed state log data,
which enables the facial analysis, tagging and inference of cognitive affective mental
states from facial video [8].

For the eye-tracking the Tobii eye-tracker X-2-60 was used. For the development of
eye-tracking applications Tobii provides the Tobii Analytics SDK. This SDK includes
an application programming interface, which is implemented as a core library, “tetio”,
and a set of language bindings which are built on top of the core. The language binding
assembly for the .NET Framework is the Tobii.EyeTracking.IO.dll [17]. The Tobii eye-
tracker presents itself on the LAN by using a technology called “zero configuration
networking” (zeroconf). It automatically creates a usable computer network based on
the Internet Protocols Suite (TCP/IP) when computers or network peripherals are inter‐
connected [16]. No manual operator intervention or special configuration servers are
required. An instance of the EyeTrackerBrowser class is created and started to consider
the connected eye tracker in the network.

2.2 Software Architecture

The UXDataControlForm in Fig. 1 illustrates the Windows Form application, which has
access to the data of the eye tracker and FaceReader in real-time due to the APIs [15].
When the application is connected to the FaceReader, it is possible to control the Face

30 C. Märtin et al.

Reader software and its actions like start and stop of a facial analysis, enable detailed
log and state log. The detailed log contains all the classifications enabled in the logging
settings [8]. The state log shows the dominant expressions of the participant. If the eye
tracker is connected to the local area network, the application automatically detects the
tracker and a connection can be established. The application allows the user to start/stop
tracking and run the eye-tracker calibration. Figure 2 shows a snapshot of the UXDa‐
taControlForm [15]. The Windows Form Application is not really the main part of the
project. It only offers the possibility to access the hardware and to retrieve user experi‐
ence data (emotion, gaze points).

The central part of our prototype architecture is the Client, the browser that accesses
the real-time data. To enable data access, the browser needs a connection to the UXDa‐
taControlForm. For this purpose there were no separate Internet Information Services
(IIS) required. The connection was implemented using a self-host Web API inside the
Windows Form application.

The application listens to the http://localhost:8080/ address. The Web API Controller
“UXDataController”, which is defined in the application, uses the GET action and
returns the FaceReader and Eye Tracker data via an interface.

The prototype of the web application, which handles the user experience state, is
basically implemented as a client-side application in AngularJS. AngularJS allows
dynamic changes in the page without having to load the whole page again. Via the API
Angular requests the data and evaluates it in the directive. A directive is essentially a
function that executes, when the Angular compiler finds it in the DOM (Document
Object Model) [1].

The structure of the web application is kept simple. The web application implements
a railway link map system where railway link maps according to the user´s desired
destination are shown. Figure 3 shows a snapshot of the web application, where a time‐
table information has to be entered in order to get a link map. The link map data are

Fig. 1. Software architecture of the prototype. The dashed lines indicate that information in the
pattern repository is interpreted to access the needed concrete implementation of patterns that may
reside in the client or the server.

Designing Responsive Interactive Applications by Emotion-Tracking 31

http://localhost:8080/

requested and retrieved from a database. Every web page of the application has a
controller and a directive in AngularJS. Main functions are defined in services that are
accessed in directives. The service, e.g., fetches the eye-tracker and Face Reader data.

Every single page is segmented in panels (Fig. 3) and has a specifically defined
directive, which is given to each panel. For each panel there is a defined update-method
in the directive.

With the help of the eye tracker, which is adjusted to the screen size, the eye motion
positions of the user can be easily retrieved. To get the most exact positions, a calibration
procedure can be executed by the user in the UXDataController (see Fig. 2).

If the user looks at a specific panel (in Fig. 3), the directive automatically calls the
appropriate update-method of the panel. In the update-method the current emotion state
of the user is retrieved from the Face Reader and analyzed. The analysis algorithm
examines, how often the user has looked at a given panel and stores the result in an array
together with the inherent emotion state at that time. The algorithm can be extended at
any time for more sophisticated evaluations. The final dominant expression (over a
specific time period), which is figured out by a statistical calculation, can be assigned
to the panel. Once the dominant expression is assigned to a panel, the system designer
can decide what the update-method should do. Dependent on the dominant expression
and the situation (click behavior of the user) the page can change its color dynamically
or some extra features can be added to give the user a better user experience. In addition

Fig. 2. WinForms Application as a Web API host application

32 C. Märtin et al.

the user characteristics are exploited and the page can be adjusted even more precisely.
For example the font size can be increased, if the user is aged [15].

To demonstrate the importance of an optimized user experience in the experimental
setting some errors were installed into the web application. In Fig. 3, for example, there
is no destination field, so it is not possible to enter data. This is an attempt to upset the
user and change his or her emotional state to “angry”. If the emotional state is “angry”,
the background color will be changed to an enjoyable color and the layout will be
adjusted by the CSS-based UI implementation of a user experience pattern to mollify
the user and manipulate his mind and mood. The prototype also includes several external
HTML pages, modeled after HCI-patterns that can offer help services, if needed. They
are dynamically placed on the site, to help the user in a specific situation. In this web
application example the destination field is required, to reach the intended goal. The
display of an external HTML template is realized by using features of AngularJS direc‐
tives. Directives are very powerful concepts in Angular. HTML itself does not support
embedding HTML pages within HTML pages. To achieve this functionality, the direc‐
tives in AngularJS can be exploited. The directives allows to load dynamic templates
into the web page [1]. In this example an external HTML page, which contains the option
to select a destination is added.

The display of the external HTML page is also done in the current directive and
update-method of the panel. Here the system designer has to decide, which template has

Fig. 3. Screenshot of the web application [15]

Designing Responsive Interactive Applications by Emotion-Tracking 33

to be given to the directive. The parameter passing (path of the template) is possible
with scope. Scope is an object that refers to the application model. It is a link between
the application controller and the view [1]. The scope object is controller-specific. If
some model data in the view are changed, the controller automatically gets the modified
value. AngularJS also allows the access of a parent scope in a directive. So it is possible
to render the updated value to the DOM. In the prototype the update-method calls the
parent scope and tells it, which template has to be loaded. The ng-include directive,
which is defined in the main HTML page, contains the scope object (the path of the
template). By getting a value, the ng-include fetches the external HTML resource,
compiles it and finally includes it in the HTML page. The ng-include directive creates
a new scope, but it can also refer to the parent scope with $parent.scope.

2.3 PaMGIS Pattern Repository

The integration of HCI-patterns for adaptive interactive systems based on emotion
tracking and the mentioned technologies and their implementation for the final user
interface is accomplished by using CSS style sheets and features of AngularJS.

The PaMGIS pattern repository uses the PPSL pattern specification language for
describing HCI patterns on all abstraction levels [7]. The CSS style sheets and HTML
pages used in the prototypical Web application presented in this paper are modeled after
structural and presentation HCI patterns. In order to link the actual pattern implemen‐
tation code to the patterns from which they are derived, the specification language offers
the Deployment element. This specification element contains powerful specification
attributes to describe the more implementation-related aspects like concrete code and
model fragments which can also be used for automated user interface generation. In the
context of the discussed prototype they also contain the links to the runtime environment
that interprets the CSS stylesheet or HTML code for each pattern accessed by the update
methods of the applications.

The prototypical application in Fig. 3 implements user interface adaptation by
constructing the displayed HTML page from two interpreted patterns. The first pattern
is responsible for the structure of the first panel of the input form. The second is respon‐
sible for the color experience of the entire form.

Figure 3 shows the initial page setup. For each panel a pattern is available in the
repository. For the pattern Panel1 the initial pattern implementation is Panel1:Travel‐
Start. For the pattern TimeTableInformationColor, the initial setup uses its implemen‐
tation TimeTableInformationColor:Neutral. If the mood of the user changes to “angry”,
the structure will be adapted by executing the HTML code of the pattern implementation
Panel1:TravelStartDestination and changing the color of the complete page by
accessing the pattern implementation TimeTableInformationColor:Mollifying. For each
pattern a PPSL specification is available in the repository. The PPSL top level element
<Deployment> [7] contains a list of all implementations of a given pattern. The update
method accesses the selected implementation by entering an identifier. As a result, a link
to the relevant HTML code is returned. An alternative would be the direct storage of the
implementation code fragment within the repository, which is also supported by PPSL.

34 C. Märtin et al.

In order to allow for the most flexible architectures for all types of resulting inter‐
active applications, the PaMGIS pattern repository can be accessed either by the client
side or the server side.

3 Conclusion

In this paper an architecture for building adaptive interactive systems by introducing
emotion tracking, flexible client technologies for dynamic and responsive application
design and integrating a pattern-repository into the design environment was demon‐
strated. This architecture will serve as an experimental platform for testing the PaMGIS
framework as a basis for modeling and constructing a wide spectrum of domain-
dependent and independent adaptive applications for various target platforms, contexts,
and devices.

In the prototype a relatively simple railway timetable information system was imple‐
mented as an exemplary interactive application. In the future any type of web-based
application, e.g. web shops, games, apps for personal communication, etc., can serve as
a target for pattern-based dynamic adaptation triggered by the monitoring of user
emotions. The monitoring interface is also open for additional sensor-based gathering
of emotional and mental states of the user. Wearable devices could provide bio-signals
in addition to the already integrated facial analysis and eye-movement data.

In addition, experiments with more intelligent algorithms for drawing conclusions
about the hidden mental states from the observed emotional, eye movement and biolog‐
ical data will be carried out.

One of the next steps towards a reliable system will be a thorough measurement and
usability-lab-based evaluation of the mood-changing effects of emotion-state-triggered
dynamically adapted user interfaces on diverse users and over longer time periods, when
interacting with an extended version of the prototypical railway timetable application.
Measurements of this kind will allow both, a reliable identification of diverse quality
characteristics of the application in use, and, at the same time open the way to find out
more about the hidden mental states of the users in different situations and contexts of use.

References

1. AngularJS Documentation. https://docs.angularjs.org. Accessed 21 Dec 2015
2. Calvary, G., Coutaz, J., Bouillon, L. et al.: The CAMELEON Reference Framework (2002).

http://giove.isti.cnr.it/projects/cameleon/pdf/CAMELEON%20D1.1RefFramework.pdf.
Accessed 15 April 2015

3. Chang, C.K.: Situation analytics: a foundation for a new software engineering paradigm.
Computer 49, 24–33 (2016)

4. Deng, J., Kemp, E., Todd, E.G.: Managing UI pattern collections. In: Proceedings of the 6th
ACM SIGCHI New Zealand Chapter’s International Conference on Computer-Human
Interaction: Making CHI Natural, pp. 31–38. ACM (2005)

5. Engel, J., Märtin, C.: PaMGIS: Framework for pattern-based modeling and generation of
interactive systems. In: Proceedings of HCI International 2009, San Diego, U.S.A., pp. 826–
835 (2009)

Designing Responsive Interactive Applications by Emotion-Tracking 35

https://docs.angularjs.org
http://giove.isti.cnr.it/projects/cameleon/pdf/CAMELEON%2520D1.1RefFramework.pdf

6. Engel, J., Herdin, C., Märtin, C.: Exploiting HCI pattern collections for user interface
generation. In: Proceedings of PATTERNS 2012, pp. 36–44 (2012)

7. Engel, J., Märtin, C., Forbrig, P.: A concerted model-driven and pattern-based framework for
developing user interfaces of interactive ubiquitous applications. In: Proceedings of First
International Workshop on Large-scale and Model-Based Interactive Systems, Duisburg, pp.
35–41 (2015)

8. FaceReader 6 Application Programming Interface. Technical Note
9. Fincher, S., Finlay, J.: Perspectives on HCI patterns: concepts and tools (introducing PLML).

Interfaces 56, 26–28 (2003)
10. Gamma, E., et al.: Design Patterns Elements of Reusable Object-Oriented Software. Addison-

Wesley, Reading (1995)
11. Kruschitz, C., Hitz, M.: Human-computer interaction design patterns: structure, methods, and

tools. Int. J. Adv. Softw. 3(1 & 2) (2010)
12. Meixner, G., Calvary, G., Coutaz, J.: Introduction to model-based user interfaces. W3C

Working Group Note 07 January 2014. http://www.w3.org/TR/mbui-intero/. Accessed 27
May 2015

13. Paternò, F.: The ConcurTaskTrees notation. In: Model-Based Design and Evaluation of
Interactive Applications, pp. 39–66. Applied Computing. Springer, Berlin (2000)

14. Seffah, A.: The evolution of design patterns in HCI: from pattern langauges to pattern-oriented
design. In: Proceedings of the 1st Interational Workshop on Pattern-Driven Engineering of
Interactive Computing Systems (PEICS 2010), pp. 4–9 (2010)

15. Rashid S.: Entwicklung eines Prototypen zur User Experience Optimierung auf der Basis von
Emotions- und Blickanalyse im Bereich E-Commerce. M.Sc. Thesis, Augsburg University
of Applied Sciences (2016)

16. Zero Configuration Networking (ZeroConf). http://www.zeroconf.org/. Accessed 18 Dec
2015

17. Tobii Studio SDK. Developer Guide, 8 May 2013

36 C. Märtin et al.

http://www.w3.org/TR/mbui-intero/
http://www.zeroconf.org/

	Designing Responsive Interactive Applications by Emotion-Tracking and Pattern-Based Dynamic User Int ...
	Abstract
	1 Introduction and Related Work
	2 Application Prototype
	2.1 Technologies and Tools
	2.2 Software Architecture
	2.3 PaMGIS Pattern Repository

	3 Conclusion
	References

