History Viewer: Displaying User Interaction
History in Visual Analytics Applications

Vinicius C.V.B. Segura'2®™) and Simone D.J. Barbosa'

! Departamento de Informética, PUC-Rio, Rio de Janeiro, Brazil
{vsegura,simone}@inf.puc-rio.br
2 IBM Research, Rio de Janeiro, Brazil

vboas@br.ibm.com

Abstract. Effective and efficient strategies are needed to extract
unknown and unexpected information from data of unprecedentedly large
size, high dimensionality, and complexity [7]. Only a combination of
data analysis and visualization techniques can handle these complex and
dynamic data [4]. Visual analytics applications aim to integrate the best
of both sides.

After the knowledge discovery process, a major challenge is to filter
the essential information that led to a discovery and to communicate
the findings to other people. We propose taking advantage of the trace
left by the exploratory data analysis, in the form of user interaction
history. This paper presents a framework to instrument web visual ana-
lytics applications, logging the user interaction during the exploratory
data analysis. This paper also presents our solution to display the user
interaction history to the user, enabling him to revisit the steps that led
to an insight.

Keywords: Visual analytics - User interaction logging - User interaction
history - Data visualization - History visualization - Log visualization

1 Introduction

We are now living in a Big Data world. We generate 2.5 quintillion bytes (2.5
10*® bytes or 2.5 exabytes) of data every day, meaning that 90% of the the
available data today has been created in the past two years.! Research-wise, the
bottleneck has shifted from data acquisition (when there are poor datasets) to
data analysis (what to do with the rich datasets recently available) [5].

Human attention is now a limiting resource. Effective and efficient strategies
are needed to extract unknown and unexpected information from these data of
unprecedentedly large size, high dimensionality, and complexity [7]. Only a com-
bination of data analysis and visualization techniques can handle these complex
and dynamic data [4].

Y IBM — What is big data?, available at: http://www-01.ibm.com/software/data/
bigdata/what-is-big-data.html.
© Springer International Publishing Switzerland 2016

M. Kurosu (Ed.): HCI 2016, Part III, LNCS 9733, pp. 223-233, 2016.
DOT: 10.1007/978-3-319-39513-5_21

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

224 V.C.V.B. Segura and S.D.J. Barbosa

On the one hand, computers can provide intelligent data analysis [6] without
cognitive biases [3]. Their enormous processing power [1] and superior working
memory [3] guarantee an incomparable mathematical, algebraic, and statistical
prowess to handle massive volumes of data. On the other hand, human users can
contribute with their analytical capabilities and inherent visual perception [6],
which enable them to perform visual information exploration [1].

Visual analytics applications (VAApps) aim to integrate the best of both
worlds. They pre-process and analyze data, presenting it to users in a way to
take advantage of the user’s cognitive capabilities. The final outcome may be an
unexpected insight — one only possible by combining computation and cognition.

After the knowledge discovery process, a major challenge is to filter the essen-
tial information that led to a discovery and to communicate the findings to other
people. We propose taking advantage of the trace left by the exploratory data
analysis, in the form of user interaction history. We have devised a framework
to instrument web VAApps to log the user interaction during the exploratory
data analysis. This user interaction history can be later presented to the user,
enabling him to revisit the steps that led to an insight.

In this paper, we start by presenting the framework and its different compo-
nents (Sect.2). In the following section (Sect.3), we discuss the associated log
model, which makes the bridge between the VAApp and our history viewer. In
Sect. 4 we detail our history visualization idea, elements, and concepts. Next,
(Sect.5) we show how our solution was applied to a weather insights VAApp.
Finally, we conclude this paper (Sect.6) with some final remarks, discussing the
current solution limitations and proposing some future work.

2 Framework

Figure 1 summarizes the different components of our framework and the relations
between them. We consider that the VAApp architecture is itself comprised of
three basic components:

1. A web UI — the front-end — responsible for rendering the VAApp in the
user’s browser. This usually corresponds to the HTML and JavaScript code
to be executed in the client’s browser.

2. A data service — the back-end —, which communicates with the database(s)
and sends data back to the web Ul according to a given API. The technology
used in this component can be various: Node.JS, Java, Python, etc. It is
important to notice that this component may not be deployed in the same
application as the front-end, or even be developed by the same VAApp team.
For example, the VAApp may use a 3rd party API and make transformations
to the data only on the client side.

3. Finally, the data itself, which is usually stored in some sort of database. Again,
there is a multitude of technologies that can be used for this component — from
local stored files to cloud-based storage —, which are beyond the scope of this
discussion.

History Viewer: Displaying User Interaction History 225

Log
Data

History viewer

User history log

Fig. 1. Framework components diagram.

Our framework considers this basic VAApp architecture, and builds upon it
with three components:

1. A visualization library, providing reusable basic charts to be used in dif-
ferent VAApps. This component uses d3.js*> and both the VAApp and the
history viewer may use it.

2. An user history log, storing the user interaction history. Similar to the
VAApp’s data service, this component handles the queries to the log data
stored in some sort of database. Section 3 details our current log model.

3. A history viewer component, a VAApp itself that presents the user inter-
action history in a comprehensible way. It corresponds to the VAApp’s web
UI. We will present our visualization in Sect. 4.

3 Log Model

In order to visualize what is being logged by the VAApp, we must define a
common log model to be shared between the VAApp and the history viewer. We
propose the model illustrated in Fig. 2. It is a hierarchical model, which can be
split in two: the definitions and the interactions hierarchy.

On the right-hand side, we can see the definitions hierarchy. This hier-
archy is established at development time by the VAApp developer. Its root is
the VA App definition, which has a collection of view and data service
definitions. A view definition represents a view (page) that can be navi-
gated inside the VAApp and contains a collection of visualization component
definitions. A visualization component definition represents a visual ele-
ment (e.g.: a chart, a map, a collection of charts) that appears on the Ul The
data service definition represents the data service APIs used by the VAApp
to gather data for its visualizations.

These definitions consists mostly of a given name, a version, and a URL.
The versioning is managed by the VAApp developer. He is therefore responsi-
ble for maintaining retro-compatibility (by providing different URL’s for differ-
ent versions, for example). Some definitions (data service and visualization
component definitions — the leaves of the hierarchy) must also provide a class
name, so they can be later reused.

2 http://d3js.org/.

http://d3js.org/

226 V.C.V.B. Segura and S.D.J. Barbosa

Session VAApp def.

View def.

c

]

‘g : v

s | Vis action |—|——>i Vis comp def. |

- 1

-E Dataservice call | I T »| Dataservice def.
1

3 Vis state !

o 1
i
1
1

Interaction hierarchy Definition hierarchy

Fig. 2. The log model.

If we take the Gapminder® website as an example, the VAApp definition
would point to the website (http://www.gapminder.org/). For visualization pur-
poses, we could say that there would be only a single view definition, pointing
to the Gapminder World page (http://www.gapminder.org/world/), ignoring the
other pages (video, download, etc.). This page contains a single scatterplot, so
it would only have one visualization component definition. To keep things
simple, we could say that there is only one data service API which returns a
time-series data given an indicator. This API would be the only data service
definition of this example VAApp.

On the left-hand side, we can see the interactions hierarchy. It starts with
a session, when the user logs in to a VAApp. It keeps a reference to the VAApp
definition and may contain additional information, such as the browser’s user
agent, for example. During a session, the user can open different browser win-
dows (or tabs). In each window, the user may navigate through many VAApp
views, each one of which referencing the corresponding view definition.

The steps described so far are more related to the page navigation in the
browser than an actual user interaction within the page. The first user action
usually corresponds to the actual page loading and the visualization components’
initial state. A user action may trigger a data service call to gather new data
from the data service component. Since we focus on changes in the visualiza-
tion components, a user action should always have at least one visualization
action, indicating what type of change happened to the visualization compo-
nent. Every visualization action generates a new visualization state,
describing the state of the visualization component after the action and refer-
encing the data currently represented. As the user interacts with the view, new
user actions are recorded every time a visualization component ischanged.

3 http://www.gapminder.org,/.

http://www.gapminder.org/
http://www.gapminder.org/world/
http://www.gapminder.org/

History Viewer: Displaying User Interaction History 227

We believe that the VAApp developer may give some semantics and context
to the user action, but cannot infer the user’s intentions or higher-level goals.
We may see this limitation as similar to the affordance levels [9]. At the opera-
tional level, we have individual actions (mapped onto visualization actions).
At the tactical level, we find a sequence of actions that were executed to achieve
goals and sub-goals (mapped onto user actions). Finally, we cannot log the
strategic level, since it relates to the conceptualizations regarding problem for-
mulation and problem solving processes.

The user actions therefore can be described by the VAApp developer using
terms related to the VAApp instead of more generic ones. For example, in Gap-
minder, we could describe the change of the y-axis as “Changed y-axis indicator
to ACME” instead of generically saying “Changed y to ACME”.

We believe that more specific information can make it easier for the user
reading the history log to recall the actual actions that took place, since it will
be a more contextual description that reflects the actual VAApp Ul he first
interacted with.

The visualization actions are categorized according to a given set of
tasks, so the VAApp developer does not need to provide any additional informa-
tion. We are using Brehmer’s and Munzner’s [2] multi-level typology of abstract
visualization tasks, summarized in Fig.3, to categorize the visualization
actions. We focused on the “how” part — “families of related visual encod-
ing and interaction techniques” — since the “why” part falls onto the strategical
abstraction level previously discussed and is, therefore, outside the scope of this
work. The available visualization actions are, therefore:

— Encode: Codify data in the visual representation.

— Select: Demarcate one or more elements in the visualization, differentiating
selected from unselected elements (e.g.: select, brush, highlight).

— Navigate: Alter user’s viewpoint (e.g.: zooming, panning, rotating).

— Arrange: Organize visual elements (e.g.: reordering axes, rows/columns).

— Change: Alter visual encoding (e.g.: size and transparency of points, changing
the chart type).

— Filter: Adjust the exclusion and inclusion criteria for elements in the visual-
ization.

— Aggregate: Change the granularity of visualization elements.

— Annotate: Add graphical or textual annotations associated with one or more
visualization elements.

— Import: Add new elements to the visualization.

— Derive: Compute new data elements given existing data elements.

— Record: Save or capture visualization elements as persistent artifacts.

By using this typology, we believe it will be possible to compare visualiza-
tion actions from different interaction paths and even from different VA Apps.
Moreover, we believe it will also simplify their interpretation, since we limit the
number of possible tasks.

Continuing with the Gapminder example, when the user navigates to the
Gapminder World page, all the page navigation hierarchy is constructed, with

228 V.C.V.B. Segura and S.D.J. Barbosa

C) g Q’) how?
consume manipulate introduce
C present)(ger?eirsa(t::y\?:ﬁfy>< enjoy)(produce) (encode) (select) < annotate)
se:mh C navigate) C import)
target known target unknown
. (arrange) < derive >
location known(lookup >< browse >
) @ what? (change) C record)
location unknown C locate)C explore) .
7 (Ctimpay) oty ™ || fer)
e [input] (i appli
aggregate
< identify)(compare)(summarize) @

Fig. 3. Brehmer’s and Munzner’s multi-level typology of abstract visualization tasks.

the view referring to the Gapminder World view definition. The page load-
ing is mapped to an user action, which (considering our simple data APT),
would trigger three data service calls (to gather data for each axis and
the circles’ sizes using the data service definition) and one visualization
action (the encoding of the scatterplot visualization component).

If the user hovers the mouse pointer over a data point, a new user action
would be created with just a visualization action (the annotation of the
data point), since no new data seems to be gathered. If the user changes an axis
indicator, again a new user action is created, which would have a single data
service call (data for only one axis) and a visualization action (encoding
new data on the scatterplot).

4 History Visualization

After logging the user history, we want to present it back to the user so he can
trace back the steps in his interaction. We propose the representation illustrated
in Fig. 4. We based our visualization in the GIT commit graph,* so users could
have some sense of familiarity (at least amongst GIT users). We chose to keep
the y-axis as a time axis anchor, so in the “worst-case scenario” the user may
just read through the description texts from top to bottom and still relate to
the interaction he had with the VAApp.

Each column in the representation groups different views if there is no time
conflict, i.e. the time span of the view (time between the first and last user
actions) does not overlap the time span of another view. From the figure, for
example, we can notice two parallel views (two columns), so we can infer that
the user had at least two open windows.

View navigations are represented as column-wide ellipses breaking the flow.
For example, looking at the fourth row, second column, we see that the user
navigated from one view to another, given the break represented by the ellipse.

* http://chimera.labs.oreilly.com /books,/ 1230000000561 /ch01.html#fig0101.

http://chimera.labs.oreilly.com/books/1230000000561/ch01.html#fig0101

History Viewer: Displaying User Interaction History 229

< > < » | Each column groups different user interaction sequences.
Navigationto a view is shown Each line represents Symbols represents Textual descriptions
as a breakin the flow. avisual component. visualizationactions. for each row.

/K = =

avigationto view A Visualization actions can

I v” | [t p] Useraction 1 description happento different

O O > o] User action 2 description visualizationcomponents (e.g.

user action 2) and/or many
times to the same
O [timestamp] User action 3 description visualization component (e.g.
[5] User action 4 description useraction 4).

[timestamp] Navigation to view B

plUseraction 5 description
pl Vis action 5.1 description
pl Vis action 5.2 description

User actions can be expanded
in their visualization actions

o

Fig. 4. An annotated history visualization. The elements in blue are not part of the
representation, but comments included here to help describe it.

From each view representation a different number of lines emerge. Each one
represents a visualization component of that given view. In the first col-
umn, therefore, we could say that the view has three different visualization
components and, in the second column, the initial view had two visualization
components and navigated to one with a single visualization component.

We chose to represent views occupying the whole column to highlight breaks
in the flow and changes in the number of visualization components. If the
second column did not begin with those two lines and simply started with the
ellipse on the fourth row instead, we could infer that the user had just opened
another window at that point in time.

In each visualization component line we can have multiple symbols, rep-
resenting the different tasks associated with the visualization actions.

The line in which the symbol appears indicates in which visualization
component the action took place. The order of the lines, therefore, should be
consistent amongst different representations of the same view, so the user can
create a mental mapping of which line is which visualization component.

Finally, each banded row represents a single user action. A user action
may group multiple visualization actions. Looking at the figure, for exam-
ple, we can see that the user action 2 comprises of two different visualization
actions for two different visualization components (one symbol in each of
the first two lines, on the same row), whilst the fourth user action has a num-
ber of visualization actions for the same visualization component (rep-
resented by the small #’ badge attached to the circle). If the user wants to look
at each individual visualization action, he can expand the user action, as
demonstrated with the user action 5 in the figure.

230 V.C.V.B. Segura and S.D.J. Barbosa

5 Early Implementation

For our first implementation, we chose WISE - Weather InSights Environment [8]
as our target VAApp. WISE’s main Ul (shown in Fig.5) is composed mainly of
three visual components: a map in the background, an event profile at the bot-
tom, and meteograms on the right. We disregarded the top card — a configuration
card — since it is only a series of common HTML input elements to choose/display
the current parameters (forecast, grid, property, and timestep) and we wanted
to focus on the visual analytics aspects.

x IBMWISE

Forecast: [2014-04-16 12:00:00 v| | Grid: [1km Grid v | (¢ G 2014-04-16 13:30:00 ») () | Property: 30 Minutes Precipitation v Bstsngriuns

0.0 N
09 AM 12PM 03PM 06 PM 09PM Thu 17 03AM ocr
Esii, HERE. DeLome ==

Fig. 5. WISE’s main UL

We started by mapping the available interactivity and visualization changes
they generate onto our log model, in order to evaluate how well our approach
would fit. The results can be seen in Table 1, with the visualization action
task inside parentheses.

We proceeded to instrument WISE to generate a log according to our model.
We developed helper code to reduce the work needed to be done by the VAApp
developer and the impact on the client side. Thus, the instrumentation com-
prises only four main concerns: (i) keeping the definition hierarchy updated;
(ii) using the auxiliary logger class; (iii) using compatible visualization com-
ponents; (iv) using compatible data services.

The definition hierarchy is expressed in JSON. We created a simple Ul
to post this JSON data and get the ids corresponding to the created definitions.
These ids should be used at run time to make the interaction hierarchy
reference the definition hierarchy.

The logger class helps to post to the user history log component. The
developer informs when a session starts, the current view, and the page inter-
actions. The logger manages saving session and windows ids, and also doing
the actual posting.

History Viewer: Displaying User Interaction History 231

Table 1. WISE’s user actions and visualization actions study.

User action Visualization action
Change in the forecast Redraw map (Encode)
Change in the grid Redraw profiles (Encode)
Redraw meteograms if necessary (Encode)
Change in the property Redraw map (Encode)
Change in the timestep Redraw map (Encode)

Move profiles highlight (Select)
Move meteograms highlight (Select)

Panning/zooming map Update map (Navigate)
Mouse over a cell Show cell tooltip on the map (Annotate)
Click on a cell Highlight cell on the map (Select)

Redraw meteograms (Encode)

Mouse over a profile column | Show profile tooltip (Annotate)

Mouse over a meteogram Show property value for the timestep (Annotate)

For the visualization components and data services we established an
interface that should be implemented and “abstract” classes that could be used
by the concrete implementation. For this implementation, both the visualiza-
tion components and data services were developed in the same application
as WISE (as opposed to being developed as separate applications). We chose this
approach so the development of the VAApp would be clearer to the VAApp devel-
opment team, with methods adapted to the context instead of a more generic
one (for example, the map visualization component has a selectCell method
instead of a generic select one).

All the implementation is done using TypeScript,” “a typed superset of
JavaScript that compiles to plain JavaScript.” This made development easier,
with the possibility of defining interfaces to objects and classes, and also enabling
the abstract class concept (one not native to JavaScript). Moreover, during devel-
opment, this approach made debugging easier, with compatibility errors being
noticed at compile time instead of run time.

Figure 6 shows a sample interaction log history visualization for the WISE
system. We highlight the parameters with monospaced font in the view naviga-
tion and user action descriptions to make it easier for users to distinguish
them from regular text. Another change was color-coding the visualization
action tasks. Together with the “tag-like” appearance (text in a colored back-
ground) of the visualization action description, we believe this may aid users
to establish the mapping with the task (the circle) and with the visualization
component (the line in which the circle appears), whilst also working as a legend
for the graph.

5 http://www.typescriptlang.org/.

http://www.typescriptlang.org/

232 V.C.V.B. Segura and S.D.J. Barbosa

@ :z:/;)::r;/:ow Navngated tO WISE-SPL:portal
195an2016 » Loaded page with forecast 2015-12-11 00:00:00, grid 2k Grig,
I r 1o property Temperacure at timestep 2015-12-11700:00:00.000z.
::{;’;’&fow » Changed timestep to 2015-12-1 00:00.0002

19/Jan/2016
10:4531 Navigated to wise-ser:porcal

19/Jan/2016

10:45:41

19/Jan/2016

I r 10:45:31
19/Jan/2016

(17 10:45:57 » Changed timestep to 2015-12-11714:00:00.000Z.
19/Jan/2016
| | 10;4::4 » Selected cell -22.22x316.23,
19/Jan/2016
s v Selected cell -22.22x316.83,

19/Jan/2016
104624 |BelecEERY

0
19/Jan/2016
X 10:46:24 j3elelele LY meteograms

Fig. 6. Sample history view excerpt for WISE interaction.

While developing this early implementation, the history visualization already
proved itself useful for the development team, since it enabled visualizing the
inner workings of the code. WISE’s development team was able to detect some
problems with the information flow, such as calls to the data service and
drawing the visualization components in the wrong order or even when not
yet necessary.

6 Final Remarks and Future Work

In this paper we provided a complete overview of our solution to record and
present user interaction history. We started by introducing how our framework
components work, continued to explain the log model that enables the commu-
nication between the VAApp and the history viewer, and discussed the main
concepts and ideas of our history visualization system. We also presented our
early concrete implementation of the solution using WISE as the origin VAApp,
the results of such effort, and the unexpected benefit for the VAApp’s develop-
ment team.

The solution is yet in its early stages, needing more use cases and VAApps
to strengthen the approach. We also need to evaluate the history visualization
with users in order to better assess the visualization’s efficacy, efficiency, and
understandability.

We currently have plans to enhance the history visualization. We are aware
of the scalability issue — when there are many columns, possibly with several
VAApps, each with a multitude of view and visualization components. Besides
common search, hide, and filter features, we plan to provide a more close-packed
representation, for example by collapsing the lines and hiding the nodes, painting
the lines themselves. Moreover, we plan to have some sort of mechanism to

History Viewer: Displaying User Interaction History 233

highlight common visualization states, as many different actions can lead
to the same state. This could be used to hide sections of user actions (e.g.:
collapse a sequence of actions that lead to an undo) and also to detect patterns
in the user interaction.

Acknowledgement. The authors would like to thank CNPq for the financial support
to their work (processes #309828/2015-5 and #453996,/2014-0).

References

1. Aigner, W., Miksch, S., Miiller, W., Schumann, H., Tominski, C.: Visualizing
time-oriented data - a systematic view. Comput. Graph. 31(3), 401-409 (2007).
http://www.sciencedirect.com/science/article/pii/S0097849307000611

2. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks.
IEEE Trans. Vis. Comput. Graph. 19(12), 2376-2385 (2013)

3. Green, T., Ribarsky, W., Fisher, B.: Visual analytics for complex concepts using
a human cognition model. In: IEEE Symposium on Visual Analytics Science and
Technology, VAST 2008, pp. 91-98, October 2008

4. Keim, D.A., Mansmann, F., Oelke, D., Ziegler, H.: Visual analytics: combining auto-
mated discovery with interactive visualizations. In: Boulicaut, J.-F., Berthold, M.R.,
Horvéth, T. (eds.) DS 2008. LNCS (LNATI), vol. 5255, pp. 2-14. Springer, Heidelberg
(2008)

5. Key, A., Howe, B., Perry, D., Aragon, C.: Vizdeck: self-organizing dashboards for
visual analytics. In: Proceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2012, pp. 681-684. ACM, New York (2012)

6. Kohlhammer, J., Keim, D., Pohl, M., Santucci, G., Andrienko, G.: Solving problems
with visual analytics. Procedia Comput. Sci. 7, 117-120 (2011). Proceedings of
the 2! European Future Technologies Conference and Exhibition 2011 (FET11).
http://www.sciencedirect.com/science/article/pii/S1877050911007009

7. Mennis, J., Guo, D.: Spatial data mining and geographic knowledge discovery-an
introduction. Comput. Environ. Urban Syst. 33(6), 403-408 (2009). Spatial Data
Mining-Methods and Applications. http://www.sciencedirect.com/science/article/
pii/S0198971509000817

8. Oliveira, 1., Segura, V., Nery, M., Mantripragada, K., Ramirez, J.P., Cerqueira, R.:
WISE: A web environment for visualization and insights on weather data. In: WVIS
- 5*"Workshop on Visual Analytics, Information Visualization and Scientific Visu-
alization, SIBGRAPI 2014, pp. 4-7 (2014). http://bibliotecadigital.fgv.br/dspace/
bitstream/handle/10438/11954/WVIS-SIBGRAPI-2014.pdf?sequence=1

9. Souza, C.S.D., Prates, R.O., Carey, T.: Missing and declining affordances: are these
appropriate concepts? J. Braz. Comput. Soc. 7, 26-34 (2000)

http://www.sciencedirect.com/science/article/pii/S0097849307000611
http://www.sciencedirect.com/science/article/pii/S1877050911007009
http://www.sciencedirect.com/science/article/pii/S0198971509000817
http://www.sciencedirect.com/science/article/pii/S0198971509000817
http://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/11954/WVIS-SIBGRAPI-2014.pdf?sequence=1
http://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/11954/WVIS-SIBGRAPI-2014.pdf?sequence=1

	History Viewer: Displaying User Interaction History in Visual Analytics Applications
	1 Introduction
	2 Framework
	3 Log Model
	4 History Visualization
	5 Early Implementation
	6 Final Remarks and Future Work
	References

