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Abstract. Cloud Data Centres (CDCs) are facilities used to host large numbers
of servers, networking and storage systems, along with other required infras-
tructure such as cooling, Unsupervised Power Supplies (UPS) and security
systems. With the high proliferation of cloud computing and big data, more and
more data and cloud-based service solutions are hosted and provisioned through
these CDCs. The increasing number of CDCs used to meet enterprises’ needs
has significant energy use implications, due to power use of these centres. In this
paper, we propose a method to accurately predict workload in physical
machines, so that energy consumption of CDCs can be reduced. We propose a
multi-way prediction technique to estimate incoming workload at a CDC. We
incorporate user behaviours to improve the prediction results. Our proposed
prediction model produces more accurate prediction results, when compared
with other well-known prediction models.
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1 Introduction

In CDCs, Physical Machines (PMs) use virtualization to host multiple Virtual
Machines (VMs), where a wide range of applications (data-intensive and compute-
intensive) are deployed and run [1]. Servers and storage systems in CDCs are used to
host and run applications, and to process, store and provision data and contents to
consumers in a client/server computing architecture. CDCs are equipped with different
PMs brands (e.g. IBM, HP, Dell, etc.) with different compute resource specifications
such as CPU cores with levels of performance, memory sizes, storage capacities and
network bandwidths. It has been estimated that data centre energy consumption will
reach 140 billion kilowatt-hours annually by 2020, costing US businesses $13 billion
annually in electricity bills and emitting approximately 100 million metric tons of
carbon pollution per year. This represents a significant increase from only 0.6 % of the
global carbon emission in 2008 to 2.6 % in 2020 [2].

In CDCs, users often request compute resources to perform different IT-related
tasks. However, not all of requested resources are used. According to Google [3], only
a small segment of the provisioned VM instances are used during deployment. Lack of
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knowledge of future resources needed by a CDC can lead to over-provisioning or
under-provisioning problems [4].

To address the above problem, we propose a prediction model that estimates future
incoming workload to a CDC. Our model predicates workload based on users’
requirements, and in particular identifies required number and types of VMs, repre-
sented by vCPU and memory specifications. To test our model, we have utilized the
available historical workload data collected from Google traces over a period of
29 days. The collected data represent Google compute cells. The tracelog contains over
25 millions tasks, submitted by 930 users who (previously) requested different types of
VMs over different time slots. The number of recorded requests is 3295896. We will
show how our model can improve workload prediction over this set of data using a
Multi-Way Data Analysis (MWDA) approach that incorporates users’ behaviour.

The rest of the paper is organized as follows. Section 2 provides an overview of the
workload prediction process. Section 3 describes the proposed prediction model.
Section 4 presents the experimental work. Section 5 discusses the related work. Sec-
tion 6 concludes the paper and suggests some future work.

2 Related Work

Research on computing resource prediction and virtualization techniques in CDCs has
gained lots of interest over the past few years, with a number of different techniques
proposed in the literature to tackle the machine workload prediction problem. In [5], Qazi
et al. used an autoregressivemoving average technique (ARMA), whereas Dabbagh et al.
[6] proposed the use of a weighted average of previous observations. Machine learning
techniques, such as ELM [7] have also been used to predict future workload. These
methods have a number of possible shortcomings because they do not consider of all the
key inputs for obtaining accurate predications. In [5], both user behaviour and actual
usage of CPU and memory were not considered. In [6], user behaviour was not con-
sidered during data processing and prediction computation. The main shortcoming of
machine learning techniques is that adding user clusters (behaviours) as inputs to the
prediction process increases the error in estimating the number of VM requests in each
cluster. This is because adding more variables (users) to a nonlinear process can nega-
tively affect estimation. This implies that traditional machine learning techniques cannot
handle multi-dimensional problem domains.

The main consideration of our work is the optimal use of the available computing
resources of PMs in CDCs. Our proposed model has the ability to capture multiple
variables in a multi-dimensional environment. Since user behaviours have a large
impact on improving prediction results, we incorporate users as one of the key model
variables in order to improve prediction accuracy. Prediction accuracy, in turn, enables
us to reduce the number of required PMs and hence to obtain better energy
conservation.
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3 Proposed Workload Prediction Process

As discussed in the previous section, our goal is to accurately estimate the right number
and size of the required VMs based on future users’ needs. This can in return result in
reduction of power consumption in CDCs. To achieve this goal, we propose using the
following three phases – data clustering (steps 1–3), data filtering (step 4) and workload
prediction (step 5):

– Data clustering
Step 1: We cluster VMs based on the calculated workload into different clusters.
In our work and in line with other work [6, 7], we consider a case study of four
VM clusters to demonstrate the effectiveness of our prediction model in which
actual resources are utilized for the prediction process. We label clusters with
ranges of workload percentages, as follows. The very big VMs cluster contains
workload of 75 % and up, the big VMs cluster contains [50 %–74.9 %], the
medium VMs cluster contains workload of [25 %–49.9 %] and the small VMs
contains workload of [0.1 %–24.9 %]. We put users reported in the data set into
different clusters based on the number of VM requests made in the past. Each
cluster is characterized by request density. Based on the experimental work we
have done [7], we observed that increasing the number of user clusters produces
more accurate results. However, at a certain point no further improvement can
be observed. We have performed the clustering process on different data sizes,
and we have found that the number of clusters between 25 and 30 gives the best
results.
Step 2: According to the clustering outcome, we count the number of requests
submitted by different users under each VM cluster. The calculated numbers
represent historical workload data that we utilize during the prediction compu-
tation process.
Step 3: We arrange the VMs’ historical workload data in a tensor of three
dimensions of users Ui, VM clusters Vj and time intervals tn. Each entry of the
tensor denotes the number of VMs of a particular VM cluster that a user has
used within a specific time.

– Data filtering
Step 4: We analyze recorded (historical) workload data by discovering their
patterns and relationships. We consider user behaviours when used VMs in the
past by calculating the linear correlations (dependencies) between users’
clusters.

– Workload prediction
Step 5: We employ a multi-way (tensor) technique to predict the incoming
workload of VMs for a future time interval (i.e. the number of required VMs of
each cluster based on users’ requests). We sum up the predicted number of VMs
of each cluster for all users to obtain the total number of VMs under each cluster
for the future time interval.
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3.1 Analyzing Workload Data for the Prediction Process

Our objective is to uncover hidden patterns (features) and dependencies among the
available VMs, which are hosted on heterogeneous PMs, and dependencies among
their users with respect to their workload information. In our previous work on web
service domain [7], we have proven that learning hidden features can improve the
prediction results.

In order to improve the prediction results, we analyze user behaviours which have
used VMs in the past. Our analysis is done by calculating the correlation degrees
among users using their workload values in series of time intervals. The correlation
could be either positive or negative. We only consider users with positive correlation
meaning that they had similar historical experiences in terms of workload they have
applied on a same set of VMs. In this work and based on the available information,
users’ similarity is determined by two criteria: if users are geographically located close
to each other and/or they have similar trends. User trends are determined by request
characteristics (how often users request VMs, workload intensity, peak season time and
off season time). We look into their historical invocations of the VMs, and then we
calculate their correlations over the history with respect to request characteristics.
We consider workload data of users with the highest degree of correlations. We denote
the space of similar users as a user neighborhood. Users with negative correlations
are those whose past experiences are dissimilar. Usually we are not interested in this
type of users since they represent noise to the prediction computation process. We
calculate the users’ correlations using Pearson Correlation Coefficient (PCC) technique
[8]. The neighborhood contains local information of workload data. In our proposed
model, the local information is integrated in the global information (workload data of
the whole tensor) during the prediction process.

4 Proposed Prediction Model (MWDA)

To address this problem, we propose a multiway low-rank Tensor Factorization
(TF) model [9, 10]. In our model, we integrate three vectors (user-specific, VM-specific
and time-specific) into a workload matrix. The TF factorizes the workload matrix and
hence makes accurate prediction. Our goal is to map VMs and users information within
sequential time intervals to a cooperative latent feature space of a low dimensionality,
such that VM-time interactions can be captured as inner products in that space. The
premise behind a low-dimensional TF technique is that there are only a few hidden
features affecting the VM-time interactions, and a user’s interactive experience is
influenced by how each feature affects the user. TF can discover features underlying
interactions between VMs as well as between users. It balances the overall information
from all VMs (global information) and users, and information associated with users
with similar behaviours (local information). We verify our proposed approach by
conducting experiments. We use data of usage traces of a Google compute cell which is
a set of PMs packed into racks in a data centre. We specifically extract the Task Event
table that contains PMs ID, tasks sent to VMs, user ID and workload data represented
by resource request for CPU and memory [3].
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Let R denote the workload tensor. As we mentioned, R contains workload values
based on different users requesting VMs of different time intervals. The future work-
load are predicted by minimizing the objective function as follows:

1
2

k R� R̂ k2F ð1Þ

where R̂ denotes the predicted workload tensor; k : k2F denotes the Frobenius form
which is calculated as the square root of the sum of the absolute squares of R� R̂.

Since R is very sparse, only VMs with recorded workload values are factorized.
The tensor factorization term is minimized by applying the following function:

min
U,V, A

f R;U;V ;Að Þ ¼ 1
2

Xi

e¼1

X j

f¼1

Xn

g¼1
IefgðRef � R̂ef Þ2 ð2Þ

where Iefg is an indicator function that is equal to 1 if a VM is used, and a workload
value is available; otherwise it is equal to 0.

min
U,V, A

f R;U;V ;Að Þ ¼ 1
2

Xi

e¼1

X j

f¼1

Xn

g¼1
IefgðRef � R̂ef Þ2 ð3Þ

Considering the original tensor factorization term, unknown workload values (the
number of required VMs of each cluster) are predicted by learning the latent features of
all known workload values through factorizing the user-specific, VM-specific and
time-specific matrices. The main drawback for using only this term is that the pre-
diction accuracy might be poor since workload values of all users are considered some
of which could have caused noise into the prediction computation process [9]. To
overcome this drawback, we propose to add an additional regularization term to the
tensor factorization model. The new term considers the information of similar users in
predicting future workload values. The premise is that neighbours have similar inter-
active experience when using VMs. This is due the fact that users within the same
geographical locations and have similar workload patterns are more likely to have
similar VM requests in the future. We incorporate the new regularization term into our
tensor model as follows:

min

U,V, A
f R;U;V ;Að Þ ¼ 1

2

Xi

e¼1

Xj

f¼1

Xn
g¼1

Iefg Refg � R̂efg
� �2

þ r
2

Xi

e¼1

X j

f¼1

Xn

g¼1
k R̂efg eð Þ �

X
k2K eð Þ Refg kð ÞPek k2F ;

ð4Þ

where Refg kð Þ denotes workload of similar users to Ve; K eð Þ is a set of top k similar users
and Pek is the similarity weight of a similar users, and it is calculated as follows:
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Pek ¼ simðe; kÞP
k2KðeÞ simðe; kÞ

; ð5Þ

Where simðe; kÞ is calculated using the PCC method.
A local minimum of the objective function in (9) can be found by performing the

gradient descent algorithm in Ue;Vf and Ag as follows:

@f
@Ue

¼
X j

f¼1

Xn

g¼1
IefgðR̂efg � RefgÞ VT

f Ag

� �
þ rðR̂efg ið Þ �

X
k2K eð Þ Refg kð ÞPekÞ VT

f Ag

� �

@f
@Vf

¼
Xi

e¼1

Xn

g¼1
IefgðR̂efg � RefgÞ UT

e Ag
� �þ rðR̂efg ið Þ �

X
k2K eð Þ Refg kð ÞPekÞ UT

e Ag
� �

@f
@Ag

¼
Xm

e¼1

Xn

f¼1
IefgðR̂efg � RefgÞ UT

e Vf
� �þ rðR̂efg ið Þ �

X
k2K eð Þ Refg kð ÞPekÞ UT

e Vf
� �

ð6Þ

5 Experiments

In the experiments, we have used Google traces of CPU and memory data that are
recorded for a period of 29 days. The data are recorded with timestamps in
microsecond and it describes machines used and tasks requested by different users’
requests. We specifically used the Task event table that contains time stamps, user
information, CPU, memory and local disk resources requested by users. To demon-
strate the effectiveness of our proposed prediction model, we have used a slice of the
data trace of 24 h (1440 min) with a time interval of 5 min. We mapped the recorded
CPU and memory workload data into multiple VM clusters so that each user request for
a VM is mapped to a specific cluster. During the time frame, there were 3295896
requests as inputs to the clustering process. The number of VM clusters that we have
selected is 4 which correspond to four VM categories (Small, Medium, Big and Very
Big) according to our proposed prediction process described in Sect. 2. On the other
hand, 426 users have been recorded within the specified time frame. We clustered the
users based on their historical usages of requested VMs (i.e. the number of request
users have made to VMs). We have used the fuzzy c-mean clustering algorithm. In our
previous work [7], we demonstrated the efficiency of the fuzzy c-mean clustering
algorithm compared to the traditional k-mean clustering algorithm. In this work, we
used 25 clusters which produced the best results (the lowest error rate). The premise for
clustering the users is to improve the efficiency of the correlation computation process
described in Sect. 3.1.

5.1 Evaluation and Discussion

Our objective in conducting the experiments was to evaluate the prediction accuracy of
our proposed model by comparing its results with the following well-known prediction
algorithms available in the literature: (1)Mean: this method considers the average value
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of historical workload data. (2) ARMA: this method calculates the auto-regression
moving average of the training data [11]. (3) Weiner: this method was proposed by [6].
It calculates the weighted average of the training data. (4) Latest: this method takes the
training data as an input and returns the latest observation [7]. (5) nUTF: this method is
a different version of our implemented algorithm that we used in our prediction model.
It computes the tensor factorization without considering users’ correlations (be-
haviours). (6) MWDA: this is our proposed prediction algorithm in this paper. We used
a three dimensional multi-way technique to compute the prediction. We have calculated
user clustering, and incorporated user correlations (behaviours) during the prediction
process.

We have used the Mean Absolute Error (MAE) method to measure the prediction
accuracy of each of the prediction algorithms including our proposed algorithm by
computing the average absolute deviation of the predicted values from the actual data.
The smaller MAE values indicate higher prediction accuracy. The MAE is defined as
follows:

MAE ¼
P

m;n;c R̂efg � Refg
�� ��
L

; ð7Þ

where, m, n, c denote the number of the user clusters, timestamps and VM components;
Refg denotes the actual workload value; R̂efg denotes the predicted workload value; L is
the number of the predicted values.

In this work, our objective is to estimate the future workload (the number of VMs
of each type) based on historical workload values. Therefore, for the purpose of our
experiments we removed the data of the future time interval (the next five minutes)
from the tensor R. The remaining values are used for the learning purpose to predict the
removed ones. We used the cross validation method during the MAE calculation
process to obtain reliable error calculations. Table 1 shows the MAE values of the
compared prediction methods. The observation was that our MWDA model outper-
formed all other models in terms of the accuracy of workload prediction results as it
produces the lowest MAE values. The prediction accuracy is an important factor that
determines how many VM needed for the next time frame and the types of these VMs.
The better prediction results the better knowledge that is required to plan ahead of time
for optimal placements of incoming VMs onto PMs in CDCs. Eventually, we can
accurately estimate the number of PMs which can be turned off or used for other tasks.
As a consequence, a considerable amount of energy can be conserved. Relying on
users’ knowledge or using poor prediction models can make the estimation of the
number of unused PMs far from being accurate. Thus, it leads to a large percentage of
energy waste or failing to meet users’ QoS requirements. In our approach, we attempt
to build a knowledge base that is dynamically updated and relies on the actual usages of
computing resources. By training the historical workload data using a reliable pre-
diction algorithm we can accurately estimate future workload. Accurately predicting
workload can improve not only CDCs’ providers’ energy consumption but also users’
QoS experience, which heavily rely on the adequacy of compute resources.
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6 Conclusions

In this paper, we proposed a model for predicting incoming workload in CDCs. Our
prediction model solves the problems of machine overloading (a possible violation of
users’ QoS requirements) and underloading (unused computing resources lead to
energy waste) by accurately predicting the number and the types of VMs based on user
requirements. Using our model, we can accurately estimate the number and types of
VMs required for the incoming workload. Hence, we can free up unused clusters that
can be turned off or used for new VMs predicted by our model. Overall, the amount of
energy consumed in CDCs is reduced for environmental and economy advantage. To
the best of our knowledge, this is the first technique that incorporates user behaviours in
a multi-way technique to improve the prediction of future incoming workload for
energy saving purposes in CDCs. As an extension of this work, we plan to develop a
placement mechanism that takes our prediction results as an input in order to optimally
place the predicted VMs onto PMs in CDCs.
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