
An Automated Model Based Approach
to Mobile UI Specification and Development

António Nestor Ribeiro(B) and Costa Rogério Araújo

Departamento de Informática, Universidade Do Minho and HASLab / INESC TEC,
Braga, Portugal

anr@di.uminho.pt, rogerio.ar.costa@gmail.com

Abstract. One of the problems of current software development lies on
the existence of solutions to address properly the code portability for the
increasing number of platforms. To build abstract models is one efficient
and correct way to achieve this. The Model-Driven Software Engineering
(MDSE) is a development methodology where models are the key for all
project lifecycle, from requisites gathering, through modelling and to the
development stage, as well as on testing. Pervasive computing demands
the use of several technical specifications, such as wireless connections,
advanced electronics, and the Internet, as well as it stresses the need
to adjust the user interface layer to each one of the platforms. Using a
model-driven approach it is possible to reuse software solutions between
different targets, since models are not affected by the device diversity
and its evolution.

This paper reports on a tool, which is highly parameterizable and
driven to support Model-2-Model and Model-2-Code transformations.
Also, instead of using a predefined technology, the tool was built to be
scalable and extensible for many different targets and also by addressing
the user interface layer generation.

Keywords: Model-Driven Software Engineering · Model transforma-
tion · Cross-platform generation · Pervasive software development

1 Introduction

The current trends about software development for mobile platforms, namely
mobile apps development, are mainly focused on the portability for the rising
number of devices to which user interface layers can be developed. This addresses
the need to sustain this development by building abstract models as a mean to
have an efficient and scalable way to achieve our purposes.

As its well known, model driving software engineering supplies a development
methodology where models are the key for the entire project lifecycle, from
requisites gathering, through modelling and development stage, as well as on
testing. Using a model-driven approach it is possible to reuse software solutions
between different targets, since models should not be affected by the device
diversity and its evolution.
c© Springer International Publishing Switzerland 2016
M. Kurosu (Ed.): HCI 2016, Part I, LNCS 9731, pp. 523–534, 2016.
DOI: 10.1007/978-3-319-39510-4 48



524 A. Nestor Ribeiro and C. Rogério Araújo

As said previously, actual technologies are developing up at great speed in a
diversity of areas, such as hardware and software (middleware and user interface
layer). Hardware has been evolving to standardized form factors, more powerful
and cheaper, and software has become more complete, with increased function-
alities at the user interface level.

However, this development led to the proliferation of platforms and technolo-
gies where constantly there is new base software with new features, which increas-
ingly impose new restrictions to software portability. For example, each time a new
Android smartphone is released, there is the risk of old released software become
uncovered with problems such as fragmentation or “multiple screens”. This is par-
ticularly true when dealing with the user interface layer source code.

The amount of complexity brought to the software side is only possible to be
reasonably solved because of the notorious improvements around the develop-
ment methodologies, which enables us to deliver software with lower production
costs, longer lifecycle, and higher interoperability. Using models as basis of soft-
ware development allows the overcome of the current platform proliferation and
it also provides portability for new platforms that may appear in near future.

Model-Driven Architecture (MDA) [7], proposed in 2001 by the Object Man-
agement Group (OMG), encompass a set of standards for model-based software
development. It is intended to support ever-changing business environments,
minimising the software development time and project costs. MDA enables sep-
arating the system functionality from implementation details, keeping consistent
glue between both elements.

Software development based on MDA starts with high-level models obtained
in the specification phase. Gradually and automatically, the models should be
transformed into more specific (low-level) models until source code is reached.
The transition between models can be achieved by a set of well-defined rules
(the models glue). Then, using a tool, it is possible to achieve automatic code
generation from abstract (high-level) software models.

Tools supported by models make the software development more straightfor-
ward, because it enlaces the software portability, and the developer can choose
the abstraction layer and programming language to be used. It is important
to stress that data, behaviour and user interfaces can be modelled at adequate
abstraction levels and then rely on transformation rules to generate the corre-
sponding source code. Specific efforts on the development of each one of these
layers usually implies that the models were not properly designed.

This paper uncovers the first results of a model-based tool, MDA SMAR-
TAPP, which is driven to support highly parameterizable MDA transformation
processes. The tool is to be used in the development of the application’s busi-
ness and user interface layers meant to be accessed by mobile apps (in a first
approach Android specific) or hybrid web browser desktop applications.

The remaining document is structured as follows: in Sect. 2 it is exposed some
related work; in Sect. 3 it is presented how Model-2-Model transformations are
achieved; Sect. 4 is related to MDA SMARTAPP model editor; in Sect. 5 it is
presented the tool architecture; Sect. 6 is related to the case study; and Sect. 7
presents the conclusions.



An Automated Model Based Approach to Mobile UI Specification 525

2 Related Work

To build a mature model-based tool, such as MDA SMART, it is important
to overcome two major different points of view: what is expected from a model-
based tool, and what could be done to support efficiently models transformation.

In a model-based tools space, there are some highly evolved tools, being the
OutSystems Platform1, or the IBM Rational Software Architect2 two success-
ful examples of such tools. Usually, these tools provide development environ-
ments with simple and high quality rendered interfaces, and a lot of features
for drag-and-drop modeling. As a result, users becomes more concerned about
the envisaged solution, instead of the implementation details. However, highly
evolved tools have a restricted structure, and the user has sometimes some dif-
ficulty to custom and expand beyond their “sandbox”. And the advantage of
model portability is many times fully dependent on the tool ecosystem and not
properly interoperable.

Several MDA implementations have already been proposed in the past [5,6].
In [2], for example, it is done a study on the applicability of MDA in the devel-
opment of large-scale software. As a result, the study proved that MDA based
approaches increases the quality and quantity of the deliverables and reduces
the overall cost once it allows people to interact at a more abstract point of
view. It is also important to note that using MDA models provides for some
durability and resistance because they are not affected by the proliferation of
available middlewares.

In [1] the development of a Fujaba [8] plugin to support Business Process
Modeling (BPM) tasks is presented. The main goal is to port BPM models for
UML activity diagrams and vice versa through Fujaba mechanisms “MoRTEn”
(ModelRound-Trip Engineering) and “MoTE” (Model Transformation Engine).
To support the transformations it was implemented a mechanism of Triple Graph
Grammars (TGG) [12] in order to achieve bi-directionality and incremental
model processing.

In [13] a prototype for the semi-automatic construction of Web Informa-
tion Systems (WIS) was built. The objective is to achieve the tool architecture
through other existent tools and some Model-Driven Development (MDD) com-
ponents.

The most successful initiatives of MDA supported tools are the ones which use
Domain-Specific Language (DSL) approaches to define model transformations.
Here the tools are divided in several domains such as mobile devices, web services
and applications, and standard desktop solutions.

Another work worth of mention is the one presented by Vaupel et al. [14]. It
presents a modelling language and an infrastructure for the model driven devel-
opment of Android apps. It also uses Ecore meta-models and it provides model
transformation and source code generation using the Eclipse plugins. It defines
a meta-model for the business layer, one for the user interface and another for

1 http://www.outsystems.com/.
2 http://www.ibm.com/developerworks/rational/products/rsa/.

http://www.outsystems.com/
http://www.ibm.com/developerworks/rational/products/rsa/


526 A. Nestor Ribeiro and C. Rogério Araújo

specifying the application’s behaviour. It uses simplified meta-models, in order to
cope with complexity, for the transformation stages. One major difference from
our approach is the fact that it only supports the transformation for Android
applications not covering both the Web and hybrid clients.

3 Model to Model Transformation Engine

There are tools that manage web, mobile and desktop development at the same
conceptual level. Even inside each one of these categories not all the existing tools
support, or can be extended to the plethora of possible technological targets.
In order to achieve this compatibility degree is the main objective of MDA
SMARTAPP, a tool that allows the using of models and provides a way to
support transformations for different target device families.

The kernel of MDA SMARTAPP is based on a model to model (Model-
2-Model) transformation mechanism, the M2M Engine. The main purpose of
M2M Engine is to iterate over all models of a MDA standard architecture until
the models reach low-level abstraction layers. This is particularly useful when
addressing the user interface controls and widgets, knowing that at model level
the developer needs that technological particularities will not change the models,
allowing to keep the discussion at a reasonably high and abstract level.

The DSL approach has been repeatedly used in model-based tools. There
are well known cases where using a DSL become a success, such as is the case
of ATLAS Transformation Language (ATL) from ATLAS Model Management
Architecture (AMMA) platform.

ATL, proposed by the Group ATLAS INRIA & LINA, was aimed to imple-
ment Meta-Object Facility (MOF)/Query-View-Transformationg (QVT) [10,11]
request standard from OMG. It’s a hybrid language since it allows rules construc-
tion on both imperative an declarative paradigms. In a declarative way, simple
mappings are implemented in a straightforward way. The imperative way to use
the language is mostly used for higher complexity definitions.

The ATL virtual machine is properly equipped with a well-developed Object
Constraint Language (OCL) [9] architecture. This feature provides flexibility in
models manipulation (and respective meta-models) allowing it to cope with more

Fig. 1. EMF ATL - Operational context



An Automated Model Based Approach to Mobile UI Specification 527

complex models. Moreover, models can present problems in the transformation
process, and these could be difficult to resolve if there is not a significant support
from the OCL side.

As presented on Fig. 1, ATL operational context follows a MOF [10] com-
pliant architecture. In this context, the input model (A) is translated to the
output model (B) through a well defined set of ATL rules (ModelA to ModelB).
The input model (A), the output model (B), and the set of ATL rules (Mod-
elA toModelB) conforms to the M2 (level) meta-models, MetaModel:A, Meta-
Model:B, and ATL, respectively. All three M2 meta-models are bridged by the
(M3) MOF meta-meta-model.

MDA SMARTAPP takes advantage of this MOF compliant architecture to
be extensible and scalable. For a new Model-2-Model configuration there is the
need to provide the input and the output meta-model (written in the Ecore
format), and the ATL set of rules. With only these three elements it is possible
to achieve software portability for any device configuration.

4 M(odel) Editor

In order to give the end user a friendly environment to edit the models we
developed a small scale graphical editor. The graphical editor component was
built using the JGraph3 library. This library presents good usability patterns,
with a rich look and feel, it is well documented, and it has become used with
success in a series of successful case studies [1]. However, it should be noted
that our aim is not to replace other tools that can be used for model edition
and manipulation, but to provide for prototyping purposes the means to easily
create a model. We believe that most developers will use their preferred tool
for model creation and through the existing formats for model interchange the
models can exchanged with other applications.

In addition to the most well known functionalities, JGraph also provides
a mechanism to implement the model validation. It is possible to reuse this
mechanism to build “a priori” a model checker, and therefore by using this func-
tionality, MDA SMARTAPP can validate the user actions and their conformity
to the UML’s meta-model. For example, it doesn’t allow the user to specify an
implementation of an UML class with respect to other class, as it should have
been done to an interface definition.

In [2] is reported how hard and unmanageable is to restart a sequence of
model transformations because of delayed detected errors. That is even more
evident when dealing with very large and complex models, with a magnitude of
several thousand objects (business and interface objects) as discussed in [3].

5 Tool Architecture

MDA SMARTAPP is intended to support the bottom layers from the
MDA architecture: Platform Independent Model (PIM), Platform Specific
3 http://www.jgraph.com/.

http://www.jgraph.com/


528 A. Nestor Ribeiro and C. Rogério Araújo

Model (PSM) and source code. Therefore, this tool provides one component
dedicated for PIM models manipulation; one component for the PIM to PSM
transformations; and one component for source code generation taking the PSM
models as input. All three were designed to be abstract components, and can be
extended by specific configurations.

The first component, the M(odel) Editor, is responsible for capturing the
visual information (objects and locations) that describes the memory model rep-
resentation. Similar to a CASE tool, this includes model manipulation according
to the respective meta-model context. Also, it allows for a design environment
with good usability patterns and without the need to the user to develop any
source code.

The tool core component, the M2M Engine, is accomplished with an ATL
configuration. This component is responsible for managing models definitions
and to execute the instantiated Model-2-Model transformations.

The third component, the M2C Engine, covers the last step of a MDA archi-
tecture, and by using a template approach the PSM models are translated into
source code.

Fig. 2. MDA SMARTAPP - Tool logical architecture

MDA SMARTAPP supports UML2 for the PIM layer and Java and Android
for the PSM and source code layer. Also, there are considered three main output
targets (Fig. 2): Web applications, Hybrid clients with a server side and a client
side components, and Desktop applications. Although the definitions of web
and desktop applications are self-explanatory, it is important to define what we
understand by hybrid applications. Hybrid applications are applications built
specifically for native platforms (namely Android, iOS, or others) that exchange
information with the server side using standard web protocols (eg. Web Services).
At this stage we use Java as the platform for desktop applications and server side
components and Android code will be generated to run in the mobile devices.

6 Case Study

As a proof of concept our case study is a simple Field Force Automation (FFA)
application. The application objective is to retrieve lists of technical information



An Automated Model Based Approach to Mobile UI Specification 529

shaped for different use cases. The biggest challenge in this domain lies on the
definition of a usable Graphical User Interface (GUI) for the mobile devices,
specially the smaller ones, that force the developer to think very carefully about
the usability and the user experience. There’s another significant challenge that
arises from the fact that the source code portability is important especially when
dealing with such constraints with the target hardware and base software.

This case study was solved with one unique abstract model, that later was
derived for desktop (Java) and mobile (Android) applications.

First it was necessary to develop some primary MDA SMARTAPP features:
this includes an UML2 domain editor (the M Editor component), UML to Java
model transformations (the M2M Engine), and finally the source code generation
for Java and Android targets (the M2C Engine).

For the UML2 domain editor it was developed a graphical view (V) of UML2
model using the JGraph library. This view is supported by a bespoke controller
(C) and the UML2 meta-model4 application program interface (M) available in
the Eclipse platform.

To support the Model-2-Model transformation, it was considered a simplifica-
tion of Java meta-model, in order to reduce the number of entities and relation-
ships. Some ATL rules were specified, and strengthened with OCL definitions.
In this particular case OCL allowed us, for example, to ensure that the UML2
packages are well unfolded to Java packages (Fig. 3), or the name of any Java
element respects the reserved words, although other more complex restrictions
could have been specified.

The source code generation of the user interfaces, from both desktop and
mobile clients, was derived from the UsiXML [4] models of the interface layer.

Fig. 3. UML2 to Java ATL rule - UML2 to Java package unfolding

Once we had a robust Java meta-model, two sets of Velocity templates were
developed for Java and Android technologies. Since it is possible to build multiple
template fragments and choose at runtime what best fits on the target device,
it is possible to overcome the slight differences from similar targets with one
unique PSM meta-model.

For our FFA application the simplified domain model is presented in Fig. 4
and it depicts the core business entities: the worker, the service and the client.

4 http://www.eclipse.org/modeling/mdt/?project=uml2.

http://www.eclipse.org/modeling/mdt/?project=uml2


530 A. Nestor Ribeiro and C. Rogério Araújo

Fig. 4. Simplified domain model of a FFA application.

The domain model is transformed into a PIM model derived from the trans-
formations needed to ensure the necessary compliance to the Java meta-model.
Figure 5 shows MDA SMARTAPP platform independent model for the FFA
application.

Fig. 5. PIM model construction.



An Automated Model Based Approach to Mobile UI Specification 531

Fig. 6. PSM model construction.

The platform specific model, the PSM, will use the same target language
(Java), so it is not necessary to change the existing UML model. Figure 6 shows
the PSM model for the FFA application.

Fig. 7. Source code generation for Java and Android.



532 A. Nestor Ribeiro and C. Rogério Araújo

Figure 7 illustrates the source code generation for both the Java and Android
platforms.

Using the same template’s strategy, and starting from a UsiXML model, the
source code for the user interface layer is also generated. Figure 8 shows the
usage of templates to generate this layer.

Fig. 8. User interface source code generation for Java and Android.

7 Conclusions

In this paper a model-based tool for hybrid systems development was presented.
Through a DSL configuration the MDA SMARTAPP tool can translate abstract
models in implementations artefacts for web, hybrid and desktop targets.

This paper described the first results of a model-based tool, MDA SMAR-
TAPP, meant to support highly parameterizable MDA transformation processes.
The tool is to be used in the development of business layer and user interface
layers of applications that can be reached using mobile apps (in a first approach
it is Android specific) or hybrid web browser desktop applications. Specifically,
it supports PIM (Platform Independent Model) manipulation, PIM to PSM
(Platform Specific Model) transformations, and automatic source code genera-
tion for both web and mobile clients. MDA SMARTAPP does the setup of a
robust, extensible, and scalable model-based tool architecture where its skeleton
is independent from any platform domain, having its main core based on model
transformations.



An Automated Model Based Approach to Mobile UI Specification 533

The use of models, and the possibility of having them to parameterize the
tool, ensures durability for any software and promote independency on changes
of the base software of mobile devices. We presented a case study that covered
this process as well as makes it possible to strive new application domains, since
the tool can work with new target platforms, such as iOS or other custom fit
solutions.

Also, this approach highlighted that with OCL it is possible to create robust
and simple (not simpler) transformation processes, with business rules included,
allowing us to shape better and target specific models, reducing the need to
rearrange the generated lower-lever models.

The use of templates for source code generation allow us to easily reshape
models in order to cover all the implementations variations from an original PSM
specification. The work reported focused on a first set of components developed
for MDA SMARTAPP and proves that highly parameterizable and complex user
interface apps for mobile platforms can be specified using well known models and
the transformations from models to source code can effectively deliver a ready
to deploy product.

Acknowledgments. This work is financed by the ERDF - European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-
006961, and by National Funds through the FCT Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) as part of project
UID/EEA/50014/2013.

References

1. Altan, G.S.: On the Usability of Triple Graph Grammars for the Transformation
of Business Process Models - An Evaluation based on FUJABA. Master’s thesis,
TU Wien, Austria (2008)

2. de Almeida, P.: MDA - Improving Software Development Productivity in Large-
Scale Enterprise Applications. Master’s thesis, University of Fribourg, Switzerland
(2008)

3. Egyed, A.: Fixing inconsistencies in uml design models. In: Proceedings of the 29th
international conference on Software Engineering, ICSE 2007, pp. 292–301. IEEE
Computer Society, Washington, DC (2007)

4. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:
USIXML: a language supporting multi-path development of user interfaces. In:
Feige, U., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp.
200–220. Springer, Heidelberg (2005)

5. Ma, K., Yang, B.: A hybrid model transformation approach based on j2ee platform.
In: 2010 Second International Workshop on Education Technology and Computer
Science (ETCS), vol. 3, pp. 161–164, March 2010

6. Meads, A., Warren, I.: Odintools-model-driven development of intelligent mobile
services. In: 2011 IEEE International Conference on Services Computing (SCC),
pp. 448–455, July 2011



534 A. Nestor Ribeiro and C. Rogério Araújo

7. Miller, J., Mukerji, J.: Mda guide version 1.0.1. Technical report, Object Manage-
ment Group (OMG) (2003)

8. Nickel, U., Niere, J., Zundorf, A.: The fujaba environment. In: Proceedings of the
2000 International Conference on Software Engineering, pp. 742–745 (2000)

9. Object Management Group. Object Constraint Language, v2.0. Technical report,
May 2006. http://www.omg.org/cgi-bin/doc?formal/2006-05-01

10. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006)
11. Partners, Q.V.T.: Revised submission for MOF 2.0 Query / Views / Transforma-

tions RFP. Technical report, OMG (2003)
12. Schrr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

Ernst W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

13. Vara, J.M.: M2DAT: a Technical Solution for Model-Driven Development of Web
Information Systems. Ph.D. thesis, ETSII, University Rey Juan Carlos, Madrid,
Spain, November 2009

14. Vaupel, S., Taentzer, G., Harries, J.P., Stroh, R., Gerlach, R., Guckert, M.: Model-
driven development of mobile applications allowing role-driven variants. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 1–17. Springer, Heidelberg (2014)

http://www.omg.org/cgi-bin/doc?formal/2006-05-01

	An Automated Model Based Approach to Mobile UI Specification and Development
	1 Introduction
	2 Related Work
	3 Model to Model Transformation Engine
	4 M(odel) Editor
	5 Tool Architecture
	6 Case Study
	7 Conclusions
	References


