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Abstract. Discretized volumes and surfaces—used today in many areas
of science and engineering—are approximated from the real objects in a
particular theoretical framework. After a discretization produces a tri-
angle mesh (2-manifold surface), a well-formed voxel set can be prepared
from the mesh by voxelization of its constituent triangles based on some
digitization principle. Since there exist different topological models of
digital plane, choosing the appropriate model to meet the desired require-
ment appears to be of paramount importance. We introduce here the
concept of discrete iso-contour geodesics (DIG) and show how they can
be constructed on a voxelized surface with the assurance of certain topo-
logical requirements, when the voxelization conforms to the naive model
with judicious inclusion of Steiner voxels from the graceful model, as
and when needed. We also show some preliminary results on its prac-
tical application towards extraction of high-level topological features of
3D objects, which can subsequently be used for various shape-analytic
applications.

Keywords: Digital geometry - Discrete topology - Iso-contour geodes-
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1 Introduction

Voxelization today is not only important in the field of object discretization
and representation but also gaining remarkable progress in additive manufac-
turing through rapid prototyping (RP) techniques like stereo-lithography, 3D
printing, and fused deposition modeling [11,19-21,30]. Hence, the collection of
work related to voxelization, as seen in today’s literature, can be divided into
two categories—one covering the theories and algorithmic solutions for object
discretization and another dealing with different RP techniques using digital
technology. The latter category mostly relies on a digital building matter in the
sense that the building block is a digital unit or vozel, as opposed to the analog
(continuous) material used in conventional RP [6,17,18,28,32].

Whether the subject relates to analytical discretization or relates to phys-
ical manufacturing, the underlying theory or methodology of voxelization has
a strong impact on the consistency or on the solidity of the resultant product.
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In either case, these characteristics can be analyzed well in the purview of dis-
crete geometry and topology, as a collection of voxels is usually obtained by a
particular process in a certain theoretical framework [23,27]. In our work, we
focus on this with a two-fold objective—first to show how a surface should be
voxelized for its readiness to discrete iso-contour geodesic (DIG) construction
and then to demonstrate the usefulness of DIG in extraction of high-level topo-
logical information from a voxelized object.

1.1 Existing Work

We give here a brief review of the development and the state-of-the art practices
related to voxelization and also to computation of discrete geodesics and iso-
contours.

Voxelization. The early work on physical modeling of a surface or volume
element can be seen in [19,30,31] and in the articles referred to therein. Those
work, however, did not address the topological issues related to voxelization. The
theoretical frameworks along with the topological issues came up gradually in a
later stage. For example, in [9], some of the topological properties were discussed,
which included holes, cavities, simple points, separability, and penetration.
With the growing need for digitization and cutting-edge technology, different
techniques for voxelization have been proposed off and on, taking into account dif-
ferent apparatus, computational models, cost factors, and product requirement.
A low-cost methodology based on z-buffer and multi-view depth information is
developed in [22]. To incorporate an anti-aliasing effect during voxel rendition, a
multi-resolution technique is proposed in [10]. For adding more features available
in graphics workstations, such as texture mapping and frame-buffer blending func-
tions, a hardware-accelerated approach is shown to be effective in [16]. The idea of
exploiting programmable graphics hardware is also used in [13] for voxelization of
a polygonal model after mapping it into three sheet buffers and then synthesizing
into a single worksheet recording the volumetric representation of the target.
Voxelization is also useful for simplification and repair of a polygonal model,
as shown in [29], with 3D morphological operations on the scan-converted voxel
set. Further, with the emergence of GPU functionalities, a variety of applications
with voxelized objects have come up in recent time. For example, in [24], a GPU-
accelerated approach is proposed for creation of multi-valued solid volumetric
models with different solid slice functions and material description in order to
make it useful for different applications like collision detection, medical simu-
lation, volume deformation, 3D printing, and computer art. In [15], a filtering
algorithm is designed to build a density estimate for deduction of normals from
the voxelized model, which is shown to be useful in simulation of translucency
effects and particle interactions. In fact, very recently, many such real-time sim-
ulations and applications are shown to be efficiently realizable when a voxelized
dataset is used; these include urban modeling [34], octree-based sparse voxeliza-
tion for 3D animation [12], fluid simulation with dynamic obstacles [38], discrete
radiosity [25], light refraction and transmittance in complex scenes [7], etc.
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Geodesics. The literature on geodesics and iso-contours, as on today, is pre-
dominantly focused on closed orientable 2-manifold surfaces, i.e., objects with
triangulated-mesh representation in the Euclidean space. Hence, the techniques
are mostly from differential and computational geometry; see, for example,
[1,8,26,33,35-37]. As geodesics find various applications in remeshing, non-rigid
registration, surface parametrization, shape editing and segmentation, the notion
of approximate geodesic distance is also proposed recently in [36] as a practical
alternative for the exact solution [35].

In the domain of voxel complexes, however, no significant work can be found
on discrete geodesics, barring a few [8,12]. In [8], the concept of visibility—a
well-known concept in computational geometry—is defined in the discrete space
based on digital straightness. In [12], as sparse (i.e., highly disconnected) voxel
set is used, the geodesic metric is based on Euclidean norm.

1.2 Owur Contribution

As briefed in Sect. 1.1, a multitude of work have been carried out on voxeliza-
tion of 2-manifolds and on geodesics in the Euclidean space. However, geodesics
on voxelized (i.e., 3-manifold) surfaces and their topological properties have not
been studied so far. This motivates us to look into this interesting problem. We
introduce here the concept of discrete iso-contour geodesics (DIG) that can be
constructed on a well-formed voxelized surface and then demonstrate their use-
fulness in shape-analytic applications similar to those in the Euclidean domain.

Henceforth in this paper, a voxelized curve (DIG in our case) or a voxelized
surface means discrete approximation of its real counterpart by a set of voxels
in a certain topological model. In order to ensure that the concerned object
is well-defined in the voxelized space, the connectivity and related topological
issues come up alongside, which are addressed and fixed in this paper.

2 Voxelization of 2-Manifolds

We discuss here some definitions and concepts related to topology of voxel com-
plexes and the underlying metric space, which are relevant to our work, following
the convention as in [23]. For easy understanding and for easily relating the the-
oretical results with the experimental results on voxelized objects, we discuss the
topological concepts in terms of voxels and relations among them, which can be
equivalently represented and explained in graph-theoretic terms as well [23,27].

2.1 Voxel Topology and Metric Space

A wvozel is a 3-cell, i.e., an axis-parallel cube-shaped 3-manifold of unit length.
Two voxels are said to be 0-, 1-, or 2-adjacent if they share a vertex (0-cell), an
edge (1-cell), or a face (2-cell), respectively (also called 26-, 18-, 6-neighborhoods
[9]). Note that 0-adjacent (1-adjacent) voxels are not treated as adjacent while
considering 1-adjacency (2-adjacency).
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A voxelized object A means a set of voxels. A k-path (k =0,1,2) in A is a
sequence of voxels from A such that every two consecutive voxels are k-adjacent.
If a k-path exists between every two voxels of A, then A is said to be k-connected.
A Ek-component is a maximal k-connected subset of A.

A subset A’ of A is k-separating (w.r.t. A) if A~ A’ is not k-connected. In
addition, if A~ A’ has exactly two k-components and A’ has a voxel v such that
A"\ {v} is still k-separating, then v is called a simple vozel in A’. If now A’
contains no simple voxel, then A’ is k-minimal and so has no tunnel; and if A’
has any tunnel, then it is not 2-separating (see [3] for further details).

The supercover K(X) of a set X C R? is the set of all voxels intersected by
X. The standard and the naive voxelizations of X are 0- and 1-minimal subsets
of K(X).If X is a real plane or its part (such as a triangle in our work), then its
naive set N(X) is functional in at least one coordinate plane and hence has one-
to-one correspondence with its projection on that coordinate plane. For example,
if zy-plane is functional for X, then N(X) has one-to-one correspondence with
its projection on the zy-plane. Some examples are given in Fig. 1.

(b) Standard (c) Graceful

Fig. 1. Instances of three models of digital plane for (a, b, c) = (4, —5,8), in the domain
z € [-3,3],y € [-7,7]. White voxels belong to the naive plane and the blue belong to
(b) standard or (c) graceful. Notice that the xy-plane is functional here only for the
naive plane. (Color figure online)

We define z-, y-, and z-distance between two (real or integer) points, p and
P, as dy(p,p') =|i—74], dy(p,p’) = | —j'|, and d.(p,p") = |k — k'|, respectively,
where d,, is not applicable in 2D, p = (4, 5) and p’ = (¢/,5’) in 2D, and p = (i, j, k)
and p’ = (¢, 7', k") in 3D. The z-distance between p(4, j, k) and a curve/surface X
is dy(p, X) = do(p,p') if Ap' (2, ', 2") € X such that (v, 2") = (4, k); otherwise,
de(p,X) = oo. The distances d,(p, X) and d.(p,X) are defined in a similar
way. Let D denote the set {d,(-),dy(-)} in 2D and {d,(-),dy(:),d:(-)} in 3D.
Then the isothetic distance between two points p and p’ is the Minkowski norm,
doo(p,p’) = max{d : 6 € D}, and that between p and a curve/surface X is
di(p,X)=min{é: 6 € D}.

As shown in [2], each voxel of a naive plane (triangle in our case) has an
isothetic distance of at most % from the corresponding real plane. Hence, the
naive voxelization results in the best possible approximation of a manifold with
the guarantee of one-to-correspondence with the projection (pixel set) on its
functional plane.
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2.2 Homeomorphism of Voxels and 2-Manifolds

Let S be a closed and orientable (2-manifold) surface in the 3D Euclidean
space, such that exactly two 2-manifolds (triangles) are incident on each of its
1-manifolds (edges) and at least three l-manifolds are incident on each of its
O-manifolds (vertices). To derive a 3-manifold representation (naive voxeliza-
tion) of S in Z3, we choose a scale factor £ > 0 and apply an isotropic scaling on
the 0-manifolds of S. Next, for every 2-manifold ¢ € S, we make its naive vox-
elization to obtain N (¢,&), and hence obtain the naive voxelization of S (scaled
by the factor §) as N(S,§) = U,cq NV(t,&). Being closed and orientable, S is
a compact surface without any boundary and the outward normal to each 2-
manifold ¢ € S is uniquely determinable, whence the functional plane(s) of each
N(t,€) is also fixed.

To define the topological space for S, let v be a voxel in N (S, ). Then v is
obtained in the naive voxelization of one or more 2-manifolds in S. So, we define
Tw)={t:teSAveNtE}and S = {T(v) : v e N(S,§)}. If I's denotes
the topology defined on S, then the corresponding topological space becomes
(8, I's). Now, to obtain the topological space (V, I'y) for N(S,&), we define V =
{V(v) : v e N(S,§)}, where V(v) = N(T'(v),§) := User(y) N (¢, §). Henceforth,
for brevity, we denote (S, I's) and (V, I'y) simply by & and V, respectively [14].

We show the homeomorphism of S with V shortly in Theorem 1. For this, we
define a basis Bgs for § and another By, for V, as follows.

(i) Each ﬂg) € Bs contains (as its element) every set {T'(v) : (v € N(T'(v),&))A
(x(v) =)}, where z(v) denotes the z-coordinate of the center of the voxel v.
(if) If (84 m) € B2 and B N BY) 0, then B¢ N BY) € Bs.
(iii) Each ﬁv € By contains every set {V(v) : z(v) = i}.
(iv) 1t (89, 8)) € B2 and 8 N Y # 0, then 8 N Y € By.

Theorem 1. The topological spaces S andV are homeomorphic for a sufficiently
large value of &.

Proof. Let f : & — V. So, if T(v),T(v'") € S, then f(T(v)) = V(v) € V and
f(T()) =V (') eV. As £ is sufficiently large, T'(v) # T(v") and V(v) # V(')
for any (v,v") with v # v'. So, V(v) = V (V') <= T(v) =T(') < v =1,
wherefore f is bijective.
Now, to show that f is continuous7 let v be a voxel with (v) = 4. Then
T(v ) belongs to an element of BSZ ) and f(T'(v)) := V(v) belongs to an element
of Y, which imply f(85) c Y, or, 85 c f~1(8), whence f=(8\) is
an open set, thus showing f continuous. Similarly, g := f~! : V — S is also
continuous since V(v ) belongs to an element of ﬁg ) and g(V(v)) to an element
of ﬂs , Or, g(ﬁ( ) C ﬁs , Or, ﬂv C g_l(ﬁs ), or, g~ ( S)) is an open set. As a
result, there exists a bijective continuous open map from S to V, and hence the
homeomorphism. a



270 G. Bhalla and P. Bhowmick

3 DIG: Topology and Construction

Given a seed voxel s € N(S,&) and a positive integer 7, we define a discrete
iso-contour geodesic (DIG) as the O-minimal path whose each voxel v has an
intersection with S and a geodesic distance 7 from s. We denote this DIG by
II(S,€,s, 7). The geodesic distance dg(s,v) from s to v is given by the length n
of the shortest O-path (v; : (0 < i < n)Av; € K(S,€)) from s := vy to v := vy,
K (S, &) being the supercover of S.

If a DIG is made of voxels only from the naive voxelization, then it may
not be 0-minimal. However, on replacing some of its voxel pairs by some special
voxels from the graceful triangles corresponding to S, it becomes 0-minimal. In
analogy with other geometric problems, we term these special voxels as Steiner
vozels, since they are added to the naive set to make it graceful. Detailed study
and analysis related to graceful planes may be seen in [4,5]. As shown in [4], a
graceful plane is the thinnest possible voxelized plane on which primitives like
lines, triangles, and arbitrary polygons are always connected sets of voxels. Here
we show its usefulness for construction of DIG as well.

Let ¢ be a 2-manifold in S with its functional plane F'(¢), and let N(¢,&) and
G(t,&) be the respective naive and graceful planes. Let p and ¢ be two distinct
voxels in N(t,€), and p’ and ¢’ be their respective projections on F(t). Then
p’ # ¢, due to the one-to-one correspondence between N (t, &) and its projection
on F(t). Further, if p and ¢ are 0-adjacent (resp., 1- or 2-adjacent) to each other,
then p’ and ¢’ are also 0-adjacent (resp., l-adjacent). However, 0-adjacency of
p’ and ¢’ does not ascertain the connectedness of p and ¢ in N(¢,£)—a typical
topological characteristic of naive plane that arises due to jump [4]. Figure2
shows two jump configurations for each functional plane (FP). This is resolved
in G(t, &) by inserting a Steiner voxel in between the two voxels forming a jump
in N(t, €) so that the two voxels corresponding to two 0-adjacent pixels on the FP
are 0-adjacent in G(t, ) as well. The Steiner voxel is chosen from the supercover
K(t, &) and hence has an intersection with ¢. Observe that the tandem formed by
the Steiner voxel and its 2-adjacent jump voxel maps to a single pixel on the FP.

i &L T,

.I'

EEX2l Y.,

Fig. 2. Examples of adding a Steiner vozel to a naive triangle. Top: A jump (green
voxel pair) on a naive triangle along with its two common 1-adjacent voxels (white).
Bottom: A tandem made by a jump voxel and a Steiner vozel (blue) added from the
graceful triangle. (Color figure online)
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We have the following lemma.

Lemma 1 (Path Projection). Let t be a 2-manifold in S, and P be a 0-path
in N(t,€). Then the projection of P on F(t) is 0-minimal if and only if no vozel
of P forms a tandem with some vozel in G(t,§).

Proof. Let p,q,r be three consecutive voxels in P, and p’, ¢, " be the respective
pixels in the projection P’ of P on F(t). Clearly, p’, ¢, 7’ are three distinct pixels
on F(t), since P C N(t,§) and N(¢,£) has one-to-one correspondence with its
projection on F'(t). So, ¢ does not make any tandem with p or r in G(¢, ). Hence,
p’ and r’ are adjacent if and only if ¢’ is simple in P’, or equivalently, ¢ forms a
tandem with some Steiner voxel in G(t,§). O

An example of obtaining a 0-minimal path based on Lemma 1 is shown in Fig. 3.
Notice that here the path is basically a DIG. By Lemma 1, if the projection P’
of P is not O-minimal in F'(¢), then there are one or more tandems. Each such
tandem is formed by pairing a voxel ¢ € N(S,¢) with a voxel u € G(S,§)
N(S,€). These local repairs in the constitution of P result in the desired 0-
minimality of P’ without breaking the connectedness of P in the voxel topology.
In particular, we have the following lemma.

Fig. 3. An example showing DIG construction with the seed voxel s shown in red. (a)
Green voxels are at geodesic distance 2 from s. (b) Back projection (green voxels and
one yellow voxel) to the naive plane from the 0-minimal path on the functional plane;
the two green voxels adjacent to the yellow voxel form the jump. (c) Graceful plane
with the Steiner voxels shown in blue. (d) DIG (green voxels) after replacing one of
the jump voxels by a Steiner voxel. (Color figure online)

Lemma 2 (Steiner Repair). Let P be a 0-path in N(t,£), P’ be its projection
on F(t), and ¢’ be the projection of ¢ € P. If ¢’ is a simple pizel, then q and
one of its adjacent voxels can be replaced by a single Steiner voxel to ensure the
0-minimality in both P and P’.
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Proof. As ¢ is a simple pixel, its preceding pixel p’ and succeeding pixel 7’ in
P’ are 0-adjacent. Hence, by Lemma 1, one of their pre-images (p or r) forms a
tandem with some Steiner voxel u € G(t,§). Let, w.l.o.g., that tandem be (p, u).
Then replacing (p, q) by u ensures the local minimality in both P and P’. a

We now introduce the following lemma for the theorem that explains the con-
struction of DIG using N(S5,&) and the Steiner voxels as needed.

Lemma 3 (Geodesic Distance). For any 2-manifold t in S, the geodesic dis-
tance between two vozels in N(t,€) is given by the isothetic distance between
their projections on F(t).

Proof. N(t,€) has one-to-one correspondence with its projection on F'(¢). Hence,
by definitions of isothetic distance and geodesic distance, the proof follows. 0O

Let B(S,&, s, T) denote the set of voxels from N (S, &) having geodesic distance
7 from s. This is obtained by breadth-first-search in N (5, §) with s as the start
vertex in the underlying graph. Let B(S,&,s,7)" denote the collection of its
piecewise projections on the respective functional planes of the participating 2-
manifolds of S. Let IT(S, &, s,7)" denote the piecewise projections of IT(S,¢, s, 7)
in a similar manner. We have now the following theorem.

Theorem 2 (DIG). [1(S,&,s,7) is contained in B(S, &, s,7) and is 0-minimal
on the respective functional planes.

Proof. Let ¢t be any 2-manifold in S. Let I1;(S,§,s,7) be the portion of
I1(S,¢, s,7) corresponding to t. Also, let IT;(S,&,s,7) (C II(S,&,s,7)") be the
piecewise projection of IT(S,&,s,7) on F(t). Each voxel ¢ € II;(S,&, s,7) has
the geodesic distance dg4(s,q) = 7 from s. We have two possible cases: either s
belongs to N(¢,£) or it belongs to the naive set of some other 2-manifold in S.
For the former, dy(s,q) = doo(p, q) by Lemma 3. For the latter, let p be the voxel
lying on a/the geodesic path from s to ¢ and common to N(¢,&) and N(¢1,¢),
where t; is a 2-manifold incident on one of the three 1-manifolds of t. Then,
dg(s,q) = dg(s,p) +doo(p,q) by Lemma 3. Hence, in either case, if ¢ (along with
one of its adjacent voxels) is replaced by a Steiner voxel u (Lemma 2), then for
u, we have d,(s,u) = dg4(s,¢). This ensures the containment of IT;(S,§, s, )" in
B(S,¢,s,7)", and hence the result follows. O

4 Concluding Remarks

We have tested the algorithm for DIG construction on the naive voxel sets of dif-
ferent objects at different scales. On examining and analyzing these test results,
it becomes evident that a collection of DIG, constructed with regular geodesic
distances of 7,27, 37, .. ., from a seed point randomly chosen in N (S, £), can aid in
inferring on interesting geometric and topological features and the complexity
of the object. A couple of such empirical observations are presented here.
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See Fig. 4, which shows a collection of DIG, with uniformly changing val-
ues of 7, constructed on a regular icosahedron made of 20 equilateral triangles.
Notice that the DIG for 7 = 5 is almost squarish, since it lies in some triangles
whose functional planes are same. As the value of 7 increases to 10, 15,.. ., the
functional planes of the concerned triangles gradually vary, thereby changing the
shape of DIG more and more. If the object is more roundish, such as a regular
polyhedron with a larger number of faces, a DIG also becomes more regular and
symmetric. The position of the seed point does not have any significant role,
and neither the orientation of the object S, as far as the scale factor £ is not
uncompromisingly small.

Fig. 4. A collection of DIG for 7 = 5,10, 15,.. ., constructed by our algorithm on the
naive set of a regular icosahedron (the seed point s is shown in red). (Color figure
online)

The collection of DIG can also be used to detect tunnels in an object, and
hence to compute its genus, which is a strong topological feature commonly
used for shape analysis. Figure5 shows a typical set of results on the naive
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Fig. 5. Four collections of DIG (shown in green) on the naive set of a ‘mug’. Each
collection is generated with a seed point shown in red. (Color figure online)

voxel set of an object with genus one. With four different seed points widely
varying in position, the final results in all cases lead to the occurrence of a
‘handle’ in the object. This is inferred from the fact that in the handle, the
DIGs can be paired based on their geodesic distances from s. The two DIGs in
every pair are geodesically equidistant from s, and hence implies two articulation
points from the main ‘body’. If the two DIGS in the farthest pair among these
pairs are connected with each other within a geodesic distance of 27, then the
connecting part belongs to the handle and hence indicates the occurrence of a
tunnel; otherwise, it signifies two articulated projections connected through the
main body.

The notion of DIG introduced in this paper clearly shows its theoretical merit
as well as practical uses in different tasks and applications related to voxelized
objects. Setting the value of the scale factor £ for voxelization of a 2-manifold S
in order to ensure its topological equivalence with S through homeomorphism
remains an open problem. We foresee this problem important in the theoretical
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context of DIG construction and also for shape analysis. Apart from genus and
articulation points that are briefly discussed in this paper, many other shape
features like regularity, concavity, convexity, and symmetry can also possibly
be analyzed through DIG constitution in the voxel space, which if done, would
further establish its potential in digital geometry and topology.
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