
Finding Largest Rectangle Inside
a Digital Object

Apurba Sarkar1(B), Arindam Biswas2, Mousumi Dutt3,
and Arnab Bhattacharya4

1 Department of Computer Science and Technology,
Indian Institute of Engineering Science and Technology, Howrah, India

as.besu@gmail.com
2 Department of Information Technology,

Indian Institute of Engineering Science and Technology, Howrah, India
barindam@gmail.com

3 Department of Computer Science and Engineering,
International Institute of Information Technology, Naya Raipur, India

duttmousumi@gmail.com
4 Department of Computer Science and Engineering,

Indian Institute of Technology, Kanpur, India
arnabb@iitk.ac.in

Abstract. We present a combinatorial algorithm which runs in
O(n log n) time to find largest rectangle (LR) inside a given digital object
without holes, n being the number of pixels on the contour of digital
object. The object is imposed on background isothetic grid and inner
isothetic cover is obtained for a particular grid size, g, which tightly
inscribes the digital object. Certain combinatorial rules are applied on
the isothetic cover to obtain the largest rectangle. The largest rectangle
is useful for shape analysis of digital objects by varying grid size, by
rotating the object, etc. Experimental results on different digital objects
are also presented.

Keywords: Digital object · Isothetic grid · Rectangle · Inner isothetic
cover · Shape analysis

1 Introduction

The problem of finding the Largest area axis-parallel Rectangle (LR) inside a
general polygon of n vertices is a geometric optimization problem in the class
of polygon inclusion problem [4]. There are many solutions for this problem in
various scenarios (e.g. in convex polygon, in orthogonal polygon, etc.) because
of the practical importance of the problem. Chazelle et al. [5,6] proposed an
algorithm to find largest area rectangle with sides parallel to the given rectangle
containing n points and reported that their algorithm runs in O(n log3 n) time
and O(n log n) space. Aggarwal et al. [1] simplifies that algorithm by Chazelle
et al. [5,6] and proposed an algorithm that takes same O(n log3 n) time but
c© Springer International Publishing Switzerland 2016
A. Bac and J.-L. Mari (Eds.): CTIC 2016, LNCS 9667, pp. 157–169, 2016.
DOI: 10.1007/978-3-319-39441-1 15

158 A. Sarkar et al.

Fig. 1. (a) The digital object, A, (b) Inner isothetic cover (g = 8), (c) Largest
Rectangle.

O(n) space. They proposed another algorithm that runs in O(n log2 n) time and
O(n) space. Daniels et al. [7] considered a geometric optimization problem of
finding maximum area axis parallel rectangle from a n-vertex general polygon.
They characterized the largest area rectangle problem by considering different
cases based on the types of contacts between the rectangle and the polygon.
They also proposed a framework that can transform an algorithm for orthogonal
polygons into an algorithm for non-orthogonal polygons and showed that the
running time of their algorithm for general polygons to be O(n log2 n). They
have established lower bound for finding the largest empty rectangles in both self-
intersecting polygons and general polygons with holes to be O(n log n). McKenna
et al. [9] use a divide-and-conquer approach to find the LR in an orthogonal
polygon in O(n log5 n) time. For the merge step at the first level of divide-and-
conquer, they obtain an orthogonal, vertically separated, horizontally convex
polygon. At the second level, their merge step produces an orthogonally convex
polygon, for which they solve the LR problem in O(n log3 n) time. They also
establish a lower bound of time in Ω(n log n) for finding the LR in orthogonal
polygons with degenerate holes, which implies the same lower bound for general
polygons with degenerate holes.

LR problem has many applications in electronic design automation, design
and verification of physical layout of integrated circuits [10,11]. Largest area
rectangle problem has many interesting industrial applications also, e.g., consider
a sheet of fabric or a rectangular piece metal with certain number of flaws in it.
This problem can be salvaged to find a maximum area rectangular sheet that
does not contain any flaws.

In this paper we present another flavor of the same problem - finding largest
rectangle in a digital object which is useful for shape analysis of the object. It is to
be noted here that the resulting largest rectangle may not be unique. The digital
object (Fig. 1(a)) is imposed on a background grid (grid size may vary depending
on the shape and size of the object). Inner isothetic cover which tightly inscribes
the digital object is shown in Fig. 1(b). The corresponding largest rectangle
is shown in Fig. 1(c) for grid size g = 8. In Sect. 2 required definitions and
procedure to obtain inner isothetic cover are explained in brief. While traversing
along the inner isothetic cover combinatorial rules are applied to obtain the

Finding Largest Rectangle Inside a Digital Object 159

largest rectangle. The algorithm presented in this paper runs in O(n log n) time,
where n is the number of pixels on the contour of the digital object. In Sect. 3,
the procedure to obtain largest rectangle is stated in details including rules,
algorithm, time complexity, and demonstration. Experimental results are given
in Sect. 4 to verify the algorithm. Section 5 contains concluding remarks.

2 Definitions and Preliminaries

A digital object A is a 8-connected component [8]. The background grid is given
by G = (H,V), where H and V represent the respective sets of (equi-spaced)
horizontal grid lines and vertical grid lines. The grid size g is defined as the
distance between two consecutive horizontal/vertical grid lines. A grid point is
the point of intersection of a horizontal and a vertical grid line. A unit grid
block (UGB) is the smallest square having its four vertices as four grid points
and edges as grid edges. An isothetic polygon P is a simple polygon (i.e., with
non-intersecting sides) of finite size in Z

2 whose alternate sides are subsets of
the members of H and V. The polygon P , hence given by a finite set of UGBs,
is represented by the (ordered) sequence of its vertices, which are grid points.
The border BP of P is the set of points belonging to its sides. The interior of P
is the set of points in the union of its constituting UGBs excluding the border
of P . An isothetic cover has two type of vertices 900 (type 1) and 2700 (type 3).
The inner (isothetic) cover (IIC), denoted by P (A), is a set of inner polygons
and (inner) hole polygons, such that the region, given by the union of the inner
polygons minus the union of the interiors of the hole polygons, contains a UGB
if and only if it is a subset of A. An edge of P defined by two consecutive vertices
of type 1 is termed as a convex edge, as it gives rise to a convexity. Similarly,
an edge defined by two consecutive type 3 vertices gives rise to a concavity, and
hence termed as a concave edge.

Using the algorithm in [2,3], we obtain (the ordered set of vertices of) P for
A, which is, therefore, the maximum-area isothetic polygon inscribing A. During
the construction of P , the vertices and grid points lying on the edges of P are
dynamically inserted in a circular doubly-linked list, L, and simultaneously in
two lexicographically sorted (in increasing order) lists, Lx and Ly, with respective
primary and secondary keys as x- and y-coordinates for Lx, and opposite for Ly.
Each node of the list L has two level pointers, the lower level pointers are used
to link both edge and corner points of IIC and the top level pointers are used to
link only the corner points of IIC.

3 Procedure to Determine Largest Rectangle

To find a largest rectangle, the inner isothetic cover P (constructed using
algorithm in [2,3]) is traversed in anti-clockwise direction from its top left
corner. During this traversal, whenever a convex edge is encountered, corre-
sponding histogram polygon (i.e., a portion of the main polygon) is constructed,
as explained in Sect. 3.1. Largest rectangle inscribed in the histogram polygon

160 A. Sarkar et al.

Fig. 2. Histogram polygon w.r.t. a convex edge.

is determined (Sect. 3.2). The convexity encountered in P is reduced using the
appropriate reduction rule explained in Sect. 3.3. After reduction, it may give
rise to a convex edge, corresponding to which the histogram polygon, thereof the
largest rectangle inscribed in it, is determined. Thus, the traversal continues till
it reaches the start point of P , the largest of all such largest rectangles, inscribed
in the histogram polygons of convex edges, is the resulting largest rectangle of P .

3.1 Finding Histogram Polygon

During traversal, whenever a convex edge (say e) is detected, histogram polygon
is considered, whose base is e. The base may lie horizontally (at top or bottom)
or vertically (at left or right). The base is extended to extract the histogram
polygon which does not contain any concavity horizontally (vertically) if the
base is vertical (horizontal). Figure 2(a) shows a vertical convex edge e at left
side, which is extended upto the right side of P in such a way that there is no
horizontal concavities. Corresponding histogram polygon is shown in Fig. 2(b)
in blue outline.

3.2 Finding Largest Rectangle in a Histogram Polygon

To find the largest rectangle in histogram polygon, the opposite side of the
base, e, is traversed. Whenever a convex edge is encountered, the area of the
corresponding rectangle is determined, which is compared with the stored largest
rectangle (or global largest rectangle). Larger rectangle is stored as global largest
rectangle. After considering the rectangle in histogram polygon, P is reduced
based on the reduction rules stated in Sect. 3.3. This process continues until it
traverses all the convex edges opposite to e. For example, in Fig. 3(a), the area
corresponding to the first convexity, shown as the gray rectangle, is computed as
l1 × l2 and the convexity is reduced as shown in Fig. 3(b). In Fig. 3(b), the area
corresponding second convexity is shown. Figure 3(c) shows the third convexity
and its area, Fig. 3(d) shows the area corresponding to fourth convexity and
finally Fig. 3(e) shows area corresponding to last convexity. It may be noted
that the convexities in Fig. 3(c,d,e) are derived convexities.

Finding Largest Rectangle Inside a Digital Object 161

3.3 Reduction Rules

The reduction rules are applied only when two consecutive type 1 vertices,
i.e., convex edge is detected. Let v1, v2, v3, and v4 be the four most recent vertices
in order and type of v2 and v3 be 1. Let v0 be the vertex (if any) that precedes
v1. If v0 exists then reduction rule is applied on the sequence < v0, v1, v2, v3, v4 >
of vertices otherwise it is applied on the sequence < v1, v2, v3, v4 > of vertices.
Depending on the types of vertices v1 and v4, there will be four possibilities—
(i) 3113, (ii) 3111, (iii)1111 and finally (iv) 1113. Two rules with their sub-rules
are formulated, Rule 1 takes care of the pattern in (i) and (iv) and Rule 2 deals

Fig. 3. Illustration of finding largest rectangle in a histogram polygon.

Fig. 4. Illustration of reduction Rule 1

162 A. Sarkar et al.

with the pattern in (ii) and (iii). The proposed algorithm applies reduction rules
only when patterns 3113 or 3111 are encountered. The reduction processes are
explained below.

Pattern 3113: This pattern implies that two convex (Type 1) vertices pre-
ceded concave (Type 3) and followed by another concave vertex. Two consecu-
tive Type 1 vertices in the middle of the pattern creates a convex edge which is
to be removed. The reduction process is explained with the help of Fig. 4. Let li
denote the length of outgoing edge from vertex vi. Depending on the length l1
and l3 there are three sub-rules.
Rule 11 (l1 = l3)
To remove the convexity, there are two cases to be considered depending on the
existence of the vertex v0. If v0 exists, vertices v1, v2, v3, and v4 are removed and
the length l0 is updated to l0 + l3 + l4. On the other hand, if v0 does not exist,
vertices v2, v3, and v4 are removed and length l1 is updated to l3 + l4.

Fig. 5. Illustration of reduction Rule 2

Finding Largest Rectangle Inside a Digital Object 163

Rule 12 (l1 > l3)
To remove the convexity, vertex v2 is modified to v′

2 and its length is set to l2+l4.
The length l1 is modified as l1 − l3 and the vertices v3 and v4 are removed. This
reduction is independent of presence of the vertex v0.
Rule 13 (l1 < l3)
This rule depends on the presence of vertex v0. If v0 is present, its length is
updated to l0 + l2, vertices v1 and v2 are removed, and vertex v3 is modified to
v′
3 with its length set to l3 − l1. On the other hand, if v0 is not present, length

l1 is modified as l2, vertex v2 is removed, and vertex v3 is modified to v′
3 with

its length set to l3 − l1.

Pattern 3111: This pattern indicates that three consecutive convex (Type 1)
vertices is preceded by a concave (Type 3) vertex and may create a convoluted
sequence of vertices on the boundary of the object. To remove the convexity
of this pattern, the traversal is continued until it comes out of the convoluted
region (i.e., the shaded region) bounded by the horizontal line lh through v1 and
the vertical line lv through v4 as shown in Fig. 5.
Rule 21(l1 < l3)
This rule is same as R13. If v0 exists, its length is updated to l0 + l3, vertices
v1 and v2 are removed, and vertex v3 is modified to v′

3 with its length modified
to l3 − l1. If v0 does not exist, length l1 is modified as l2, vertex v2 is removed,
and finally vertex v3 is modified as v′

3 with its length modified to l3 − l1.
Rule 22(l1 ≥ l3)
To remove this type of convexity, the traversal is continued from vertex v4 until
it comes out of the convoluted region. This can be checked by comparing the
coordinates of the vertices during the traversal. The middle and bottom rows
of Fig. 5 illustrate this situation for one direction (downward or direction 3) of
vertex v2. In this case the traversal comes out of the convoluted region when it
reaches the first vertex whose x-coordinate value is less than the x-coordinate
value of v4 and the y value is greater than the y value of vertex v1. As shown in
the figure, when the traversal reaches vertex v′′, the above condition is satisfied
and reduction is applied as follows. Let v′ is the immediate previous vertex of
v′′. If l1 = l3, length of v0 if exists, is updated to l0+v′.x−v1.x, v3 is modified to
v′
3 with its length modified to v′′.y − v4.y, and finally vertices v1, v2 and all the

the vertices from v4(including it) to v′ are deleted. If v0 does not exist, length of
v1 is updated to v′.x − v1.x, vertex v3 is modified to v′

3 with its length modified
to v′′.y − v4.y, and finally vertices v2 and all the the vertices from v4(including
it) to v′ are removed. This is explained by rule R22A in Fig. 5. If l1 > l3,
length of v1 is updated to l1 − l3, v2 is modified to v′

2 with its length modified
to v′.x − v1.x, v3 is modified to v′

3 with its length modified to v′′.y − v4.y, and
finally all the vertices from v4(including it) to v′ are removed. In this case the
reduction process is independent of existence of v0. This is explained by rule
R22B in Fig. 5. It is to be noted that after reduction rule is applied there still
exists a convexity formed by vertices v1, v

′
2, v

′
3 and v′′ which will be removed

subsequently by the application of one of the available rules.

164 A. Sarkar et al.

3.4 Algorithm

The Algorithm Find-Rect (Algorithm 1) is used to determine a largest rectan-
gle in a digital object, which takes as input the digital object, A, and the largest
rectangle is reported as the output. Inner isothetic cover of A is generated by
calling the procedure IIC (Step 1) and L, Lx, and Ly are created (procedure IIC
is based on Sect. 2 [2,3]). Lcurr determines the current position of the vertex L
whereas Lend is the last vertex in the vertex list L. Initially, Lcurr is set to the
start of L, i.e., Lstart and the area of global largest rectangle, rect.area, is set
to ‘0’ (Step 2). The list L is traversed until it reaches the end Lend (Steps 3-6).
The procedure Check-Convex checks whether there is a convex edge (Step 4)
and if it is so, procedure Find-Hist is called (Step 5). Lcurr advances one step
in L (Step 6). In the Procedure Find-Hist (Procedure 1), LH stores all the ver-
tices of histogram polygon in anticlockwise manner. Initially LH is set to NULL
(Step 1). Search-Next procedure finds out the next vertex, v, of the histogram
polygon (explained in Sect. 3.1) (Step 2). The vertices v1, v2, and v are appended
in LH (Step 3). All the vertices in histogram polygon has to be found out till
it is in range (Steps 4-6) which is determined by the procedure Chk-Range
(Step 4). In Step 5, the next vertex, v′ in histogram polygon is found out by
the procedure Search-Next (Step 5) and v′ is appended in LH (Step 6). The
Find-Rect (Procedure 2) procedure is called to determine the rectangles in
histogram polygon (Step 7). Reduction rules (discussed in Sect. 3.3) are applied
on convex edge from which histogram polygon has been generated, by calling
the procedure Apply-Rule (Step 8). The Lcurr will be updated accordingly
(Step 9) and will be returned to Find-LR (Step 10).

In the Procedure 2, Find-Rect, LHv
is initialized to the next vertex of the

convex edge in anticlockwise manner in the histogram polygon (Step 1). Steps 3–
9 are repeated until the condition in Step 2 is false, i.e., all the vertices of the
histogram polygon will be traversed except its base. If a convex edge is detected
by calling the procedure Check-Convex in Step 3, corresponding rectangle,
rect′, is determined by calling the procedure Cal-Rect (Step 4). Corresponding
area of the rectangle is determined by the procedure Cal-Area (Step 5). The
area of rect′ is compared with rect, if the area of rect′ is larger, then the global
largest rectangle is updated (Steps 6-7). Reduction rules (discussed in Sect. 3.3)
are applied on the convex edge (Step 8). LHv

advances one step in L (Step 9).

Algorithm 1. Find-LR
Input: A
Output: rect

1 L, Lx, Ly ← IIC(A) ;
2 Lcurr ← Lstart, rect.area ← 0;
3 while Lcurr �= Lend do
4 if Check-Convex(Lcurr →

type, (Lcurr → next) → type) then
5 Find-

Hist(Lcurr, Lcurr → next)

6 Lcurr ← Lcurr → next;

7 return rect;

Procedure 1. Find-Hist(v1, v2)
1 LH ← {φ};
2 v ← Search-Next(v2, Lx, Ly);
3 LH ← LH ∪ {v1, v2, v};
4 while Chk-Range(v1, v2) do
5 v′ ←Search-Next(v, Lx, Ly);

6 LH ← LH ∪ {v′};
7 Find-Rect(LH);
8 Apply-Rule(v1, v2);

Finding Largest Rectangle Inside a Digital Object 165

Procedure 2. Find-Rect(LH)
1 LHv ← LHstart → next → next;
2 while LHv �= LHend

do
3 if Check-Convex(LHv → type,

(LHv → next) → type) then
4 rect′ ←

Cal-Rect(LHv , LHv → next);

5 rect′.area ← Cal-Area(rect′) ;

6 if rect′.area > rect.area then
7 rect ← rect′;

8 Apply-Rule(Lv, Lv → next);

9 LHv ← LHv → next;

Fig. 6. Demonstration of the proposed algorithm on an object (Bird)

3.5 Demonstration

An illustration of obtaining largest rectangle is shown in Fig. 6. The top-left
figure shows the IIC of the object, the green polygons in each step indicates the
reduced polygon, the yellow rectangle indicates the largest rectangle found so
far and the pink polygon indicates the largest rectangle for immediate previous
convexity or the current convexity. Step 1 shows the result of application of

166 A. Sarkar et al.

reduction rule R13 for the first convexity it encounters and the largest rectangle
(in yellow) found corresponding to this convexity. Step 2 shows the removal
of second convexity with rule R12. Since the largest area rectangle obtained
for this convexity is greater than the largest rectangle obtained so far (before
this), the global largest rectangle is updated with this rectangle. Continuing this
way the convexity at Step 5, gives largest rectangle for this object since the
rectangles corresponding to all subsequent convexities are smaller. It is to be
noted that reduction rules are applied for patterns 3113 and 3111, so the IIC
will be reduced to a histogram polygon whose base will be the bottom edge of
the reduced polygon. At the last step the largest rectangle for this histogram
polygon is to be computed for potential largest rectangle. In this case the largest
rectangle for this reduced polygon is smaller than the one already computed.

3.6 Time Complexity

To estimate the running time of the algorithm, let us look at the steps involved
and their individual running time. Also, let n be the number of pixels on the con-
tour of the digital object, A and g be the grid size. To construct inner isothetic
cover along with L, Lx, and Ly O((n/g) log(n/g)) time is required. To deter-
mine the largest rectangle, the inner isothetic cover is linearly traversed once and
whenever an unexplored convex edge is encountered the procedure Find-Hist
and thereby procedure Find-Rect is called to find the largest rectangle corre-
sponding to this convex edge. To find the histogram polygon with respect to a
convex edge, O(n/g + log(n/g)) time is required, as it includes searching in Lx

and Ly which takes O(log n/g) time. Procedure Check-Convex, Chk-Range,
Apply-Rule, Update, Cal-Area, and Find-Rect take O(1) time. Procedure
Find-Rect traverses linearly only the vertices lying opposite to the base of the
histogram polygon found out by the procedure Find-Hist. So, Find-Rect takes
O(n/g) time to calculate the largest rectangle inside the histogram polygon. It
is to be noted that each convex edge is traversed only once and the other convex
edges which are in opposite direction but totally contained within the convex
edge currently being considered need not be checked as largest rectangle corre-
sponding to these convex has already been taken care of. If there are in total
k number of convex regions where k � n, then total time complexity will be
O(k.n/g + (n/g) log(n/g)).

3.7 Proof of Correctness

The algorithm identifies a convex edge and finds out the corresponding histogram
polygon, then the largest rectangle inside the histogram polygon is computed.
After a convex edge is considered, it is reduced following a certain combinato-
rial reduction rules. After the reduction if it gives rise to secondary convex, it
is treated in the similar manner stated above to find the corresponding largest
rectangle. The largest of all these rectangles corresponding to each convex edge
is reported as largest rectangle. To prove that the algorithm indeed finds out
largest rectangle we have to show that the algorithm considers all convex edges.

Finding Largest Rectangle Inside a Digital Object 167

The traversal procedure ensures that all convex edges (and secondary convex
edges) are considered as it starts from the top left vertex of the IIC and contin-
ues till the traversal reaches the start point. Sides of a largest rectangle, as it
tries to maximise the area, will either be a convex edge or a concave edge may
constitute a part of its side. The procedure for finding out largest rectangle inside
a histogram polygon of a convex edge, ensures that it finds a largest rectangle as
it walks along the sky-line of the histogram polygon (reduces whenever required)
and determines the rectangle it produces with the base (the convex edge). To
prove that the algorithm also terminates, it is to be noted that during the tra-
versal, whether or not a convex edge is encountered, the traversal advances to
the next vertex of IIC. So, eventually the traversal reaches the start point and
terminates.

Fig. 7. Largest area rectangle (shaded in yellow) inside six different objects for g = 8.

Table 1. Different data for various digital objects at grid size, g = 8.

Object Object Object Perimeter Area Perimeter Area

perimeter area of IIC of IIC of LR of LR

Bird 625 27768 688 7168 208 2688

Kangaroo 1151 57828 1088 11008 224 3136

Dancer 1057 50398 1320 14400 352 6144

Cartoon 918 65536 1152 35456 528 17024

Cat 730 42920 616 8896 256 2816

Hand 1300 72675 1632 28224 464 13312

Mapple leaf 861 50882 992 17472 352 6720

Plus Symbol 978 70488 960 23744 608 13888

168 A. Sarkar et al.

4 Experimental Results

The proposed algorithm is implemented in C in Ubuntu 12.04, 64-bit, kernel
version 3.5.0-43-generic, the processor being Intel i5-3570, 3.4 GHz FSB. Exper-
imental results of six different digital objects are shown in Fig. 7. In Table 1,
different data, e.g., area and perimeter of digital object, IIC, and largest rectan-
gle, are given. It is seen that largest rectangle occupies approximately one-third
area of inner isothetic polygon. The results show that the algorithm can be use-
ful for shape analysis of digital object, as most of the time the largest rectangle
determined is at the central position of the digital object. A digital object my be
characterized by positioning the successive largest rectangle inside it. These type
of information may be useful to determine some topological information from
digital objects when the largest rectangles are placed recursively in the rest of
the IIC.

5 Conclusion

This paper describes a combinatorial algorithm to find largest rectangle inside a
digital object in O(k.n/g+(n/g) log(n/g)) time. The paper also presents the rules
for the algorithm, a demonstration, and time complexity. Experimental results
show the efficacy of the algorithm. The algorithm can be applied for shape analy-
sis of digital object. LR problem has some industrial application also which has
been stated in Sect. 1. One largest rectangle can divide the object in several parts.
We can generate iteratively largest rectangle in each part upto a certain limit.
LR in each level will form a tree which will represents the connectivity among
several parts inside the object. In future, some topological information for the
digital objects can be derived from above mentioned technique. All these implies
the practical importance of the problem in various shape related applications.

References

1. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle.
In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp.
278–290 (1987)

2. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: on finding a tight isothetic
polygonal shape covering a 2D object. In: Kalviainen, H., Parkkinen, J., Kaarna,
A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005)

3. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers
of a digital object: A combinatorial approach. J. Vis. Comun. Image Represent.
21(4), 295–310 (2010)

4. Chang, J., Yap, C.: A polynomial solution for the potato-peeling problem. Discrete
Comput. Geom. 1, 155–182 (1986)

5. Chazelle, B., Drysdale, R.L., Lee, D.T.: Computing the largest empty rectangle.
In: STACS-1984, pp. 43–54. Springer, Heidelberg (1984)

6. Chazelle, B., III, R.D., Lee, D.: Computing the largest empty rectangle. SIAM J.
Comput. 15, 300–315 (1986)

Finding Largest Rectangle Inside a Digital Object 169

7. Daniels, K., Milenkovic, V., Roth, D.: Finding the largest area axis-parallel rec-
tangle in a polygon. Comput. Geom.: Theor. Appl. 7, 125–148 (1997)

8. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

9. McKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogo-
nal polygon. In: Proceedings of the 23rd Allerton Conference on Communication,
Control and Computing, pp. 486–495 (1985)

10. Nandy, S.C., Bhattacharya, B.B., Ray, S.: Efficient algorithms for identifying
all maximal isothetic empty rectangles in VLSI layout design. In: Nori, K.V.,
Veni Madhavan, C.E. (eds.) Foundations of Software Technology and Theoreti-
cal Computer Science. LNCS, vol. 472, pp. 255–269. Springer, Heidelberg (1990)

11. Ullman, J.: Chap. 9: Algorithms for VLSI Design Tools. Computational Aspects
of VLSI. Computer Science Press, Rockville (1984)

	Finding Largest Rectangle Inside a Digital Object
	1 Introduction
	2 Definitions and Preliminaries
	3 Procedure to Determine Largest Rectangle
	3.1 Finding Histogram Polygon
	3.2 Finding Largest Rectangle in a Histogram Polygon
	3.3 Reduction Rules
	3.4 Algorithm
	3.5 Demonstration
	3.6 Time Complexity
	3.7 Proof of Correctness

	4 Experimental Results
	5 Conclusion
	References

