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Abstract. DNA copy number aberrations (CNAs) play an important
role in cancer and can be experimentally detected using microarray com-
parative genomic hybridization (CGH) techniques. Amplicons, CNAs
that extend over large sections of the genome, are difficult to study
since they may contain multiple independent and dependent copy num-
ber changes. Here, we propose an algorithm to find the CNAs structure
within a given amplicon. Our method relies on the observation that co-
occurring CNAs can be encoded as 1-dimensional cycles. Applying this
method to breast cancer patients known as ERBB2/HER2/NEU ampli-
fied we find three regions that can be co-occuring: the first region is in
the cytoband 17q12, where the ERBB2 gene is located, the second region
expands between 17q21.2 to 17q21.31 and includes the keratin genes, the
third one is 17q21.33. We suggest that the first homology group helps
uncovering the structure of amplicons.
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1 Introduction

Cancer is a set of complex genetic diseases whose pathogenesis is not well under-
stood. Initiation and progression of these diseases depend on the misregula-
tion of key genes called cancer/tumor genes. Gene misregulation occurs through
different mechanisms including the gain and losses of DNA chromosome frag-
ments (e.g. [11,18,20,24]). These events are commonly termed DNA copy num-
ber aberrations (CNAs) and are routinely detected in the laboratory through
comparative genomic hybridization (CGH) arrays, single nucleotide polymor-
phism (SNP) arrays and sequencing (e.g. [12–14,17,22,36,47]). However not all
detected CNAS are relevant for tumor initiation and/or progression. It is cur-
rently believed that CNAs that contain tumor genes are those that are relevant
for tumor progression. These CNAs are called drivers while those which appear to
have no biological implications are called passengers. Determining which CNAs
are driving tumor progression and which ones are just passengers remains an
open problem. Certain CNAs expand over large fragments of the genome and
are sometimes termed Amplicons. These regions are important because contain
multiple tumor genes and the presence or absence of certain CNAs within an
amplicon has been associated with patient’s prognosis (e.g. [23,41]). Examples
include 9p in breast cancer, colon and glioblastoma tumors and lymphomas
[5,19], 11q in head and neck, breast, oral and liver tumors (reviewed in [46])
and 17q in ERBB2/HER2/NEU (ERBB2+, thereafter) positive breast cancer
[4]. The detailed structure of amplicons is complex and difficult to investigate
using traditional statistical methods since some amplifications appear to occur
simultaneously, hence they are not significant as independent CNAs, and have
synergistic effects [1,28,43]. In this work we will call co-occurring CNAs those
that occur simultaneously independently of their functional effects. One poten-
tial approach to study the structure of an amplicon and identify potential co-
occurring CNAs is to encode combinations of CNAs as a single predictor variable
and perform association studies between these new predictor variables and phe-
notypes of interest.

Here we extend our previously reported supervised approach, termed Topo-
logical Analysis of array CGH (TAaCGH), to study the structure of an ampli-
con. In TAaCGH, we associate a point cloud to each CGH profile (or section of
a CGH profile) through a sliding window algorithm [15], build a Vietoris-Rips
(VR) simplicial complex [31] and perform an association study between the topo-
logical properties of the VR complex and the chosen phenotype. The difference
between TAaCGH and other current association studies is that TAaCGH uses
the topological properties of the point cloud, instead of the probes, as predic-
tor variables. The advantage of using topological properties as predictors is that
they can encode relationships between probes. In previous works we showed that
using the rank of the zero homology group (β0) as a predictor variable in asso-
ciation studies of breast cancer is comparable to other statistical methods [3].
Here we hypothesize that performing association between the rank of the first
homology group β1 and a specific phenotype helps analyze the underlying struc-
ture of amplicons. This hypothesis is based on recent analytical and numerical
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results that shows that β1 encodes for periodic patterns [34] and by our own
observations that show that neighboring (not-necessarily periodic) regions of
amplifications are mirrored by β1 [10,38].

To test our hypothesis and to illustrate our methodology we analyze the
amplicon on 17q in ERBB2/HER2/NEU (ERBB2+, thereafter) positive breast
cancer samples. ERBB2+ breast cancer is an aggressive form of the disease that
comprises 25 % of all breast tumors diagnosed (reviewed in [35]). The ERBB2
gene is located in the region of the genome labeled as cytoband 17q12 (where 17 is
the chromosome arm, q denotes the long arm of the chromosome and 12 denotes
a specific band that can be detected by chromosome staining). Misregulation
of ERBB2 in ERBB2+ tumors commonly occurs through copy number gains
of 17q12. In many patients, this amplification is accompanied by gains of other
regions in the same chromosome arm. This includes amplifications of 17q21.2 that
encompasses the Top2A gene [32], chromosome regions 17q21.1, 17q22 [27] and
17q21.33− q25.1 which is predictive of early recurrence [9] and contains TANC2
(17q23) and PPM1D genes [29,37], two independent co-amplified regions have
also been reported in 17q23 [4,39].

To test whether TAaCGH can detect these events, we analyzed two inde-
pendently published data sets [13,20]. We first confirmed the presence of the
amplicon in 17q in both data sets using β0, we then identified specific regions
within this arm using β1 analysis. This study revealed two regions of signifi-
cance delimited by 17q12 and 17q12 − 17q21.33. To further localize the regions
of the genome that contributed to the significance of β1 we calculated the gen-
erators of the first homology group and the correspondence between the probes
and the generators. Statistical analysis quantifying the over-representations of
genomic regions in the generators allowed us to further subdivide the region
17q12 − 17q21.33. A first amplification was detected in between the neighbor-
ing regions 17q21.2−17q21.31 (extending from base pairs 40,884,763-41,826,877)
and the region 17q21.33 (from base-pairs 46,603,678-49,075570). Using the UCSC
genome browser we observed that the first region contains the keratin cluster
(e.g. [30]) and the second contains, among others the HOXB cluster (see [8] for
a review). Both of these clusters have been previously reported in breast cancer
studies. Whether their functionality is synergistic in some patients remains to
be determined.

2 Data Sets and Methods

2.1 CGH Data

CNAs are defined as gains or losses of genome fragments and can be detected
using microarray technologies. Through Comparative Genomic Hybridization
(CGH), DNA probes (i.e., fragments of DNA sequences) are spotted on a plat-
form. Tumor DNA, labeled with Cy3, and control DNA, labeled with Cy5, are
co-hybridized in a 1:1 ratio. The intensity of the hybridized samples is captured
and transformed into a red-green ratio value called the log2 ratio. Since the
physical position of each probe is known, these log2 ratios can be mapped to
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the original genome producing a CGH profile (Fig. 1). In traditional statistical
approaches each CGH profile is normalized and segmented, and significant copy
number aberrations are then identified [6,33,45].

Fig. 1. A CGH profile for chromosome arm 17q. The x-axis indicates the genomic
position and the y-axis the log2 ratio of the intensity of the tumor and control samples
co-hybridized to the same array.

2.2 Simulation Data Set

We simulated single and co-occurring aberrations. A detailed description of the
simulation methods for a single aberration can be found in [3,25,26]. In brief,
each simulation consisted of 200 profiles, 100 in the control set and 100 in the test
set. Each simulated profile contained 100 aCGH probes. The value of the copy
number along the profile was determined by three parameters: the mean value
of the aberration μ, the length of the aberration λ, and the standard deviation
associated with noise σ. Probes outside the aberration and in the control set
had μ = 0, whereas for those probes inside the aberration was μ = 0.6 or 1.
Aberration length λ was equal to 5 and 10 probes. Noise was implemented by
drawing samples from a Gaussian distribution of mean 0 and standard deviation
σ of values 0.2, 0.6 or 1. The control set for single aberrations was made of
profiles without aberrations (i.e. only noise).

Co-occurring aberrations were represented by two aberrations of different
lengths. In the first aberration μ = 0.6 or 1 and in the second μ = 1. The control
set was made of profiles with no aberrations or with only one aberration.

2.3 Horlings Data Set

This dataset analyzed was published by Horlings and colleagues [20] and was
obtained from the supplementary data [21]. Measurements of copy number
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variations were performed on microarrays containing 3.5 k BAC, PAC-derived
DNA segments covering the entire genome with a spacing average of 1 Mb. Each
BAC clone was spotted and triplicated on every slide (Code Link Activated Slides,
Amersham Biosciences). Our own preprocessing of the data can be found in [3].
This study contained 14 ERBB2+ patients determined by clinical diagnosis. The
control set consisted of the patients belonging to the remaining subtypes.

2.4 Climent Data Set

This data set was used as a validation set. In [13] genome-wide measurements
of copy number variations were performed by array CGH (UCSF Hum. Array
2.0) with an average spacing between probes of 1Mb. The study contained
180 patients diagnosed with a stage I/II lymph node-negative breast cancer.
The data set was downloaded from the GEO data base with accession number
GSE6448. Arrays were preprocessed by averaging/removing probes as follows:
18 clones mapping to chromosome Y or missing genomic location information
were removed, 80 probes mapping to identical genomic regions were averaged
and represented as single values, 179 probes missing entries for 30 % or more
patients were removed, and missing values were imputed using the lowess regres-
sion method in the aCGH package for R [16]. This resulted in 2,168 unique clones
from the original 2,445 printed in the array. We classified as ERBB2+ tumors
the subset of 9 patients that showed a copy number change >1 (in log scale) at
the clone DMPC-HFF#1-61H8 which contains the ERBB2 gene.

2.5 Multidimensional Analysis of CGH Profiles Using
Computational Algebraic Topology

We previously reported a new method to analyze CGH data called topological
analysis of array CGH (TAaCGH) [3,15]. Our method uses a sliding window
algorithm that associates a point cloud to a given CGH profile (or section of
a CGH profile). The dimension of the point cloud is determined by the size
of the sliding window. In this study and based on our previous work [3] we
considered windows of size n = 2. TAaCGH assigns a β0 curve to each CGH
profile, computes the average 〈β0〉 curve for each population of patients (test
and control) and performs statistical analysis to determine differences between
them (see below). Here we extended TAaCGH by incorporating a similar analysis
using 〈β1〉 curves. We used the program JavaPlex to perform the calculation of
β1 and its generators [40]. As in the case of β0, we generated the function β1(ε)
for each patient. In this case ε took values between 0 and the value at which
β0= 1.Given the β1(ε) for each patient, we computed the average 〈β1〉 for the
ERBB2 set and the control set (consisting of the reminder of the patients) and
test for statistically significant differences between the two 〈β1〉 curves.

2.6 Testing for Statistical Differences

To test for statistically significant differences between 〈βi〉 curves associated
to different patient groups, we assumed the null hypothesis that 〈βi〉 curves
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for a sample of patients was independent of the cancer subtype. We quantified
deviations from the null distribution by the statistic Sexp, which was defined as
the sum of the squares of the differences between the average 〈βi〉 curves across
all radii, i.e.

Sexp,i =
∑

(aij − bij)2 for j = 1, . . . , N

where aij and bij are the 〈βi(j)〉 value for each population under study and
for the value of the filtration parameter ε = j.

2.7 Finding Co-Occurring Aberrations

In order to determine the regions of the genome that contributed to the first
homology we found the CGH probes that were mapped to each of the vertices
of the generators. First, generators for each patient and value of the filtration
coefficient were calculated using JavaPlex [40]. Second, the probes of the CGH
profile that mapped to the vertices of the generators were identified. Third, since
generators were not necessary minimal and, due to the noise of the data, some
generators mapped to different areas of the genome we determined a CNA by
measuring the concentration of the probes. Regions with higher concentration
of probes than the control set were called CNAs.

2.8 Software for Visualization of Generators

We created an exploratory tool using Shiny app to visualize the generators in the
point cloud together with their corresponding probes in the CGH profile. The
app highlights the probes and generators as the values of the filtration coefficient
changes. The software allows to visualize the dispersion of the probes associated
with the probes through the CGH profile. An example is shown in Fig. 5. The
software is available from the authors upon request.

3 Results

3.1 Computer Simulations

To better interpret our results we performed computer simulations. Since the
analysis of β0 has been performed elsewhere [3,15], we focused on simulations
concerning the detection of CNAs using β1. Figure 2 shows an example of two
simulated profiles, one with no aberrations as control (Fig. 2) and a second one
with two co-occurring aberrations (Fig. 2B). In both Fig. 2A and B, the x-axis
represents the position along the chromosome and the y-axis the log2 ratio of the
copy number values. The 〈β1〉 curves (Fig. 2C) obtained from the curves above
help understand the growth and disappearance of the first homology. In the case
of no amplification (red), the 〈β1〉 curve starts at 〈β1〉 = 0, since for very small
values of ε there is no 1-dimensional homology. 〈β1〉 rapidly increases due to the
structure of the noise until it reaches a maximum after which it decays to 0.
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The graph for 〈β1〉 is different when two aberrations are present (blue). For small
values of the filtration parameter the graph behaves similarly to the graph without
aberrations, however in this case the graph shows more than one local maximum
and a lower log2 ratio of copy number values at the first maximum.

Fig. 2. Examples of simulated aberration profiles and 〈β1〉 curve. (A) shows a
control profile with no aberrations with σ=0.2. (B) shows a profile with two aberrations
with parameters λ = 10 and 5, μ = 0.6 and 1 and σ = 0.2 for both. The blue dashed
lines represent two standard deviations. The bottom graph shows in red the 〈β1〉 for the
control group with no aberrations and in blue the 〈β1〉 curve for a pair of aberrations
with λ = 10, μ = 0.6 and 1 and σ = 0.2 (Color figure online).

We tested our method by performing a sensitivity and specificity analysis in
three different simulation experiments. Each experiment consisted of 200 profiles
(100 tests and 100 controls) and all possible combinations of parameters were
considered. A successful identification of an aberration was scored when the
obtained P-value was less than 0.05 after correcting by FDR. First we considered
the case of one single amplification (test set) taking as control set a population
with no aberrations. In this case sensitivity was 87.5 %. In the second experiment
we used profiles with two amplifications as a test set and no amplifications as the
control set. In this experiment we got average sensitivity of 95 %. In the third
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experiment we compared double amplifications with single (as control). Results
showed 82.5 % in sensitivity. Specificity was measured by comparing two control
data sets resulting in 97.5 %. Our method has bigger chances to fail when the
length of the aberration is small (5 or less) and μ = σ.

β0 Significance of 17q

As discussed elsewhere [3,15], 〈β0〉 curves can detect chromosome aberrations.
Since we are interested in the entire amplicon in 17q, we applied TAaCGH to full
chromosome arms. The chromosome arm 17q was significant in both data sets.
In the Horlings data set we found significance on 〈β0〉 curves when comparing
chromosome arm 1q (P-value = 0.021) and 17q (P-value = 0.004). The graph
for chromosome 1q however showed that the control curve was above the test
set indicating that the control set (ERBB-) had more CNAs that the test set
(ERBB+). Therefore was not relevant in this study. In our validation data set,
we found only 17q to be significant with a corresponding P-value after FDR cor-
rection of 0.0037. Figure 3 shows examples of 〈β0〉 curves for both chromosomes.
Since β0 is the number of connected components of the simplicial complex, 〈β0〉
curves start at the value of the number of probes in each chromosome arm for
ε = 0 and gradually decays with increasing ε until a single connected compo-
nent remains. All blue curves shown in Fig. 3 represent the ERBB2+ population
and all red curves represent the ERBB2- population. Results shown in Fig. 3A
and B include 〈β0〉 curves associated to 17q for the Climent and Horlings data
sets respectively; Fig. 3C shows 〈β0〉 curves associated to 1q and Fig. 3D 〈β0〉
curves associated to the negative control 19q. Chromosome arm 17q showed, as
expected, a higher number of chromosome aberrations in the ERBB2+ patients
than in the ERBB2- patients.

β1 Significance of 17q

Next, we analyzed the significance of β1 in chromosome arm 17q. We considered
two approaches. First we tested for β1 significance of the entire chromosome
arm 17q and then for overlapping sections of the chromosome arm. We found
important to use both approaches since co-occurring CNAs may be local or
spread over the entire arm. Analysis using the whole arm showed 17q to be
significant in the Climent data set (with a P-value of 0.040), but not in the
Horlings data set (P-value 0.172). Figure 4 shows the corresponding 〈β1〉 curves
for both studies suggesting that any amplicon structure, if present, would be
local.

Following our previous work [3] we subdivided chromosome arm 17q in the
Horlings data set into 6 sections, which corresponded to 5 sections in the Climent
data set. Each section containing 20 CGH probes with 10 overlapping probes.
Results are shown in Table 1. Column 1 shows the section analyzed; columns
2 and 5 the cytogenetic band, columns 3 and 6 the location in base pairs, and
columns 4 and 7 the p-values [7]. Both data sets showed some significant sections.
In the Horlings data set, Sects. 2 and 3 significant after correction for multiple
testing (column 4). In the Climent data set all sections except Sect. 4 were sig-
nificant (column 7). Based on the reproducibility of these results we concluded
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Fig. 3. Examples of 〈β0〉 curves in dimension 20. Blue indicates the ERBB2+ popula-
tion and red the ERBB2-. (A) Arm 17q arm in Climent; (B) Arm 17q in Horlings, (C)
Arm 1q in Horlings and (D) Arm 19q in Horlings (Color figure online).

that sections containing cytobands 17q12 to 17q21.33 had co-occurring CNAs
and are therefore good candidates for uncovering the underlying structure of the
amplicon.

To further identify the regions within 17q12 and 17q21.31 − 17q21.33 we
identified the generators of the first homology group for each patient and mapped
the probes to the vertices of the corresponding generators. Before we discuss the
statistical results we highlight some interesting properties of the generators: (1)
probes that made up the generators may be distributed throughout the entire

Table 1. Chromosome Sections. Correspondence between sections, cytobands and base
pairs range for each of the sections used to analyze chromosome 17q.

Section Cytoband

(Horlings et al.)

Basepair (P−value)

FDR correction

Cytoband

(Climent et al.)

Basepair (P−value)

FDR Correction

17q.s1 q11.1-q12 25440972- (0.043) q11.1-q21.2 25530227- 0.0088

37812853 0.08640 40615955

17q.s2 q12-q21.31 32489785- (0.0008) q12-q21.33 35669421- 0.0016

43339849 0.00480 47644854

17q.s3 q21.2-q21.33 38428492- (0.0116) q21.31-q22 42170022- 0.0378

49075570 0.03480 55594526

17q.s4 q21.31-q22 44084882- (0.471) q21.33-q24.3 47968636- 0.100

57340119 0.47170 70573094

17q.s5 q22-q24.2 51080264- (0.253) q23.1-q25.3 58025830- 0.009

66108804 0.30432 78774742

17q.s6 q23.1-q25.3 57996713- (0.237)

80780814 0.30432
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Fig. 4. 〈β1〉 Significance of 17q in the climent and the horlings data sets.
(A)The figure shows the 〈β1〉 curves for ERBB2+ (blue) and ERBB2-(red) in the
Climent data set (significant). (B) Here we show the 〈β1〉 curves for both categories
for the Horlings data set (non-significant) (Color figure online).

arm or localized in a specific region (2) unlike β0 generators do not necessarily
detect the global maximum in the profile but different regions that contribute
to several local maxima (3) neighboring maxima or even sections of the same
maximum are detected at different values of the filtration parameter. Figure 5
shows the profile of a patient for 17q and the point cloud. Probes in blue are
those that were mapped to the generators at two different filtration coefficient
values. The corresponding 2D point cloud (with edges included) and with the
vertices in each cycle highlighted in blue are also shown.

These inherent variability of the generators and the noise of the data moti-
vated us to use a statistical approach. As detailed in the methods sections for
each patient and value of the filtration parameter we computed the cycles and
the probes that defined those cycles. The frequency at which a probe was mapped
to a particular region of the genome is represented by a histogram (see Fig. 6).
The top graphs show the histograms for the Horlings data set and the bottom
ones the histograms for the Climent data set. The histograms on the left are
the control and the ones on the right correspond to the ERBB2+. The most
remarkable feature is the difference between the control and the ERBB2 data
sets. While the control show no significant concentration of the probes that
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Fig. 5. Correspondence between CGH probes and generators. Different values
of the filtration parameter detects different generators which corresponds to different
probes in the genome. Panel A shows the profile of one patient and its associated point
cloud. The probes highlighted in blue correspond to the vertices of the single generator,
also in blue. The filtration coefficient was ε = 0.78. Panel B shows the same patient
and point cloud for a different value of the filtration coefficient ε = 0.83

belong to cycles the ERBB2+ clearly show three regions of interest. 17q12 has a
significant concentration of cycle elements and corresponds to the position of the
gene ERBB2. Two regions extend beyond the position of ERBB2 The first one
is in the boundary between 17q21.2 and 17q21.31. The Horlings data set suggests
that the region of interest is more localized in 17q21.31 while the Climent data
set suggest a region contained in 17q21.2. The last region is located at 17q21.33
and is common to both studies.

Since our simulations show that the first homology group can also identify
single amplifications one may argue that the found amplifications correspond to
single independent events. To address this problem we analyzed the distribution
of the cycles-forming-probes. Figure 7 show some examples of the distribution of
cycles in the genome for specific patients. Each plate corresponds to one patient,
the x-axis is the position along the genome and the y-axis the “life” of the cycle.
Each color represents a different cycle. If the amplifications were independent
events one would expect to see single colors concentrated at specific regions.
However we see cycles dispersed over the entire profile indicating the presence
of co-occurring CNAs.
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Fig. 6. Comparison of ERBB2- (left) andERBB2+ (right) patients at the gen-
erator level. The top histograms correspond to the Horlings data set and the bottom
to the Climent data set. Each bar in the histogram represents a probe. Its height repre-
sents the cumulative presence of that probe on the generators of the first homology group
divided by the number of patients. The cumulative presence is calculated by counting the
number of cycles in which the probe is part of the generator for each value of the filtration
parameter (multiplied by the number of generators if they were more than one).
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Patient 20 Patient 26

Patient 53 Patient 66

0 10 20 30 40 0 10 20 30 40

genindex
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Fig. 7. Distribution of cycles in CGH profiles. Each plate corresponds to the
CGH profile of a patient and how the vertices of the cycles are mapped back to the
profile. Different colors indicate different cycles and do not represent the same cycle in
each plate. The height of the bars represent the life of the cycle (Color figure online).

4 Discussion

Copy number measurements provide an unparalleled opportunity to identify the
underlying mechanisms of cancer. Previous efforts in analyzing copy number data
have mainly focused on the identification of single, independent chromosome
copy number aberrations. These approaches however are known to be deficient
in the identification of co-occurring copy number changes since there is a large
number of combinations of probes that one needs to interrogate. In this study,
we have presented a methodology that helps circumvent the search for simulta-
neously occurring CNAs by encoding copy number data as topological objects.
In particular we have used the rank of the first homology group to perform this
association. To test this hypothesis, we searched for co-occurring aberrations in
ERBB2+ breast cancer patients. Our results show β1 significance in chromosome
cytobands that extend from 17q12 to 17q21.33. By identifying the probes that
form the generators and measuring their concentration along the CGH profiles
we were able to further narrow this significant region to three amplifications.
The first is 17q12 which contains the ERBB2 gene. The second and the third
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have also been reported in ERBB2+ patients. The second amplification is in
the boundary between 17q21.2 and 17q21.31 and according to our estimation is
delimited by the Top2A and BRCA1 genes (base pairs 40, 884763−41, 826, 877).
This region encompasses the type I keratin gene cluster. Finally we identified
17q21.33 (base pairs 47, 400, 368 − 49, 075570) a large region that contain mul-
tiple tumor associated genes including the HOXB cluster [42], Prohibitin [44]
and amplification of this region has been associated with poor prognosis [41].
Unfortunately at this point, due to the small sample size, we cannot determine
how common these co-occurring CNAs are in the general population of ERBB2+
patients or whether they form subtypes within the ERBB2+ subtype. Neverthe-
less the fact that these regions are significant in two independent data sets is
encouraging. It is therefore our immediate plan to scale up this study on larger
data sets.

Our work presents also new tools for the topological analysis of time series.
We and others [34] independently introduced the concept of using the sliding
window algorithm to analyze time series. In our previous work we noted that:
(1) the overall shape of the point cloud already provides information of the data
[2,3,15], (2) The point cloud can be seen as the reconstruction set of the dynam-
ical system induced by the sliding window algorithm [2], (3) the zero homology
group identifies large step increments between consecutive measurements [15].
Our contributions in this work is the development of algorithms that (1) detect
the single and co-occuring maxima in the data in non-necessarily periodic sig-
nals using the first homology group (2) Identify local maxima by computing the
concentration of the pre-images (by the sliding window algorithm) of the vertices
that form the cycles. It is our belief that the use of topological methods for the
analysis of signals using simple construction techniques, such as the commonly
used sliding window algorithm, can provide new insights in the analysis of time
series.
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