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Abstract. In Digital Image Steganography, Pixel-Value Differencing
methods commonly use the difference between two consecutive pixel val-
ues to determine the amount of data bits that can be inserted in every
pixel pair. The advantage of these methods is the overall amount of data
that an image can carry. However, these algorithms frequently either
overflow or underflow the pixel values resulting in an incorrect output
image. To circumvent this issue, either a number of extra steps are added
to adjust those values, or simply the pixels are deemed unusable and they
are ignored. In this paper, we adopt the Tri-way Pixel-Value Differencing
method and find an optimal pixel value for each computed pixel block
such that their difference holds the maximum input data and neither
underflow or overflow pixels exist.
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1 Introduction

Digital steganography is the set of techniques designed to conceal digital data
(the payload) within a digital medium or carrier. Unlike related areas, such
as cryptography or watermarking, steganography techniques aim to keep the
existence of a message undetected and to continuously increase the amount of
input data to be embedded [3].

In digital image steganography, the pixel intensities are used to hide the
payload data. A common approach, and perhaps the simplest, is to use some
form of Least Significant Bit (LSB) insertion method [1]. LSB methods replace
b least significant bits of the carrier pixels with the same number of payload
data bits. The less bits being replaced, the less altered the carrier image will
be, but also the payload will be smaller. Some LSB substitution techniques have
implemented an optimal pixel adjustment for data embedding to reduce the
disruption of the carrier image [10]. Other steganographic methods include an
assortment of transformation as well as masking and filtering techniques. Surveys
and reviews of current methods are readily available in the literature [3,7].
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With the objective of increasing the amount of data that an image can carry,
a set of techniques have been proposed that use the difference between two
neighbour pixels to hide input data. This difference can be computed in any
neighbouring direction. Wu and Tsai [11] proposed a Pixel Value Differencing
(PVD) method that produces a stego-image with considerable payload data and
a substancial image quality. Thereafter various approaches based on PVD have
been produced [2,4,12].

Ideally, the payload must be recovered using only the resulting pixel values,
and all pixels of the original image should be used to embed data in order
to achieve a higher payload. However, many PVD methods yield overflow or
underflow pixels (i.e., out of the valid range interval) and decide either to ignore
or to somehow adjust the resulting pixel values. This, however, may lead to
a lower payload or to include additional strategies to retrieve the embedded
data [11] that may reveal the existence of a hidden message.

In this paper, we adopt the Tri-way Pixel-Value Differencing method and find
an optimal pixel value for each computed pixel block such that their difference
holds the maximum input data. Our method reduces the size of the search space
and computes a much more smaller set of feasible solutions. In addition, two more
strategies are discussed to further increase the size of the embedded payload. The
method is designed in such a way that the resulting pixel intensities are never
out of the valid interval and it uses all pixel blocks to carry payload data. A
series of experimental results show the feasibility of the method.

We begin in Sect.2 by covering the basics of the Pixel-Value Differencing
method. Section 3 presents a detailed description of our two optimisation algo-
rithm approaches. Section4 presents several experimental results, and Sect.5
concludes the paper.

2 Pixel-Value Differencing

The PVD method [11] assumes that the payload is a continuos stream of input
bits that represent any type of digital data. The PVD embeds data using the
intensity difference of two contiguous pixels. The idea is to modify these pixels
by adding a decimal conversion of some input data bits in such a way that
their value difference is kept to preserve the image quality. Regions in the image
with larger differences in pixel intensities can carry more pieces of payload than
others. This usually happens in the areas with evident edges and less frequently
in smoother regions. The method provides a good embedding capacity but is
prone to be detected using statistical based stego-analysis methods [5].

Chang et al. [2] proposed a modified version of the PVD named Tri-way
Pizel-Value Differencing (TWPVD). Whereas the PVD inserts data in only one
pixel pair, the TWPVD uses horizontal, vertical and diagonal diferences (hence
its name) in 2 x 2 pixel blocks to hide input data, thus achieving a higher payload
than the PVD in the carrier image. One problem arising in PVD based methods
is that they frequently yield overflow/underflow pixel values. These pixels are
either adjusted or ignored by the method, thus reducing the number of pixels
available to carry data payload [2,6].
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2.1 Tri-Way Pixel-Value Differencing

The Tri-way Pixel-Value Differencing (TWPVD) method was designed to get
more pixels involved in the data embedding process [2]. The TWPVD divides
the carrier image into non-overlapping blocks of 2 x 2 consecutive pixels. Three
difference values are computed in each block from the values of two neighbour
pixels in three distinctive directions. The first difference is computed between
the pixel in the upper left corner, namely the pivot, and the pixel on its right.
The second difference is between the pivot and the pixel in the opposite corner,
and the third one is also between the pivot and the pixel below it. Each difference
belongs to one of a predefined set of range intervals which, in turn, determines
the number of bits to be inserted in every pixel pair. Each range interval Ry, has a
lower [;, and an upper uy, value listed in the form of a range table. The range table
has been designed simply by computing each interval width using a power of two,
either to provide large capacity or to provide high imperceptibility [11,12]. Other
approaches have designed the range table based on the perfect square number [9],
or have opted for entirely replacing the range table with a well crafted function
based on the floor and ceiling functions [4].

Regardless of how these range intervals are produced, the TWPVD algorithm
follows these steps:

1. Compute the differences d; = p; — p; within the pixel block i € {1,2,3,4},

2. Locate for each d; the range k such that I, < |d;| < ug
3. Compute the amount of input data bits ¢; to be inserted in the difference 4
of the block p; as follows:

ti:{o ifi=1 (1)

|log, (ur, — Ik + 1) ] otherwise

where

=]
=]

4. Compute the decimal representation b; of the ¢; bits
5. A new d’; is computed for each d;

di =1, +b; (2)

6. Later the TWPVD uses each d’; to compute the values of the resulting pixels
p, using a well crafted set of rules [2]. We have adopted the TWPVD by
replacing these rules with an optimisation strategy to determine the best
pixel values that hold the maximum payload.

A closer look to this algorithm, reveals that it also produces over-
flow/underflow pixel values that are simply skipped as data payload carriers.
Worse still, TWPVD authors [2] do not seem to discuss how the extraction algo-
rithm knows which pixels are being ignored [4]. This is fundamental to guarantee
the integrity of the secret message.
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3 An Optimisation Approach to Modify the TWPVD

Any PVD method can be seen as an optimisation problem as follows: Given d’;
and p;, search for a solution p’; subject to the following set of conditions:

1. Overflow/underflow must be prevented subject to 0 < p’; < 255

2. Retrieving the payload data is subject to d’; = |[p’; —p';|, where p} and p} are
now variables to be searched as an optimization problem which will define
the stego-image.

3. Distortion of the resulting image must be subject to minimize the objective
function

fpips) = Z(pi —p,)? (3)

We know that p’; = |d';| is a solution, i.e. p; = 0, that fulfills conditions
1y 2, but does not fulfill condition 3 because it causes a major distortion to the
resulting stego-image. Nonetheless, the solution shows that there exist at least
one solution for any given input.

Since there are 4 pixels per block in the range [0..255], we can easily estimate
the size of the search space to be 232 possible pixel value combinations times the
carrier image dimensions divided by 4. These solutions take far too long to be
explored efficiently, as shown in Table 1.

Table 1. Comparison between Optimal-TWPVD and a simply Brute Force strategy
added to the TWPVD. The time performance advantage is clear.

bpp PSNR Time

BFTWPVD | OTWPVD | BFTWPVD | OTWPVD | BFTWPVD | OTWPVD
Barbara | 2.54 2.54 36.50 36.50 471.60 9.56
Airplane | 2.37 2.37 38.90 38.90 458.35 10.02
Boat 2.41 2.41 38.19 38.19 394.81 8.35
Goldhill | 2.38 2.38 38.73 38.73 323.85 17.72
Lena 2.35 2.35 39.34 39.34 366.10 11.80
Average | 2.41 2.41 38.33 38.33 402.94 11.49

One alternative is to reduce the size of the search space so that it can be
explored in useful times.
Using equation from condition 2 it follows that

Py ==xdi +p, (4)

This evidently means that we can compute p’; using the two following
variables:
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1. +d’; takes the different sign combinations for d’;. These combinations are 8
because d’'y is always 0 and d’5,d’3,d'y only can take 2 different values: one
positive and one negative of equal magnitude.

2. p’; must be subject to 0 < p’; < 255. This means that p’; only can take 256
distinct values.

This further reduces the size of the search space to 2''. A search space of
this size can be readily explored in its entirety. That is, all possible values for
p’; must be combined with all possible values for +d’;.

3.1 An Additional Optimisation Strategy

We now describe an additional optimisation strategy to further increase the
payload inserted by the method from Sect.3. Such strategy is based on the
first derivative of the objective function with respect of p’; and discards the
overflow /underflow solutions.

Using Egs. 3 and 4, a quadratic function can be produced in terms of p';,

namely:
4

F@') = (Hdi +p'y —pi)? (5)
i=1
Eight different quadratic curves can be plotted from the eight different com-
binations of signs in +d;. When computing the first derivative of these functions,
a point for each curve can be found for which f is minimum:

R 1 o
p1zzzpi—izidi (6)
i=1 =1

The resulting 8 candidate values for p’; can become 16 because Eq. (6) can
yield real numbers that need to be converted into integers using both the ceil
and floor functions.

In some cases the optimal point can be off the valid range or can even cause
some of the other 3 pixels to be off. It is necessary then to move that point
within the proper range as that value is potentially a solution.

Figure 1 shows 2 curves plotted using the objective function. These curves
are bounded between a pair of dotted lines representing the upper and lower
bounds valid for p’;. It also shows that the points of minimum value are not
always within the valid interval and is necessary to move that point to a valid
area.

Equation (4) can yield valid intervals for each curve as max(+d;) < p/; <
min(=£d; + 255). From this equation, we can define the adjustment function:

0 ifM<p<m
Alp,M;m)=q M —-p ifp<M (7)
—(p—m)ifp>m
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a) Optimal point outside the valid interval b) Optimal point inside the valid interval

Fig. 1. Two different objective function graphs

Therefore the optimal point in the valid range would be defined as:

'y =p'1 + A(p'y, max(£d;), min(&d;) + 255) (8)

As mentioned before, this point needs to be adjusted using the ceil or floor

functions. Both functions yield an identical or extremely close value. Because
there are 8 curves each with 2 solutions, we end up with a new search space of
only 16 potential solutions.

Ll

The algorithm follows these steps:

Go through steps 1-5 of the algorithm from Sect. 2.1

Compute s; = £d; +p’; using the ceil or floor functions. Overflow/underflow
solutions are discarded

The optimal solution is given by p’;, = min(f(p;, s;))

Replace the original 2 x 2 pixel block with the optimal solution found
Repeat for each 2 x 2 pixel block of the carrier image

To recover the secret message, the inverse process is applied as follows:

. Divide the carrier image into non-overlapping blocks of 2 x 2 consecutive

pixels

Compute the differences d; = p; — p1 within the pixel block i € {1,2,3,4}
For each d; locate the table range r; = k such that I < |d;| < ug
Compute the number of inserted bits in each difference

o {0 ifi=1

¢ logg(ur, — L, + 1) ] otherwise

The entire data payload is recovered by concatenating the binary representa-
tion of b; = d; — I,

3.2 Inserting an Extra Bit

The method can insert an additional bit to further increase the secret message
inserted in each 2 x 2 block with a minimal deterioration to the carrier image.

The floor and ceil functions yield two consecutive integer numbers that

produce very close or even identical Objective Function results. This type of
function curves constantly appear and are used as indication for inserting an
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additional bit of the secret message. This additional bit is called 8. If 8 =0, p’,
must be even, if § =1, p’; must be odd.
To find the optimal we say that 2¢ = p’; — 8 and modify Eq. 4 as follows:

p,=+d;i+2c+p (9)
4
i=1
Therefore, the valid interval for the optimisation problem is given by:
4 4
1 1 1
== i — < » *d; — = 11
c=3 ;p 2 ; 5 (11)
g1 . B
c=c+ A(c, max(—§ - i(idi)),mm(—§ ~5 + (d;) + 255)) (12)

The algorithm is also modified as follows:

1. Go through steps 1-5 of the algorithm from Sect. 2.1

2. Compute s; = +d; + ¢ using the ceil or floor functions. Overflow/underflow
solutions are discarded

The optimal solution is given by p’; = min(f(p;, s;))

Replace the original 2 x 2 pixel block with the optimal solution found

5. Repeat for each pixel block of the carrier image

-

To recover the message payload, the same steps from Sect. 3.1 are used, and
an extra bit 0 is added to the message if p; is even or a 1 otherwise.

4 Experimental Results

A set of images were used to test the performance of our algorithms and to
compare our results to those previously published in the literature. All carrier
images, shown in Fig. 2, are 8-bit grayscale images of size 512 x 512. These images
belong to a larger set that have become a de facto standard in Image Processing
and Computer Vision experiments for testing new developments. We also have
chosen these images to compare our results with previous work by Peng et al. [§]
and Hernandez-Servin et al. [4]. Both authors compared their own results with
work previously published. In addition, we also compare the performance of our
algorithm with the results of the TWPVD [2].

The peak signal-to-noise ratio (PSNR) is used to measure the difference
between the original carrier image and the image with the message payload.
The higher the PSNR, the better the quality of the stego image. The number
of bits per pixel (bpp) for each test image, is computed simply by dividing the
number of bits inserted by the number of pixels in the carrier image.
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Airplane Barbara ' Goldhill

Fig. 2. Original images (first row). Resulting stego images using the Optimal-TWPVD
(second row). Resulting stego images using the OTWPVD and Extra Bit Insertion
(third row)

Table 2 shows a comparison between the Optimal-TWPVD and the Extra
Bit Insertion algorithms. While the former shows a better performance than
previous work (as shown in Table4), the latter further increases the overall
results in terms of both the amount of data payload (the bpp) inserted, and the
image distortion measured with the PSNR in all images tested. This might seem
expected as both the Optimal TWPVD and the Extra Bit Insertion strategies
use every 2 x 2 block to carry data payload. No pixel block is ignored and no
pixel overflow/underflow occurred.

Table 2. Comparison between the Optimal-TWPVD and the Optimal-TWPVD with
Extra Bit Insertion

bpp PSNR Time

OTWPVD | EOTWPVD | OTWPVD | EOTWPVD | OTWPVD | EOTWPVD
Barbara | 2.54 2.79 36.50 36.43 9.56 16.21
Airplane | 2.37 2.62 38.90 38.76 10.02 17.99
Boat 241 2.66 38.19 38.09 8.35 20.24
Goldhill |2.38 2.63 38.73 38.64 17.72 16.53
Lena 2.35 2.60 39.34 39.17 11.80 15.65
Average | 2.41 2.66 38.33 38.22 11.49 17.32
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We also compare our results with those from the TWPVD [2] in Table 3.
Since our algorithms search for the optimal pixel values for each block, the
results are superior in terms of both bpp and PSNR. The general notion is that
less data embedded should result in less distortion of the carrier image, which is
not observed by comparing the PSNR values of our experiments.

Table 3. Comparison between the TWPVD and a our Optimal-TWPVD

bpp PSNR Time

TWPVD | OTWPVD | TWPVD  OTWPVD | TWPVD | OTWPVD
Barbara | 2.54 2.54 36.38 36.50 1.55 9.56
Airplane | 2.37 2.37 38.23 38.90 1.90 10.02
Boat 2.40 2.41 37.72 38.19 1.88 8.35
Goldhill |2.38 2.38 38.09 38.73 1.84 17.72
Lena 2.35 2.35 38.61 39.34 2.19 11.80
Average |2.41 2.41 37.81 38.33 1.87 11.49

A similar comparison with recent results by Peng et al. [8] and Hernandez-
Servin et al. [4] is shown in Table4. This table also shows favorable results in
terms of both data payload carried and stego image quality.

Table 4. Comparison between our proposals Optimal-TWPVD & Extra Bit OTW-
PVD, and Hernadez-Servin et al. [4] and Peng et al. [8]

bpp PSNR
OTWPVD | EOTWPVD | [4] |[8] | OTWPVD | EOTWPVD | [4] 8]

Barbara | 2.54 2.79 1.38 | 1.20 | 36.50 36.43 36.04 | 30.75
Airplane | 2.37 2.62 1.30 | 1.20 | 38.90 38.76 36.09 | 33.45
Boat 2.41 2.66 1.80|1.20 | 38.19 38.09 34.56 | 26.66
Goldhill | 2.38 2.63 1.66 | 1.20 | 38.73 38.64 37.03 | 30.70
Lena 2.35 2.60 1.60 | 1.20 | 39.34 39.17 37.55 | 26.89
Average | 2.41 2.66 1.55|1.20 | 38.33 38.22 36.25 | 29.69

5 Conclusions

This work designs an optimisation algorithm that modifies and improves the
TWPVD [2] steganographic method. It is favourably compared against the
TWPVD and also against recent results by Peng et al. [8] and Hernandez-Servin
et al. [4].
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Our results show improvements in several important aspects, namely,
(1) Number of Bits per pixel inserted, (2) Better stego image quality measured
with the PSNR, (3) No overflow/underflow pixels are produced, and (4) No
blocks of pixels are skipped or ignored as data carriers.

The major merit of our algorithms is to reduce the feasible set of possible
pixel values for each block such that the search for the best solution in terms of
both data payload and stego image quality can be efficiently conducted.

There are a couple directions in which this work may proceed. The first
logical next step is to use the method to hide data payload into color images.
The obvious result would be to achieve a very large payload insertion, but the
effects in color and general image distortion may either require to adapt or
entirely change the algorithm.
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