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Abstract. Cellular Automata (CA) operate in discrete time and space
whereas Signal Machines (SM) have been developed as a continuous ide-
alization of CA capturing the key concept of signals/particles and col-
lisions. Inside a Euclidean space, dimensionless signals move freely; col-
lisions are instantaneous. Today’s issue is the automatic generation of
a CA mimicking a given SM. On the one hand, many ad hoc manual
conversions exist. On the other hand, some irrational or 4+-speed SM
exhibit Zeno-like behaviors/space-time compression or rely on informa-
tion being locally unbounded, both being incompatible with CA. This
article provides a solution to automatically generate an exactly mim-
icking CA for a restricted class of SM: the ones that uses only three
rational speeds, and rational initial positions. In these SM, signals are
always contained inside a regular mesh. The discretization brings forth
the corresponding discrete mesh. The simulation is valid on any infinite
run and preserves the relative position of collisions.

Keywords: Abstract geometrical computation · Automatic discretiza-
tion · Cellular automata · Signal machines · Unconventional models of
computation

1 Introduction

Cellular automata (CA) are massively synchronous, uniform and local discrete
dynamical systems. Since their introduction by J. Von Neumann in the forties
[17], a lot of research, from dynamics to algorithmic, have been made. However,
a recurrent problem is to create CA for a specific purpose, exhibiting a given
behavior. Dedicated CA are crafted by experts, in the same way that program-
ming a computer used to be reserved to specialists. As of now, coding became
easier and easier with more and more abstract languages. What would these be
such for CA?

The model chosen to serve this purpose is the signal machines (SM). Sig-
nal machines, originally thought as an idealization of CA, focus on continuous
counterparts of (discrete) signals and collisions in CA. Signals and collisions are
indeed key concepts of CA. They provide a lot of insight on the fabric of CA and
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are the foundation of collision computing [1]. Some of their first usages stand
in the generation of prime numbers by Fischer [13] and Goto’s solution to the
Firing Squad Synchronization Problem (FSSP) [14]. Signals are commonly used:
to solve the FSSP [20], to compute with rule 110 [4] or with only four states
[18], to understand one CA [5] and so on. In [19] one important question is the
automatic positioning of discrete signals. Discrete signals are studied in [16].

In those references, as in many others, signals are represented by Euclidean
lines to explain and reason as can be seen in Fischer’s (Fig. 1(a)) and in Goto’s
(Fig. 1(b)) and Yunès’s (Fig. 1(c)). Those constructions are understood in the
continuum before being implemented in a discrete setting. Resulting states and
transition functions are often left out because they are not used in the proof of
constructions, obnoxious to establish, and cumbersome to read.

It is possible to simulate a CA with a SM [11]. However, the other way
round is done only on particular ad hoc cases, often leaving the technical details
out. The present paper provides an automatic conversion for a sub-class of sig-
nal machines: 3-speed rational. After a normalization phase, the states and the
transition function are generated as well as initial configurations.

(a) Fischer’s prime
generation [13, Fig. 2]

(b) Goto’s solution to FSSP
[14, Fig. 3]

(c) One of Yunès’s solution
to FSSP [20, Fig. 1.a]

Fig. 1. Examples of signal use in designing cellular automata.

Signal machines are the formal tool for thinking about CA in the continuum
and are inspired by the idealisation of discrete signals. They form an autonomous
dynamical model where signals are dimensionless points moving with constant
speed. They are completely described by their positions and natures called meta-
signals. Starting with a finite number of signals on the real axis, when two or
more meet, they are destroyed and new signals are emitted. A set of collision
rules defines which signals are emitted according to the colliding meta-signals.
The dynamics is represented on a space-time diagram where signals appear as
segments as in Fig. 2(b). In previous articles, one of the authors researched on
the possibilities of the model, from its computational power [9,11], to its ability
to simulate other models (like the BSS model [3] in [10]).

In signal machines, collisions are discrete steps related by signals: a collision
is right before another if a signal generated by the first one ends in the second
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Fig. 2. Identification of runs through the labeled DAG representation.

one. The dynamics of a run of a SM lies entirely in this causal order which can
be represented as a Labeled Directed Acyclic Graph (LDAG). Figure 2 provides
a LDAG identification of discrete and continuous space-time diagrams.

The present paper considers 3-speed rational SM: only three possible speeds
are available and speeds as well as positions of signals in initial configurations
are rational numbers. The behavior of these machines is limited since signals are
trapped inside a regular, periodic-like mesh [2,12] which is essentially discrete
(ensuring the discretization).

The existence of such meshes is not guaranteed with four or more speeds
or irrationality. Moreover, if discretization is always locally possible it is not
at a large scale nor for an infinite computation. Zeno-like behaviors/space-time
compression known as accumulation (which are highly unpredictable [8]) leads
to an infinite number of “objects” in bounded portion of a space-time diagram
as depicted in Fig. 3(a) and (b).

An accumulation-less space-time diagram may not be discretizable into a
CA as shown the one in Fig. 3(c). On the left, one solid signal is sent after
0, 1, 2, 3 . . . dotted ones. This means that any number can be “stored” in-between
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zag

zig
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le

(a) Most basic accumulation (b) Accumulation with
irrationality

(c) unbounded
density

Fig. 3. Non discretizable space-time diagrams.
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the solid vertical signals. Discretization would lead to a finite number of cells
and a bounded “storage capacity”.

Outside the case covered in the present article, discretization is only possible
on special cases designed for with an extra piece of information (whatever it may
be) ensuring the process to work.

The automatic conversion starts with a normalization to get simple speeds.
Then meta-signals and collision rules are turned into states and transitions.
The translation of configurations follows the same patterns: normalization into
integer positions then conversion. Special care is taken so that the discrete signals
evolve inside a discrete mesh. The correctness of the process comes from the
“preservation” of it and the LDAG inside it.

In Sect. 2, the SM and CA models are defined as well as SM-meshes and CA-
signals. Section 3 focuses on dynamics and simulation as well as normalization of
SM. Section 4 describes the discretization: generated states and transitions and
initial configurations. Section 5 deals with the correctness of the construction
through CA-meshes and LDAG. Section 6 gathers concluding remarks.

2 Definitions and Properties

A signal machine regroups the definitions of its meta-signals and their dynamics:
constant speed outside of collisions and rewriting rules at collisions.

Definition 1. A signal machine (SM), A, is a triplet (M,S,R) such that: M
is a finite set of meta-signals; S : M→R is the speed function (each meta-signal
has a constant speed); and R is a finite set of collision rules written ρ = ρ−→ρ+

where ρ− and ρ+ are sets of meta-signals of distinct speeds. Each ρ− must have
at least two meta-signals. R is deterministic: ρ �= ρ′ implies ρ− �= ρ′.

If no collision rule is defined for a set of meta-signals, the collision is blank :
the same meta-signals are output (ρ+ = ρ−).

A (A-)configuration, c, is a mapping from the real line to either a meta-signal,
a collision rule or the value � indicating that there is nothing there. There are
finitely many non-� locations.

If there is a signal of speed s at x, then after a duration Δt its position is
x + s·Δt, unless it enters a collision before. At a collision, all incoming signals
are immediately replaced according to collision rules by outgoing signals in the
following configurations.

A space-time diagram is the collection of consecutive configurations forming
a two dimensional picture (time is always elapsing upwards as in Fig. 2).

Definition 2. A signal machine is 3-speed rational (3S-Q) if: only three speeds
are available for the meta-signals and all speeds are rational numbers as well as
any non-� position in any initial configuration.

These machines have their signals trapped inside a mesh made of the union
of half-lines following the three speeds like the one in Fig. 4.
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Definition 3. Let p, q and n be positive integers, p and q relatively prime,
the (p, q, n)-(SM-)mesh corresponds to the union of the following half-lines of
R×R

+:

– Vv : 0 ≤ t and x = v/(p+q) where v ∈ {0, 1, 2, . . . , n(p+q)},
– Ll : x ≤ n and x = (l − t)/q where l ∈ N, and
– Rr : 0 ≤ x and x = (t − r)/p where r ∈ {(−n.p), . . . ,−1, 0, 1, . . .}.

0 1 2 3 4

Fig. 4. The (2, 3, 4)-mesh.

Properties 1 ([2, Lemma 1] and [12, Lemma 1]). In the space-time diagram
generated from a 3s − Q signal machine with speeds − 1

q , 0 and 1
p , p and q rela-

tively prime, on an initial configuration where non-� values are in {0, 1, . . . , n},
all the non-� positions belong to the (p, q, n)-(SM-)mesh.

In the (p, q, n)-mesh, the (SM-)encounter of coordinates (v, r), erv, is the
intersection of Vv, Rr and Lp+q; that is

(
v

p+q , r+ p
p+q v

)
. Encounter er+1

v directly

depends on signals coming from er+1
v−1, e

r
v, and er−1

v+1 (if they exist) or the initial
configuration. The integers v and r are such that 0 ≤ v ≤ n(p+q) and −n.q ≤ r.
Encounters ordered according to dependencies form a well founded order used
for inductive proofs.

Definition 4. A (1-dimensional radius-1) cellular automaton (CA) is a triplet
(Q, f, #) such that: Q is a finite set of states, f : Q3→Q is the local transition
function, and # is a special state such that f(#, #, #) = # (the quiescent state).
A configuration maps cells to states, i.e. it is an element of QZ. In the evolution
from a configuration c, the site, ct

x, is the cell x(∈ X) at time-step t (∈ N). It is
computed by ct+1

x = f(ct
x−1, c

t
x, ct

x+1).

Definition 5. Let W = M ∪ R be the set of meta-signals and collision rules of
a signal machine A and Q be the set of states of a CA A. A A-A representation
relation R relates W and Q with the intended meaning that λ R q iff λ is
represented by q. A state representing a collision rule does not represent anything
else. A meta-signal can be represented by many states and a state can represent
more than one meta-signal. A state representing nothing corresponds to �.
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Definition 6. For any meta-signal μ, a μ-CA-signal is defined by (x, a, b, ϕ)
where: x∈Z is the base position, a, b ∈ N with a≤b (b can be +∞) are the birth
and death dates, and ϕ∈[0, 1) is the phase. It corresponds to the set of sites:

– { (x + 	ϕ + (t − a).S(μ)
, t) | t ∈ [a, b] }, if 0 < S(μ) (rightward signal),
– { (x − 	ϕ − (t − a).S(μ)
, t) | t ∈ [a, b] }, if S(μ) < 0 (leftward signal), or
– { (x, t) | t ∈ [a, b] }, otherwise (stationary signal).

It must represent μ : μRct
x for all (x, t) in the μ-CA-Signal. Moreover it should

be maximal (not extendable as a μ-CA-Signal). Its speed is the one of μ.

After the normalization, the non-stationary speeds are of the form ±1/d.
Any non-stationary CA-signal has a simple periodic dynamics: it moves one cell
on the side every d iterations. Figure 5 provides examples of CA-signals.
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l0

l1

l0

l1

(1,-2)
ϕ=0

ϕ=1
2

(a) speed − 1
2

zθ

zθ

zθ

zθ

zθ

zθ

(0,1)

(b) stationary

r0

r1

r2

r0

r1
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ϕ=0

ϕ=1
3

ϕ=2
3

(c) speed 1
3

Fig. 5. Examples of CA-signals and phases.

For rightward signals, the phase ϕ is the distance between the bottom left
corner of the cell and the place where the (continuous) signal enters the cell at
the bottom. If the signal is leftward; the phase is the distance to the lower right
corner of the cell. Phases are illustrated in Fig. 5.

3 Dynamics, Simulation and Normalization

The causal order of collisions in a space-time diagram can be represented as
a Labeled Directed Acyclic Graph (LDAG) as illustrated in Fig. 2(c). If the
LDAG’s of two runs are identical, then the runs are dynamic-wise identical.

Formally, a A-DAG is a LDAG where edges (resp. vertices) are labeled with
elements of M (resp. R ∪ {⊥,�}). Bottom (resp. top) leaves are exactly the
vertices labeled with ⊥ (resp. �). The label ⊥ is used for signals present in the
initial configuration. The label � is used for never-ending signals. The LDAG
generated from an initial configuration c is denoted ĉ.

A signal machine B simulates a SM A if there exist a conversion function
ζ : CA → CB and a relabeling function ψ : MB∪RB → MA∪RU such that:
∀c ∈ CA, ĉ = ψ(ζ̂(c)) where ψ is canonically extended to LDAG as relabeling
each edge and vertex.
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(a) original (b) positions halved (c) speeds doubled (d) speeds increased by 0.5

Fig. 6. Examples of linear transformations.

Linearly (with positive coefficients) changing the speeds of the meta-signals
or the initial positions does not affect the dynamics [7, Chap. 5]. Examples of
such transformations are provided in Fig. 6.

A 3-speed rational signal machine is normalized with a positive linear opera-
tion so that its speeds are − 1

q , 0, 1
p with p and q relatively prime. From now on,

p and q are always used to refer to these denominators. Similarly, the positions
in initial configurations are lifted onto N.

Let R be a A-A representation relation, and c a A-configuration. The LDAG
ĉR, as illustrated in Fig. 2(c), is formed as follows. The edges correspond to all
the CA-signals in the space-time diagram. The vertices correspond to all the
sites that represent a collision rule plus one ⊥ vertex for each CA-signal present
in the initial configurations and one � vertex for each infinite CA-signal. The
edges are in-incident to vertices if the vector from the topmost site of the signal
to the vertex site is (−1, 1), (0, 1) or (1, 1) (or an infinite CA-signal and the
dedicated � vertex). The edges are out-incident to vertices if the vector from
the bottom-most site of the signal to the vertex site is (−1,−1), (0,−1) or (1,−1)
(or present in the initial configuration and the dedicated ⊥ vertex). The labels
correspond to μ for μ-CA-signal and the (unique) collision rule represented by
the vertex. If the LDAG is ill formed or non-unique, then ĉR is undefined.

A cellular automaton A simulates a SM A if there exists a conversion function

ζ : CA → CA and a A-A representation relation R such that: ∀c ∈ CA, ĉ = ζ̂(c)
R

.
Dynamic-wise simulation preserves collision interactions but discard anything

relevant to positions. Nothing prevents the resulting space-time diagrams to be
“bent” (as in [6]) and one might want to preserve the geometry up to some linear
operator (like grouping for CA in [15]).

To cope with this, we say that a simulation is geometry-preserving if the posi-
tions of the CA-collisions can be computed from the one of the corresponding
SM-collision with a linear function (plus some integral rounding). The construc-
tion presented here is geometry-preserving.

4 Formal Discretization

The notation a b c

d

defines the CA-transition f(a, b, c) → d. The qui-
escent state # is left blank in the pictures. Any non-specified transition results
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in #. It is understood that r and r′ are any rightward meta-signals, l and l′ are
any leftward ones and z and z′ are any stationary ones.

The following states and transitions ensure the movement of isolated signals
as illustrated in Fig. 5:

– for each (rightward) r: states rk with 0 ≤ k<p and

∀k, 0 ≤ <p − 1: # rk #

rk+1

and rp 1 # #

r0

,
– for each (leftward) l: states lm with 0 ≤ m<q and

∀k, 0 ≤ <q − 1: # lk #

lk+1

and # # lq 1

l0

,

– for each (stationary) z: state zθ and # zθ #

zθ

. The subscript indicates
a specific phase θ = q

p+q used to position exactly the collision.

When signals are moving closer as illustrated in Fig. 7, the following transi-
tions are defined:

– ∀k, 0 ≤ k<p − 1: # rk zθ

rk+1

, rk zθ #

zθ

and rp 1 # zθ

r0

.

– ∀k, 0 ≤ k<q − 1: zθ lk #

lk+1

, # zθ lk

zθ

and zθ # lq 1

l0

.

r0

r1

r2

r0

r1

r2

zθ

zθ

zθ

zθ

zθ

zθ

(a) rightward and stationary

zθ

zθ

zθ

zθ

zθ
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l0
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l0

l1

l0

l1

(b) leftward and stationary
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zθ

zθ

zθ
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l0
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l0

l1

l0
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(c) three speeds

Fig. 7. Examples of A-CA-Signals closing on each other.

Let ρ : {r, z, l} → {l′, z′, r′} be any collision rule (any single r, z, l could be
missing and any r′, z′, l′ could be missing). When signals enter the same cell, the
following phase hypothesis is assumed: non-stationary signals start with phase
0 and stationary ones with phase θ. The continuous signals are considered to
locate precisely the collision. They correspond to the lines y = px (rightward),
y = −qx+q (leftward) and x = θ (stationary). Resolving this system gives:
x= q

p+q and y= p·q
p+q . The collisions always happen inside a cell because p·q

p+q /∈ Z

(since p and q are relatively prime). The delay from getting in the same cell to
the actual collision is denoted κ0.

The states ρk represent the steps of the collision when two or more signals
are inside the same cell: ρk means (rk:zθ:lk) when k<κ0 and (r′

k:z′
θ:l

′
k) when

κ0<k. Let κ1 be the last time-step at which all the out-signals are inside the
same cell and κ2 the last time-step at which two out-signals are inside the same
cell. Their values are given on Table 1 and illustrated in Fig. 8.
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Table 1. Main steps of a collision.

κ0 =
p · q

p + q

Emitted signals z′ and r′ l′ and z′ l′ and r′ l′ and z′ and r′

κ1 p − 1 q − 1 min(p, q) − 1

κ2 / / / max(p, q) − 1

(a) collision emitting 3 signals

collisions happen

all in-signals inside the same cell

all out-signals inside the same cell

still two out-signals inside the same cell

(b) collision emitting 2 signals

Fig. 8. Illustration of κ0, κ1 and κ2 with p = 6 and q = 5.

The signals enter the same cell (under the hypothesis) with # zθ lq 1

ρ0

,

rp 1 zθ #

ρ0

, rp 1 # lq−1

ρ0

, or rp 1 zθ lq 1

ρ0

. Then, they are getting closer

until the exact collision: ∀k, 0 ≤ k<κ0, # ρk #

ρk+1

.

If the collision emits no signal, # ρκ0 #

#

is added.
If the collision emits one signal as illustrated in Fig. 9(a), add:

– if ρ+ = {r′}: ρκ0 # #

r′
0

if κ0 + 1 = p, and # ρκ0 #

r′
κ0+1

otherwise;

– if ρ+ = {l′}: # # ρκ0

l′0

if κ0 + 1 = q, and # ρκ0 #

l′κ0+1

otherwise;

– if ρ+ = {z′}: # ρκ0 #

z′
θ

.

If the collision emits more than one signal, it progresses until a signal leaves:

∀k, κ0 ≤ k<κ1: # ρk #

ρk+1

.
If the collision emits two signals as illustrated in Fig. 9(b):

– if ρ+ = {z′, r′}, add: # ρκ1 #

z′
θ

and ρκ1 # #

r′
0

;

– if ρ+ = {l′, z′}, add: # # ρκ1

l′0

and # ρκ1 #

z′
θ

;
– if ρ+ = {l′, r′},

– if q<p (q<p is symmetrical), add: # # ρκ1

l′0

and # ρκ1 #

r′
κ1+1

.
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– if q = p = 1, add: # # ρκ1

l′0

and ρκ1 # #

r′
0

.

If the collision emits three signals, in the case q ≤ p (the rest is symmetric)
as illustrated in Fig. 9(c), the following is added:

– # # ρκ1

l′0

, and ρκ2 # #

r′
0

;

– let j = κ2 − κ1 − 1, l′j ρκ2 #

z′
θ

if 0<j<q, and # ρκ2 #

z′
θ

otherwise;

– for κ1<k<κ2: l′j ρk #

ρk+1

for j = k − κ1 − 1 and j<q and # ρk #

ρk+1

for κ1 + q<k;

– for 0 ≤ j<q − 1: # l′j ρk

l′j+1

for k = j + κ1 + 1 and k ≤ κ2.
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(a) collisions emitting
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θ
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θ

z′
θ
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2
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0
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(b) collisions emitting 2 CA-signals
(κ0 = κ1 on the right)

l′0
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l′1

l′0

l′1

z′
θ

z′
θ

z′
θ

z′
θ

r′
0

r′
1

r′
2

r′
0

ρ0

ρκ1

ρκ2

(c) a collision emitting 3
CA-signals (κ0 = κ1)

Fig. 9. Collisions and CA-Signals getting away from each other with p = 3 and q = 2.

After the collision, signals move away from each other as illustrated in Fig. 9.
This is handled with the transitions:

– ∀k, 0 ≤ k<p − 1: z′
θ r′

k #

r′
k+1

and # z′
θ r′

k

z′
θ

,

– ∀k, 0 ≤ k<q − 1: # l′k z′
θ

l′k+1

and l′k z′
θ #

z′
θ

, and

– ∀k,m, 0 ≤ m<q − 1 and 0 ≤ k<p − 1: l′m z′
θ r′

k

z′
θ

.

A scale is used to ensure that the continuous mesh is correctly discretized:
spaces between stationary signals should be integers as well as times of collisions.
From the definition of encounter, any (positive) multiple of p + q is enough. Let
δ = 3(p + q) be the discretization scale.

Let c be an initial configuration of the discretized SM. The corresponding
initial CA-configuration, c0, is defined by: ∀i∈Z, c0(i)=ψ(c(i/δ)) where ψ(�)=#,
ψ(z)=zθ for any stationary meta-signal, and ψ(μ)=μ0 for any other. This ensures
the validity of the phase hypothesis at the first round of collisions (Fig. 10).
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Fig. 10. A continuous space-time diagram and the generated CA discretization.

5 Correctness

In this section, q ≤ p is assumed (the rest follows by symmetry).
A discrete mesh is the discrete counterpart of the continuous meshes as illus-

trated in Fig. 11. The (δ, p, q, n)-CA-Mesh corresponds to the union of:

– Vv = {3v} × N with v ∈ {0, 1, 2, . . . , n(q + p)}, (3 = δ/(q + p)),
– Ll =

{
(x, t)

∣∣∣ 0 ≤ t ∨ x ≤ nδ ∨ x =
⌈

lδ−t
q

⌉ }
with l ∈ N,

– Rr=
{

(x, t)
∣∣∣ 0 ≤ t ∨ 0 ≤ x ∨ x=

⌊
t−rδ

p

⌋ }
with r ∈ {(−n.p), . . . ,−1, 0, 1, . . .}.

Each set corresponds to a CA-signal (not necessary issued from the initial con-
figuration). They can overlap for consecutive iterations (as in Figs. 9 and 12).

Fig. 11. The (4,1,1,3)-CA-Mesh (δ = 8 = 4(1 + 1)).

In the (δ=3(p+q), p, q, n)-(CA-)mesh, the CA-encounter of coordinates (v, r),
cr
v, corresponds to:

(⌊
δ

p+q v + q
p+q

⌋
,
⌊
rδ + pδ

p+q v + pq
p+q

⌋)
= (3v, 3pv + rδ + κ0)

where the (v, r) coordinates are integers such that 0 ≤ v ≤ n(p+q) and −n.q ≤ r.
The last term in the formula comes from the phases.

Figure 12 depicts an entire (CA-)collision. Under the hypothesis that the κ0

site is located at some er
v, ρ0 has coordinates (3v, 3pv + rδ) and thus corresponds

to the SM-encounter erv at scale δ. This relates discrete and continuous meshes.
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Fig. 12. Entire generic collision ρ = {r, z, l} → {l′, z′, r′}.

With the same hypothesis, the following holds: ρ0 belongs to Vv, Rr and
Lv+r, ρκ2 belongs to Rr, and ρκ1 belongs to Lv+r. This fixes all three CA-
signals over a period. The whole collision is in the (δ, p, q, n)-CA-Mesh. As can
be seen in Fig. 12, meta-signals extend out of the collision from both ends so
that CA-signals directly connect into.

The hypothesis is always satisfied as can be proved by induction: CA-signals
in the initial configuration are in the CA-Mesh with the right phases and if CA-
signals from the mesh collide, so are the collisions and the resulting CA-signals.
Altogether, it proves that:

Theorem 1. All the non-quiescent sites of the run from the simulating CA-
configuration are located inside the (δ, p, q, n)-CA-Mesh. Up to scaling, this mesh
coincides with the continuous (p, q, n)-SM-mesh.

The A-A representation relation is defined straightforwardly from the con-
struction. Let l, z and r be any leftward, stationary and rightward meta-signals:

∀i, 0 ≤ i < q, lRli zRzθ ∀i, 0 ≤ i < p, rRri .

Let ρ = {r, z, l} → {l′, z′, r′} be any rule.

∀i, 0 ≤ i < κ0, rRρi, zRρi, and lRρi,
ρRρκ0 ,

∀i, κ0 ≤ i < κ1, r′Rρi, z′Rρi, and l′Rρi,
∀i, κ1 < i ≤ κ2, r′Rρi and z′Rρi.

A structural induction on the mesh proves that the SM and CA LDAG’s are
identical, so that:

Theorem 2. Any 3-speed rational signal machine can be simulated exactly by a
cellular automaton on any infinite run preserving the geometry.
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6 Conclusion

The exact conversion of a 3-speed rational signal machine into a cellular
automata has been proved and implemented in Java. The construction relies
on preserving a dynamics that is trapped inside a discrete-like mesh. Moreover
this is valid on any infinite run and preserves the relative position of collisions.

This result is tight: as soon as either irrationality [2] or four speeds is allowed,
Zeno-like phenomena (infinitely many collisions in finite duration) is possible and
there is no hope for exact discretization. Even if the techniques presented here
can be extended to any number of (rational) speeds, there is no information on
how long the discretization remains valid. We believe that testing the validity
for a given amount of time is as complex as running the signal machine and its
simulation.

The construction presented here naturally extends to any SM computation
that is constrained to remain on a mesh (we do not expect such a property
to be decidable whether the mesh is provided or not in the general case). One
perspective is to either work with some extra piece of information proving the
containment into a mesh or the non-existence of an accumulation (which is highly
non decidable [8]) or other problematic behavior. One important step would be
to discretize rational signal machines with four or more speeds known to be
Turing complete without accumulating as in [11].

Another perspective is to provide approximation. The quality of the approx-
imation would have to be defined and if possible a bound guaranteed.
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Antipolis (2003, in French)

8. Durand-Lose, J.: Forecasting black holes in abstract geometrical computation is
highly unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS,
vol. 3959, pp. 644–653. Springer, Heidelberg (2006)

http://arxiv.org/abs/1307.6468


76 T. Besson and J. Durand-Lose

9. Durand-Lose, J.: Reversible conservative rational abstract geometrical computa-
tion is Turing-universal. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V.
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