
CTAT: Tilt-and-Tap Across Devices

Linda Di Geronimo(B), Maria Husmann, Abhimanyu Patel,
Can Tuerk, and Moira C. Norrie

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{lindad,husmann,norrie}@inf.ethz.ch, {apatel,can.tuerk}@student.ethz.ch

Abstract. Motion gestures have been proposed as an interaction para-
digm for pairing, and sharing data between, mobile devices. They have
also been used for interaction with large screens such as semi-public
displays where a mobile phone can be used as a form of remote control
in an eyes-free manner. Yet, so far, little attention has been paid to their
potential use in cross-device web applications. We therefore decided to
develop a framework that would support investigations into the use of a
combination of touch and tilt interactions in cross-device scenarios. We
first report on a study that motivated the development of the framework
and informed its design. We then present the resulting Cross-Tilt-and-
Tap (CTAT) framework for the rapid development of applications that
make use of various motion gestures for communication between two or
more devices. We conclude by describing an applications developed using
CTAT.

Keywords: Web interaction framework · Cross-device · Motion sensors

1 Introduction

In 1991, Mark Weiser envisioned a world in which people would be surrounded by
devices of different sizes, technologies and goals [1]. Years later, this scenario has
become our everyday life. Typically, people now own several personal devices,
possibly sharing some of them with family and friends [2]. At the same time,
public and semi-public screens are now to be found throughout our places of work
and study as well as in public places such as train stations, airports, shopping
malls and even in the street. Hence, as Weiser imagined two decades ago and has
been confirmed by GSMA Intelligence1, we are currently living a multi-device
era, where the number of mobile devices has surpassed the world population.

In such an environment, Weiser assumed that all of these devices would
be interconnected in a vast network to drastically improve the user experience
when shifting from one device to another, or when using two or more devices
together, despite their intrinsic differences in terms of hardware and goals. While
the spread of mobile devices was correctly predicted by Weiser, the vision of a
stable cross-device and cross-platform network is still some way off. It remains an

1 http://gsmaintelligence.com.

c© Springer International Publishing Switzerland 2016
A. Bozzon et al. (Eds.): ICWE 2016, LNCS 9671, pp. 96–113, 2016.
DOI: 10.1007/978-3-319-38791-8 6

http://gsmaintelligence.com


CTAT: Tilt-and-Tap Across Devices 97

everyday challenge for users to interact with their set of devices and cross-device
applications are still in their infancy [3].

Researchers have explored several ways of supporting interaction in multi-
device settings. One is to make use of the motion sensors in mobile devices to pair
devices as well as to interact with cross-device applications [4,5]. Specific cases
involve using tilting gestures on mobile phones to interact with large screens.
This allows users to retain their focus of attention on the large screen while
using the mobile phone in an eyes-free manner as a form of remote control.

Despite their advantages, motion gestures have mainly been used in native
apps and little attention has been paid to their potential use in web applica-
tions as a whole, and cross-device web applications in particular. One reason
may be the lack of support offered to web developers as well as portability
issues caused by device-dependent sensor APIs. We therefore set out the goal
to develop a framework to support the rapid development of cross-device web
applications that use a combination of tilt and touch interactions. The resulting
Cross-Tilt-and-Tap (CTAT)2 framework is built on top of two frameworks pre-
viously developed in our group: XD-MVC3 and Tilt-and-Tap [6]. XD-MVC is a
framework for cross-device web applications that provides a simple and intuitive
API for communication between devices, while Tilt-and-Tap supports the devel-
opment of web applications that use motion-based interaction. By combining
the functionality of both frameworks, there is no need for CTAT developers to
handle motion interactions on each device, since they can simply specify one or
more senders of the tilting gesture and the corresponding receiver/s.

Before developing the framework, we performed a preliminary study to inves-
tigate the potential benefits of using motion gestures in cross-device web appli-
cations and inform the design of the framework. For this study, we were able
to use the existing Tilt-and-Tap framework with some extensions to cater for a
simple cross-device setting. We report on this study in Sect. 3.

The new CTAT framework is able to support a wide-variety of cross-device
applications that may span over many different devices. We present the main
features of CTAT in Sect. 4 and give details of the implementation in Sect. 5. In
Sect. 6, we describe an application that was designed to demonstrate and test
the different forms of interaction supported. Finally, we give some concluding
remarks and outline future work in Sect. 7.

2 Background

It is now common for mobile devices such as smartphones and tablets to have
motion sensors such as accelerometers and gyroscopes that can be used to detect
motion gestures. As discussed by Baglioni et al. [7], tilting gestures are a good
alternative when touch interactions are not suitable due to users wearing gloves
or having dirty fingers. They proposed JerkTilts, a set of toggle gestures where

2 http://tiltandtap.globis.ethz.ch/ctat.mp4
3 https://github.com/mhusm/XD-MVC.

http://tiltandtap.globis.ethz.ch/ctat.mp4
https://github.com/mhusm/XD-MVC


98 L. Di Geronimo et al.

users move the mobile device rapidly in some direction. Hinckley et al. [8] fur-
ther point out that tilting interactions, possibly combined with touch, have the
advantage of being eyes-free, single-handed gestures.

Given the potential benefits of motion gestures, we previously decided to
study the use of tilting interactions in web applications. This led to the develop-
ment of Tilt-and-Tap, a jQuery framework for the rapid development of motion-
based interaction on the web. Tilt-and-Tap supports combinations of tilt gestures
with touch gestures such as tap, double tap and hold tap, together with various
feedback modes [6]. Two types of tilting gestures are distinguished: jerk tilting
as proposed by Baglioni et al. [7] and continuous tilting where the user interacts
with their handheld device by continuously moving it, for example to perform
scrolling.

Motion sensors have been applied to cross-device applications for various
purposes. Boring et al. [5] employed motion gestures to improve and increase
interactions with public screens. In their work, users can remotely control a cur-
sor shown on a large screen by moving their handheld device where the speed
of the cursor depends on the tilt angle of the mobile device. The use of mobile
phones to interact with large screens was also proposed by Seifert et al. in their
PointerPhone project [9]. Making use of a laser pointer mounted on a smart-
phone, they were able to explore Point-and-Interact techniques where users can
point to objects on a large display and then interact with them using their mobile
device. For example, a user could rotate a selected object by simply moving their
phone. Dachselt et al. [10] have studied the use of jerk and continuous tilting
gestures for direct interaction with large displays in detail using applications
such as browsing a music library and a map on Google Earth.

Other common uses of motion sensors concern the pairing of devices and
sharing of information among devices [4,11–13].

Pering et al. [12] used jerk tilting to play a particular song on a stereo or to
turn on lights in a room. While Pering et al. were one of the few to consider jerk
tilting in a one-many environment where one handheld device is used to interact
with many devices, they do not cover scenarios where multiple smartphones,
tablets or screens are involved. As discussed by Kray et al. [14], gestures such
as touch or motion interactions may vary depending on several factors including
the type of the device which can play an important role. Also, as noticed by
Marquardt et al. [15], some interactions may be better suited to smartphone-
tabletop communications, while others are better for smartphone-smartphone
or smartphone-public display and so on. The amount of possible combinations
and scenarios in cross-device applications introduces a challenge that developers
need to tackle and could be one of the reasons why cross-device applications are
not yet in common usage. In recent years, researchers have tried to solve these
problems by proposing a number of frameworks and tools [16–19].

Nebeling et al. proposed XDStudio [16], a visual tool to easily distribute UI
elements among devices with the focus on providing different authoring modes
for the design of web applications. Chi et al. developed Weave [17] which is a
set of high level JavaScript APIs designed to handle different interaction modes



CTAT: Tilt-and-Tap Across Devices 99

over multiple and diverse devices. Weave offers API support for touch gestures,
rotation-change and shake events. For example, multiple users can pair their
devices by shaking them at the same time. Without the support of Weave, devel-
opers would have to manage the shaking interaction as well as their timestamps
on each device. While these works gave us inspiration for our framework, none
of them support jerk or continuous tilting interactions.

Moreover, previous research on the use of motion gestures tends to either
focus only on native apps, as discussed in our previous work [6], or is very limited
in terms of the cross-device settings supported. For example, many researchers
have focused on one-to-one scenarios where smartphones are used as remote con-
trols, ignoring the potential use of other mobile devices such as tablets. For these
reasons, we decided to take our work on Tilt-and-Tap [6] further by investigat-
ing the use of tilting interactions in cross-device web applications. Working with
web technologies allowed us to study motion interaction techniques in scenar-
ios where multiple and diverse devices can be involved, giving developers and
researchers the opportunity to study and personalize motion interactions in their
web application.

3 Preliminary Study on Tilt-and-Tap Across Devices

To better understand the benefits and issues of Tilt-and-Tap style interaction
in cross-device settings, we conducted a preliminary study based on a simple,
handcrafted cross-device web gallery application that uses tilting gestures on
either a smartphone or tablet as a means of interaction. The study involved 12
participants (9 males and 3 females). All participants stated that they to use
mobile devices as well as desktop or laptop machines several times a day.

As shown in Fig. 1, users can navigate through a grid of pictures shown on
both the smaller screen of a mobile device and a larger desktop screen by con-
tinuously moving the mobile device. A ball which plays the role of a cursor
is shown on both screens and its movements are influenced by the orientation
and speed of the device. When the ball is positioned over an image, that image
becomes selected and is highlighted with a red border as feedback on the mobile
device and enlarged on the desktop screen. By tapping anywhere in the page,
the selected image will be displayed full screen on the desktop screen and its
metadata shown on the mobile screen. Users can return to the grid page at any
time by rapidly rotating the mobile device counterclockwise. The recognition of
tilting gestures is handled by the Tilt-and-Tap framework, while the communi-
cation among devices is implemented using Node.js4 and Socket.IO5.

To compare tilting interactions to touch gestures, we also developed a touch-
only version of the same application. We asked participants to find a particular
image in the grid and display it full screen. The task was repeated in four different
ways: smartphone tilt, smartphone touch, tablet tilt and tablet touch. In the
tilt versions for both tablet and smartphone, the user could interact with the
4 https://nodejs.org/.
5 http://socket.io/.

https://nodejs.org/
http://socket.io/


100 L. Di Geronimo et al.

Fig. 1. Tilt-Gallery application and its interaction flow

applications only via motion gestures, while during touch tasks, motion gesture
weres disabled and only touch interactions allowed.

The grid of images is scaled to display full screen size. We then classify the
images according to their position on the mobile screen which reflects how hard
it would be to reach them with a thumb. As seen in Fig. 2, and as similarly done
by [20], we identified three main areas on the smartphone and four on the tablet.
The areas labeled with A have been categorized as hard to reach when the user
holds the device in portrait mode, with one hand in the case of the smartphone,
and with two hands in the case of the tablet. The B zones were identified as
easier to reach. However, participants were unaware of this categorization. The
setup of the study is shown in Fig. 3. The devices involved in the study were: a
24 inch. TV as the desktop display, an iPad Air, and an iPhone 6. In addition,
a laptop was used to show the image that the user was required to select.

Users were given a brief explanation of the study and a training phase on a
test page, before starting the tasks. They first had to select nine images using the
smartphone touch version with the images distributed evenly across the three
areas labelled A or B. The same task was then repeated on the smartphone tilt
version. Similarly, for the tablet, the users had to select eight different pictures,
with two in each of the areas labeled A or B, performing this first for the touch-
only version and then for the tilt-only version. To avoid a learning effect on



CTAT: Tilt-and-Tap Across Devices 101

Fig. 2. Identified areas on smartphone
and tablet

Fig. 3. Study environment

the position of the pictures, a completely different set of images was shown
for each task. Moreover, half of the participants started with the smartphone
tasks, while the rest started with the tablet tasks. At the end of the study,
participants filled out a questionnaire that involved background information as
well as qualitative questions about the study. We recorded the study on video
in order to analyse particular user behaviours during the tasks and keep track
of the time to complete a task.

As can be seen in Fig. 4, participants enjoyed using tilting interactions. More
than 80 % of users agreed or strongly agreed that motion gestures were enjoyable
on the smartphone, while around 70 % of participants found it enjoyable on the
tablet.

Generally, motion sensors performed better on smaller mobile devices with
70 % of participants finding it easy or very easy to use them on smartphones, with
the corresponding figure for tablets being 50 %. This trend is also mirrored in the
question where participants were asked to rate efficiency of motion gestures. 40 %
of participants did not find tilting interactions particularly efficient on tablets,
while only 20 % were of the same opinion for smartphones.

The velocity of the indicator was the same for both the mobile and tablet
tasks. Therefore, to move the ball to a particular position, the user either had to
use a higher tilt angle on the tablet or tilt the device for a longer period of time.
Some participants perceived the tablet tilt task to be slower than the smartphone
tilt. This factor could have been one of the reasons why users preferred tilting
interactions on smartphones. However, tilting interactions on tablets have their
advantages since some participants felt that motion gestures were more suited
to the iPad where they appreciated the ease of controlling the ball on the larger
screen.

When compared to touch only gestures, around 50 % of participants found
tilting gestures on both tablet and smartphone (50 % and 59 % respectively)
comparable to, or less demanding than, touch. The average time to complete a
task was similar for all four versions at around 7 seconds per image. Moreover,



102 L. Di Geronimo et al.

Fig. 4. User evaluation for tilting interactions on smartphone (top) and on tablet
(bottom)

there was no significant statistical difference between times to select images
located in different areas. We note however that the main focus of the study was
not to directly compare motion-based interaction against touch, but rather to
receive feedback in order to improve and design a version of Tilt-and-Tap better
suited to cross-device applications.

One interesting finding concerns the focus of attention of the participants dur-
ing tasks. In the case of tilting interactions, most users concentrated exclusively
on the desktop screen which was not true in the case of touch. One participant
commented on this behaviour by saying: “[...] during the tapping I could not
use the TV at all since I would have to search for the image twice.” During the
tablet touch task, only one participant started by paying attention to the TV
screen but, after few moments, he changed his focus to the mobile device and
said: “Why look at the TV, I need to select it from the iPad anyways.”.



CTAT: Tilt-and-Tap Across Devices 103

These findings motivated us to pursue our research on the use of motion
sensors in cross-device applications. Based on the feedback from users regarding
the limitations as well as the potential of our tilting interactions, we were able to
design and develop our cross-device framework CTAT which pays more atten-
tion to the intrinsic differences among devices and adjusts tilting interactions
accordingly.

4 The CTAT Framework

Taking into account user feedback as well as our experience of using Tilt-and-Tap
in a cross-device environment, we developed the new CTAT framework, which is
specifically designed for the rapid prototyping of applications with cross-device
tilting interactions.

Fig. 5. Cross-device jerk tilting interactions and their implementation

CTAT offers support for the two main forms of motion-based interaction used
in Tilt-and-Tap, namely jerk and continuous tilting. Since many applications
tend to use only one of the two forms of tilt interaction, we decided to actually
produce two variants CTATJ (CTAT-Jerk) and CTATC (CTAT-Continuous).
The resulting reduction in size and complexity of the framework required in
many cases, can significantly improve performance. However, in cases where
both forms of tilting interactions are used in an application, the two frameworks
can be used together.



104 L. Di Geronimo et al.

In the example shown in Fig. 5, jerk tilting gestures are used to change the
background colour of other devices connected to the same web page. By rapidly
rotating their smartphone to the left, the colour on the two laptops will change,
while rapidly tilting to the right will change the colour on the tablet. The code
to achieve this behaviour using the CTATJ variant of the framework is shown
on the right of Fig. 5.

As the names suggest, the variables stiltleft and stiltright correspond
to the tilt left right and tilt left gestures. These two objects contain all the
information that CTAT needs to manage motion interactions among devices.
The sender: "smartphone" setting indicates the actor in the tilting interac-
tion, while receiver: "laptops" and receiver: "tablet" specify the target
devices for the tilt left and tilt right gestures, respectively. The function specified
in the callback option will be executed on the receivers whenever the correspond-
ing tilting interaction is performed on the sender.

Fig. 6. Cooperative jerk tilting gestures and its corresponding implementation

CTATJ also offers cooperative tilting gestures. As shown in Fig. 6, users
can simultaneously perform a particular motion gesture to interact with other
devices. In our example, if two or more smartphones simultaneously perform
a tilt down gesture, this will modify the background colour of all connected
tablets and laptops. To distinguish between cooperative and non-cooperative
jerk tilting gestures, the cooperative option inside the settings object has to be
set to true. Moreover, the callbackcoop option defines the callback function
for only cooperative executions of the gesture.

A cross-device continuous tilting example implemented with CTATC is shown
in Fig. 7. Similar to the web gallery application developed for our preliminary
user study, users can interact with a large screen by moving their smartphone.
The red ball shown on the laptop simulates a cursor. When the ball is over one
of the elements, that element becomes selected and is enlarged on the laptop
screen. As with CTATJ, developers can define a sender, one or more receivers,
possible touch interactions and a callback function for when an element becomes
selected. In addition, with the ball: "laptop" option, the developer specifies



CTAT: Tilt-and-Tap Across Devices 105

Fig. 7. Cross-device continuous tilting interactions and their implementation

on which device the ball will be shown, in this case, the laptop screen. Any
number and types of devices can be specified under this option.

While it is very easy to specify interactions using these settings variable,
the lines of code necessary to define motion gestures increases with the number
of interactions that the developer wants to recognize on each device. For this
reason, we have developed a visual tool that automatically generates the CTAT
objects.

The tool is shown in Fig. 8. Developers can add devices as well as creating
new communications among them in step 1. When a new connection has been
added, the corresponding settings can be modified in the Connection Manager
menu shown in step 2. If developers save the connection (step 3), icons will be
displayed for each device involved in the communication (step 4). The direction
of the arrow indicates if the device is a sender or receiver of that specific tilting
interaction. The tool is implemented as a web applications in HTML, CSS and
JavaScript.

5 Implementation

From our preliminary study, we recognised two main problems of using Tilt-and-
Tap for cross-device applications. The first of these concerned the development
process and the second the lack of support for adapting interactions to different
devices, especially in continuous tilting interactions.

Managing tilting interactions on every device required us to develop tedious
and long code, making our applications more prone to errors. Socket.IO allowed
communication among devices, but, for each interaction, it also required an
exchange of messages between the sender, the server and finally the receiver.
Moreover, continuous tilting interactions in cross-device applications revealed
some challenges that were not originally considered by Tilt-and-Tap.

Cross-Tilt-and-Tap was developed specifically with cross-device applications
in mind and therefore a primary goal was to overcome these issues. As previously



106 L. Di Geronimo et al.

Fig. 8. Visual tool for the generation of CTAT objects

mentioned, one of the first decisions made was to split responsibilities for jerk
and continuous tilting between the two sub-frameworks CTATJ and CTATC.

To share real-time messages among devices, CTAT uses the communica-
tion module of XD-MVC, a cross-device framework previously developed in
our group. XD-MVC includes a Node.js server, and uses Socket.IO and Peer.js
for cross-device communications. When supported by the browser, peer-to-peer
communication is used, resulting in lower latency which is crucial, especially
for continuous tilting. As a fallback, client-server communication can also be
used and this allows us to support a wide range of devices. XD-MVC abstracts
this mechanism from the developer, thus allowing direct communications among
clients to be easily managed.

We note that since CTAT can involve many different devices, developers
have to include the client as well as the server side of our framework in their
web application. A Node.js installation is then required on the machine that will
act as the server. Other than this, no particular installations are required on the
client nor on the server.

Figure 9 indicates some of the APIs supported by CTAT and its two sub-
frameworks CTATJ and CTATC.

We currently support four categories of devices: laptop-screens, tablets, smart-
phones and smartwatches. These devices are recognised by making use of user
agent information. Developers can use these types of devices to specify a particular



CTAT: Tilt-and-Tap Across Devices 107

Fig. 9. List of main APIs supported by Cross-Tilt-and-Tap

client or set of clients for their tilting interactions. As seen in Fig. 9, CTATJ allows
many-to-many communications, meaning that the same tilting interaction can be
performed by more than one client and these events will trigger the execution of a
callback function on one or more receivers. Developers can indicate a set of devices
by using its plural form such as “laptops”, “smartphones” and so on. Similarly, to
target one specific client, developers can simply use the singular form of the device
name. In this case, our framework will assign the first client connected to the page
of the set specified by the developer. When the selected device disconnects, the
next client will be assigned to the interaction.

In contrast to non-cooperative gestures, when a developer indicates that a
particular communication is cooperative, all the senders specified should perform
the tilting interaction simultaneously.

While CTATJ allows many-to-many connections, CTATC only considers one-
to-many communications since it is counterintuitive to have more than one device
able to remotely control a cursor on another client.



108 L. Di Geronimo et al.

Fig. 10. Example of CTATC execution flow

To explain in detail how continuous tilting interactions among devices are
managed we show the execution flow in Fig. 10. In our example, a smartphone
device is used to remotely control a large screen represented as a laptop. We
assume that the larger device is already connected to the web page, and the
mobile device initiates a connection. Every time a new client connects, the device
type is first checked. If it is involved in a tilting interaction as a sender or receiver,
we save its width and height. All this information is stored in an object that is
shared among all the connected devices with our framework ensuring that these
shared objects are synchronised across devices. For example, if a device that is
currently a sender for a tilting interaction disconnects, CTAT needs to modify
the corresponding shared object and assign a new sender to the tilting interaction
if possible. As indicated in Fig. 10, whenever a device is assigned to be the sender
for a tilting interaction, the speed of the ball cursor is calculated dynamically
depending on the screen size of the sender device. By default, the speed of the
ball increases slightly as the dimension of the sender screen size increases. This
parameter can also be adjusted by the developer using the corresponding setting.

In Tilt-and-Tap, the movement of the ball is managed on the sender side. In
the case of CTAT, the framework has the role of communicating changes to all
the receivers. For performance reasons, we first filter the movements performed
by the mobile device on the client side and only send the new ball coordinates
to the receivers if the movement performed is larger than a threshold. At this



CTAT: Tilt-and-Tap Across Devices 109

point, the receiver has all the necessary information to update the position of
the ball. The new position is calculated by multiplying the ball position sent
from the sender with the quotient of the receiver and sender width and height.
This proportion allows the user to have a good match between the two devices
despite their differences in resolution.

When the ball moves inside one of the elements, the framework wraps the
event triggered on the sender side and sends this information to all the receivers
involved in the interaction. We note that while the motion logic module is only
present in CTATC, the overall behaviour of the jerk tilting version of our frame-
work, CTATJ, is similar.

6 Demonstrator Application

To define, demonstrate and test the capabilities of the CTAT framework, we
designed an advanced gallery application that featured the various forms of inter-
action and device configuration that we aimed to support.

The application was designed to engage users with semi-public and public dis-
plays throughout our university and promote social interaction among viewers. As
mentioned earlier, many cross-device applications have been based around the use
of mobile phones as a sort of remote control device for large displays. We wanted to
take this idea further by considering multiple displays and multiple mobile devices
and allowing them to take different roles. Also, there should be some form of inter-
action between mobile devices as well between mobiles and the displays.

The resulting application, called aCrossETH, was inspired by 500px6 a well
known image sharing website for photographers. Similar to 500px, users upload
images and other users can then like or favourite them, with the most highly-
rated images making it onto a “Popular” page7. All tilting interactions included
in the aCrossETH application were developed making use of CTAT, while the
GUI was implemented with HTML, CSS and JavaScript.

Figure 11 shows the three display categories in aCrossETH: slideshow-screen,
voting display andmobile devices. The slideshow screen shows the sixmost popular
images uploaded by users where the popularity takes into account the number of
likes and favourites together with its freshness. In the example setting shown in
Fig. 11, this role is taken by a projected display in a social area. All the most recent
uploaded images are shown in a grid layout on one or more voting displays.

By scanning a QR code shown on both the slideshow and voting displays,
users can interact with voting displays using their mobile device. The first con-
nected mobile user is assigned the role of controller which allows them to browse
images on the voting display by simply swiping left and right on their mobile
device. Additional information about a selected image will be shown on all of the
connected mobile devices which have the role of viewers. The selected image will
also be enlarged on the voting display. A different version of the same application

6 https://500px.com/.
7 500px recently merged likes and favourites into a single Twitter-style heart.

https://500px.com/


110 L. Di Geronimo et al.

Fig. 11. Overview of aCrossETH on the three different categories of screens: slideshow,
voting and mobile displays

allows the controller to browse the gallery of images using continuous tilting. In
this version, the ball is shown only on the voting screen.

Detailed views of the mobile user interface for the controller and viewers is
shown in Fig. 12. Users can vote for the current selected image using a hold tap on
the rectangular area at the bottom of their mobile screen and rapidly tilting the
device down. While the viewer device can only see the current selected image, the
controller has an overview of all images visible on the voting screen. To improve
user engagement, if the vote gesture is performed simultaneously by two or more
devices, the number of votes added is doubled. This means that, the more users
cooperate, the greater the chances that the images they vote for will be among
the most popular shown on the slideshow screen.

By tapping on the upload button displayed on mobile devices, users can
upload new images. Once they have selected an image from their local gallery,
the system shows a preview of the selected image in full screen mode. To receive
immediate feedback, users can decide to share the image with other connected
mobile devices by simply performing a tilt left gesture as shown in Fig. 13. At
this point, all the connected devices can see the new image and choose to like or



CTAT: Tilt-and-Tap Across Devices 111

Fig. 12. User interface of aCrossETH on mobile controller and viewer devices

Fig. 13. User interface of aCrossDevice when user uploads a new image and shares it
with other devices

unlike it. The owner can see how users have voted on their mobile device and,
based on that, decide whether or not to go ahead and upload the image to the



112 L. Di Geronimo et al.

system. Once their image has been uploaded, they can view the voting screen
by performing a tilt down gesture.

Developed in parallel to the framework, this application gave us useful insight
into the kinds of interactions that the framework should support as well as
testing both their use and implementation. In turn, the framework made it easy
to experiment with alternative versions of the application and different kinds of
interactions.

Finally, we note that the use of motion-based gestures enables users to inter-
act with the application in an eyes-free manner while mobile within the university
environment. Further, as shown in the results of our preliminary study, motion
gestures are often perceived as more enjoyable than the sole use of touch inter-
actions when a mobile device is paired with a larger display. Taken together,
we believe that such an application could be integrated into a pervasive display
system to encourage user engagement.

7 Conclusion

We have presented CTAT, a framework that supports the rapid prototyping of
cross-device web applications that employ motion-based interaction. We believe
that such a framework is necessary to push forward research in motion-based
interaction on the web in general, and in cross-device applications in particular,
by supporting experimentation with novel applications and modes of interaction.

Now that we have the framework, we plan to experiment further with multi-
user, multi-device settings, investigating the potential benefits of motion-based
interaction for interacting with public displays, sharing information and also
generally moving information between devices. We also plan to take the work
on visual development tools further, by building on ideas from previous work in
end user development [21].

References

1. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)
2. Facebook: Finding simplicity in a multi-device world, March 2014. https://www.

facebook.com/business/news/Finding-simplicity-in-a-multi-device-world
3. Santosa, S., Wigdor, D.: A field study of multi-device workflows in distributed

workspaces. In: Proceedings of the UbiComp. (2013)
4. Yatani, K., Tamura, K., Hiroki, K., Sugimoto, M., Hashizume, H.: Toss-it: intu-

itive information transfer techniques for mobile devices. In: CHI 2005 Extended
Abstracts on Human Factors in Computing Systems, pp. 1881–1884. ACM (2005)

5. Boring, S., Jurmu, M., Butz, A.: Scroll, tilt or move it: using mobile phones to
continuously control pointers on large public displays. In: Proceedings of the 21st
Annual Conference of the Australian Computer-Human Interaction Special Interest
Group: Design: Open 24/7, pp. 161–168. ACM (2009)

6. Di Geronimo, L., Aras, E., Norrie, M.C.: Tilt-and-Tap: framework to support
motion-based web interaction techniques. In: Cimiano, P., Frasincar, F., Houben,
G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 565–582. Springer,
Heidelberg (2015)

https://www.facebook.com/business/news/Finding-simplicity-in-a-multi-device-world
https://www.facebook.com/business/news/Finding-simplicity-in-a-multi-device-world


CTAT: Tilt-and-Tap Across Devices 113

7. Baglioni, M., Lecolinet, E., Guiard, Y.: Jerktilts: using accelerometers for eight-
choice selection on mobile devices. In: Proceedings of the 13th International Con-
ference on Multimodal Interfaces, pp. 121–128. ACM (2011)

8. Hinckley, K., Song, H.: Sensor synaesthesia: touch in motion, and motion in touch.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pp. 801–810. ACM (2011)

9. Seifert, J., Bayer, A., Rukzio, E.: PointerPhone: using mobile phones for direct
pointing interactions with remote displays. In: Kotzé, P., Marsden, G., Lindgaard,
G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS, vol. 8119,
pp. 18–35. Springer, Heidelberg (2013)

10. Dachselt, R., Buchholz, R.: Natural throw and tilt interaction between mobile
phones and distant displays. In: CHI 2009 Extended Abstracts on Human Factors
in Computing Systems, pp. 3253–3258. ACM (2009)

11. Aumi, M.T.I., Gupta, S., Goel, M., Larson, E., Patel, S.: Doplink: using the doppler
effect for multi-device interaction. In: Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, pp. 583–586. ACM
(2013)

12. Pering, T., Anokwa, Y., Want, R.: Gesture connect: facilitating tangible interaction
with a flick of the wrist. In: Proceedings of the 1st International Conference on
Tangible and Embedded Interaction, pp. 259–262. ACM (2007)

13. Hassan, N., Rahman, M.M., Irani, P., Graham, P.: Chucking: a one-handed doc-
ument sharing technique. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L.,
Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol.
5727, pp. 264–278. Springer, Heidelberg (2009)

14. Kray, C., Nesbitt, D., Dawson, J., Rohs, M.: User-defined gestures for connecting
mobile phones, public displays, and tabletops. In: Proceedings of the 12th Inter-
national Conference on Human Computer Interaction with Mobile Devices and
Services, pp. 239–248. ACM (2010)

15. Marquardt, N., Hinckley, K., Greenberg, S.: Cross-device interaction via micro-
mobility and f-formations. In: Proceedings of the 25th Annual ACM Symposium
on User Interface Software and Technology, pp. 13–22. ACM (2012)

16. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.: Interactive development of
cross-device user interfaces. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2793–2802. ACM (2014)

17. Chi, P.Y.P., Li, Y.: Weave: Scripting cross-device wearable interaction. In: Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pp. 3923–3932. ACM (2015)

18. Krug, M., Wiedemann, F., Gaedke, M.: SmartComposition: a component-based
approach for creating multi-screen mashups. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 236–253. Springer, Heidelberg (2014)

19. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: DireWolf - distributing and
migrating user interfaces for widget-based web applications. In: Daniel, F., Dolog,
P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 99–113. Springer, Heidelberg
(2013)

20. Wolf, K., Henze, N.: Comparing pointing techniques for grasping hands on tablets.
In: Proceedings of the 16th International Conference on Human-Computer Inter-
action with Mobile Devices & Services, pp. 53–62. ACM (2014)

21. Paternò, F., Santoro, C., Spano, L.D.: Model-based design of multi-device inter-
active applications based on web services. In: Gross, T., Gulliksen, J., Kotzé, P.,
Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009.
LNCS, vol. 5726, pp. 892–905. Springer, Heidelberg (2009)


	CTAT: Tilt-and-Tap Across Devices
	1 Introduction
	2 Background
	3 Preliminary Study on Tilt-and-Tap Across Devices
	4 The CTAT Framework
	5 Implementation
	6 Demonstrator Application
	7 Conclusion
	References


