Formal Specification of RESTful Choreography
Properties

Adriatik Nikaj®™) and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{adriatik.nikaj,mathias.weske}@hpi.de

Abstract. BPM community has developed a rich set of languages for
modeling interactions. In previous work, we argue that business process
choreographies are suited for modeling REST-based interactions. To this
end, RESTful choreographies have been introduced as an extension of
business process choreographies. However, RESTful choreographies do
not provide information about the validity of interactions. In this paper,
we introduce formal completeness properties. These properties support
developers to verify REST-based interactions. The approach is motivated
by an example of an examination procedure in the context of a massive
open online course.

1 Introduction

With the surging use of REST architectural style [1], there is a need to model
REST-based interactions from a global perspective. RESTful choreography [2] is
a language for modeling RESTful interactions between two or more participants.
Additionally, this language is situated as a middle ground between the business
perspective of the business process choreography and the implementation per-
spective of RESTful APIs involved in the interaction. RESTful choreography
language itself constitutes an extension of BPMN choreography [3] with REST-
specific information.

However, RESTful choreographies lack a formal specification, thus not pro-
viding criteria for validating its correctness. To overcome this incompleteness,
this paper introduces a formal specification of the RESTful choreography and
two properties that each choreography diagram should satisfy for being consid-
ered complete. This allows developers to automatically check the validity of a
RESTful choreography before using it, e.g., as an skeleton for the development
of RESTful APIs.

The rest of the paper is structured as follows. In Sect.2, RESTful chore-
ographies are briefly explained and a running example is introduced. Section 3
present the reader with related work. Section4 introduces the formal specifi-
cation of business process choreography and the RESTful choreography as an
extension of the former. Subsequently, Sect. 5 describes two properties of REST-
ful choreography, which, if satisfied, render it complete. In Sect. 6, we provide an
evaluation on the usefulness of the formalizations and the completeness proper-
ties. Lastly, we conclude our paper and provide insights about future work in
Sect. 7.

© Springer International Publishing Switzerland 2016
A. Bozzon et al. (Eds.): ICWE 2016, LNCS 9671, pp. 365-372, 2016.
DOI: 10.1007/978-3-319-38791-8_21

366 A. Nikaj and M. Weske

2 Foundations

RESTful choreography diagram is introduced in [2] with the aim of bridging
the conceptual gap between the BPMN business process choreography [3] and
its implementation as a RESTful interaction [1]. It is an enhancement of the
BPMN choreography diagram with REST-specific annotations.

. " m4: email
El msemall id [N ma:post rcourseriarexam HrTern. El URI2: /course/id/exam/published
} T URI3: /course/id/exam/accessed
YV VTP (T T)
MOOC Platform Teaching Team MOOC Platform
O_> t1: Notify abo;(lecture B! ©2: Publish Online Exam t3: Notify Online Exam
en :
el
= Student
Teaching Team MOOC Platform \ n
~ -
m3: HTTP/1.1 201 Created X m5: PUT /course/id/exam/accessed HTTP/1.1
{Location URI2: /course/id/exam/published}
m17: PUT /course/id/exam/notPassed HTTP/1.1
m16: email E .
URI7 /course/id/exam/notPassed [T Teeel
Teaching Team MOOC Platform Student
m
t11: Confirmation of x t10: Send deadline
Participation reached notification t4: Access the exam
e4: Exam not passed (92
MOOC Platform Teaching Team B -------- MOOC Platform
E mé: HTTP/1.1 200 OK
{Location: /course/id/exam/accessed

URI4: course/id/exam/submitted}
m18: HTTP/1.1 200 OK
{Location URI9: course/id/participation} m7: PUT /course/id/exam/submitted HTTP/1.1 "

v _____ Student
m

m14: PUT /course/id/exam/passed HTTP/1.1

5: Submit the exam
Teaching Team m8: HTTP/1.1 200 OK
{Location: /course/id/exam/submitted}

E ----- MOOC Platform
m10: GET /course/id/exam/submitted HTTP/1.1 D AE—

93 E

19: Records of
Achievement

e3: Exam passed

MOOC Platform “_ hyperlink: /course/\'d/eﬁded/exam/submitted

mi2: .
B PUT /course/id/exam/corrected HTTP/1.1 I

A SN A
B TeachingTeam ~ f===--| E Teaching Team MOOC Platform

m15: HTTP/1.1 200 OK
{Location URIS8: /course/id/records}

" < . - t6: Send exam i
8: Correct exam 7: Read exams notification
MOOC Platform MOOC Platform Teaching Team
~ — — - = J
m13: HTTP/1.1 200 OK m11: HTTP/1.1 200 OK
{Location: /course/id/exam/corrected {Location: /course/id/exam/submitted
URI6: /course/id/exam/passed URI5: /course/id/exam/corrected}

URI7: /course/id/exam/notPassed}

Fig. 1. RESTful choreography for massive open online course

To motivate our approach we introduce a RESTful choreography diagram
(see Fig.1) that models an example of a massive open online course (MOOC)
inspired by openHPI (https://open.hpi.de/). We focus only on the online exam-
ination procedure taking place after all lectures are published.

https://open.hpi.de/

Formal Specification of RESTful Choreography Properties 367

The main participants are the teaching team, MOOC platform, and the stu-
dents. The teaching team is responsible for publishing the exam and correcting
the exams submitted by the students. The MOOC platform is a system which
facilitates the interaction between the teaching team and the students by pro-
viding a web interface and sending emails to coordinate the activities of the
participants. Once the teaching team publishes the exam on the MOOC plat-
form, the students are reminded from the latter. Students, then, may access the
exam at any time before the deadline. In case the students access the exam,
they have to submit it. The teaching team follows up with the exam correction
and submits two possible outcomes into the MOOC platform. Either the exam
is passed or not passed. If the exam is passed a Record of Achievement is created
for the students to be accessed. Else, the students can access a Confirmation of
Participation.

As it can be observed from Fig. 1, the RESTful choreography is a business
process choreography with additional REST information. The REST informa-
tion is embedded in the message exchanged between participants. Each message
can represent a REST request or response, or an email in case of server to client
updates, e.g., MOOC platform informs the teaching team after an exam is sub-
mitted by the student.

3 Related Work

As a language which resides between the business processes collaboration and
its platform-specific application, RESTful choreography can be compared to
BPEL4Chor [4]. BPEL4Chor is an extension of BPEL [5] with choreography-
related concepts. It differs from RESTful choreography because it is based on
WSDL [6] and SOAP [7].

A similar work is introduced in [8]. The authors use UML sequence diagrams
[9] to model REST conversation. However, their approach is limited to the mod-
eling of the interactions between a single client and a single REST API. While,
the benefit of our approach is the unlimited restriction of the number of par-
ticipants and the global view on common REST resources addressed by several
participants.

The same limitation holds for the RESTful conversation proposed in [10] i.e.
it models the REST-based interaction between one client and one server. Despite
being an extension of BPMN choreography diagram, the RESTful conversation
differs from our approach in the modeling goal because it omits the textual
description of the choreography task. Hence, it focuses only on the REST-based
interaction and not in the business logic behind it.

4 Formal RESTful Choreography

In this section we introduce a formal definition of business process choreography,
over which the RESTful choreography diagram is subsequently defined. The
formalization of business process choreography is not a complete 1 to 1 mapping

368 A. Nikaj and M. Weske

of the BPMN choreography specification [3] (specified by means of a metamodel)
but is limited to only the concepts needed for our extension. E.g., we do not define
the call choreography or the sub-choreography.

Definition 1 (Business Process Choreography). A Business Process Chore-
ography is a tuple C = (N, S, P, M, etype, gtype, init, recip, initm, retm) where:

- N =TUEUG is finite set of nodes. T is a non-empty, finite set of choreography
tasks. E is finite set of events. And, G is a finite set of gateways. The sets
T,E,G C N are all pairwise mutually disjoint.

- S C N x N is a set of sequence flows.

— P is a set of participants.

— M 1is a set of messages.

— etype : E — {start,intermediate,end} assigns an event type to each of the
events of the choreography.

— gtype : G — {xor, ebased, or,and} assigns a gateway type to each of the gate-
ways of the choreography.

—init : T — P assigns a participant as initiator to each of the choreography
tasks of the choreography.

— recip : T — P assigns a participant as recipient to each of the choreography
tasks of the choreography.

—initm : T — M assigns a message as initiating to each of the choreography
tasks of the choreography

- retm : T — M Unil assigns a message as return to each of the choreography
task of the choreography. nil stands for no return message.

Moreover, we can formalize the basic rule of the choreography diagram: The
initiator of each task is always aware of the immediate previous interactions,
hence making the choreography enforceable [11]. In order to formally express
the rule of choreography task sequencing we need the following notations: p, =
(nl,n2,...,nx) is a path if Vi = 1.k, (n;,n01) € S; ot = {t' € T | Ip, =
(t',ny...ng,t) AVi = 1.k,n; ¢ T} is the set of all direct-preceding tasks of ¢;
T = {t € T | ot = ¢} is the set of all choreography tasks that have no direct
predecessor; T* = T\T" is the complement of set T°. Using these notations, we
have:

Definition 2 (Choreography Task Sequencing). Given a choreography dia-
gram C = (N, S, P, M, etype, gtype, init, recip, initm, retm) and a participant
p € P, the basic rule of choreography task sequencing holds iff

Vt € T*,p =init (t) = Vt' € ot,p = init(t') V p = recip(t’)
Next, we define RESTful choreography, which extends Definition 1.

Definition 3 (RESTful Choreography). RESTful choreography Cr = (N,
S, P, M, U, etype, gtype, init, recip, initm, retm, server, mtype, hyperlink) is an
extension of business process choreography with the following concepts:

Formal Specification of RESTful Choreography Properties 369

- U is a set of URIs.

- server : P — {0,1} marks all participants that have a server role in a RESTful
interaction.

— mtype : M — {req,res,email} maps any message exchanged in a RESTful
choreography to one of three message types: request; response; and, email.
We, then, have Vt € T, server (recip (t)) = 1 < mtype (initm (t)) = req <
mtype (retm (t)) = res

— hyperlink : M — 2V maps each message of the RESTful choreography to
set of URIs, which play the role of hyperlinks that the client can use to con-
tinue the interaction with the server. We have Ym € M, mtype (m) = req =
|hyperlink (m) | = 1 because a REST request is composed of a single REST
verb and a single URI.

5 Completeness of RESTful Choreographies

In this section we introduce two properties that render a RESTful choreography
complete. First we provide the definition of completeness.

Definition 4 (Completeness of RESTful Choreography). A RESTful
choreography Cg is said to be complete, if it is hyperlink complete and it has
a correct resource behaviour.

In a RESTful interactions, hyperlink is the client’s main mean of navigation
through communication with the server during the conversational flow. The only
way to communicate with the server is by sending a request to a specific URI.
As a response, the server provides the client with additional hyperlinks for her
to follow in future interactions. For server to client direction, an email commu-
nication is assumed. We do not explicitly take into consideration RESTful Push
Interactions [12] because they are a special case of the normal RESTful interac-
tion, e.g., to notify the client about new updates the role of server and clients
are briefly exchanged.

To represent the fundamental importance of the hyperlink, as a steering tool
for guiding the RESTful choreography, we introduce the property of hyperlink
completeness. A RESTful choreography is hyperlink complete if and only if all
the URIs used in the REST requests are introduced previously to the clients
in the form of hyperlinks. Naturally, the first occurring choreography tasks are
excluded from this criteria because they have no preceding task. Hyperlink com-
pleteness also requires that all hyperlinks sent between participants are modelled
in the RESTful choreography.

Definition 5 (Hyperlink Completeness). RESTful choreography is hyper-
link complete if a participant p sends a request via URI to the server in task
t, then for all execution paths leading to task t the request URI is passed to
participant p embedded in a response or email message. Formally:
Yt € T*, server (recip (t)) = 1 = Vt* € T° ¥p, = (to,..,t), 3" € pa(t°, ... 1) |
(init (t) = init (') NURI (req (t)) = hyperlink (res (t')))
V (init (t) = recip (') NURI (req (t)) = hyperlink (email (t')))

370 A. Nikaj and M. Weske

The second property is about checking the behaviour of REST resources
in that whether or not the resources involved in the choreography behave as
expected. Defining this property, assures the users of RESTful choreography
that each REST resource does not undergo undesired behaviour. This is partic-
ularly useful in case of RESTful choreography due to many participants accessing
common resources, e.g., the resource exam is accessed by the teaching team and
the students multiple times in the choreography.

Definition 6 (Behavioural Correctness). A RESTful choreography is said
to have a correct resource behaviour if all REST resources behave correctly. A
resource is said to behave correctly if it:

— is created with a POST [resources or PUT /resources/id

— changes its state with a PUT [resources/id/newState

— s accessed with a GET [resources/id/State yielding no state change

— is deleted with a DELETE /resource/id

— can only be accessed or modified after it is created and before it is deleted.

Nevertheless, these conditions apply only when we use a REST request to
change the state of a resource. The resource state can also change internally by
the server. In this case, we cannot enforce rules as it is out of the interaction
scope and it depends on the application logic of the server.

To check the behaviour of the resource, we first derive the resource behaviour,
in the form of a UML state machine [9], from the RESTful choreography. The
derivation is performed for every REST resource found in the choreography.
Then, we check the behaviour of each resource if it is correct or not.

The derivation procedure of the resource behaviour starts with isolating a
resource in the choreography diagram, e.g., the resource eram in our running
example. Then, the REST tasks that are irrelevant to the chosen resource are
replaced with a sequence flow. Same is done with all the intermediate events.
The gateways are kept untouched because they are needed to determine alterna-
tive paths during state transitions of the resource. At last, we have a RESTful
choreography which contains only REST tasks addressing only a single resource.
Subsequently, we transform the RESTful choreography into a state transition
diagram. State naming is based on the URI of the REST request, e.g., exam
is published, accessed, submitted. State changes inducted by the REST request
are labeled in the state transition diagram with the corresponding request like
shown in Fig. 2.

6 Evaluation

In this section we apply the defined properties on the choreography depicted in
Fig. 1 and argue about the usefulness of these two properties.

The hyperlink-completeness property of this choreography is checked by iden-
tifying the URI used in each REST request, and checking whether or not the
URI is sent to client performing the request at some point earlier in the chore-
ography. The automation of this procedure is left as a future work. The diagram

Formal Specification of RESTful Choreography Properties 371

from Fig.1 is hyperlink complete. However, during its design, checking for this
property recursively proved to be beneficial because we were able to spot flaws
and resolve them, e.g., URI3, URIs and U RI; were not included respectively in
messages my, mi3 and mag.

For checking the resource behavioural correctness of the running example, we
identified one main REST resource i.e. the exam. Figure2 depicts the lifecycle
of the exam resource derived in the manner described in the previous section.
Following the definition of resource behavioural correctness we can conclude from
Fig. 2 that the exam resource has a correct behaviour because it is: created via
a POST; accessed via GET and no new state is introduced; edited via PUT
leading to a new state; and finally, all requests are performed after the resource
is created and before it is deleted (in this example there is no DELETE request).

notPassed T ——y— published ‘
/notPassed HTTP/1.1 PUT course/id/exam POST /course/

GET course/id/ /accessed HTTP/1.1 id/exam HTTP/1.1
participation HTTP/1.1
accessed
PUT /course/id/exam PUT course/id/exam/submitted HTTP/1.1
/notPassed HTTP/1.1

GET /course/id/exam

submitted /submitted HTTP/1.1

GET course/id/
records HTTP/1.1

PUT /course/id/exam PUT /course/id/exam/corrected HTTP/1.1
/passed HTTP/1.1 \ .
GET /course/id/exam
passed \/ corrected /corrected HTTP/1.1

Fig. 2. Exam lifecycle derived from the RESTful choreography in Fig. 1

Additionally, deriving the state transition of the resources helps the
developers of RESTful APIs to understand the allowed interactions, e.g.,
it is not allowed to have a PUT /course/id/exam/accessed after PUT
Jcourse/id/exam/notPassed. Moreover, GET requests can be easily checked
if they are safe i.e. do not introduce side effects. This is realized by making sure
that every GET state transition is looped around a single state (see Fig. 2).

Since the MOOC choreography has only one main REST resource that has
a correct behaviour, then the choreography has a correct resource behavior.
Therefore, the MOOC RESTful choreography is considered complete because it
satisfies both properties defined above.

7 Conclusion

In this paper we propose a formal specification of the RESTful choreography dia-
gram together with properties for verifying its completeness. The formalization
is realized by: first, formalizing the business process choreography; and second,
formalizing the extension that constitutes the RESTful choreography diagram.
The proposed specification is applied in an example of examination procedure
in the context of a massive open online course.

372 A. Nikaj and M. Weske

The two identified properties of the RESTful choreography are hyperlink
completeness and behavioural correctness. The former assures that all the hyper-
links used by the client (in the client server context) participants for making a
REST request are provided to them prior to their request occurrence. The latter
makes sure that all REST resources behave as expected during their lifecycle. For
the second property we make use of a different view - a state transition diagram
is derived from the RESTful choreography for each REST resource involved in
the interaction. This additional view, provides to the user of RESTful chore-
ography a clearer view on each resource behaviour by emphasizing the state
transitions induced by REST requests. This is particularly useful in cases when
REST resources are accessed and updated by different participants during the
course of the interaction because it gives an overview over the allowed changes
at certain points in the choreography.

Acknowledgement. We thank Cesare Pautasso for the valuable discussions on the
BPM-REST relation, especially on the resource lifecycles.

References

1. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis (2000)

2. Nikaj, A., Mandal, S., Pautasso, C., Weske, M.: From choreography diagrams to
restful interactions. In: WESOA 2015, Co-located with ICSOC 2015. Springer,
Berlin (2015)

3. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011.
http://www.omg.org/spec/BPMN /2.0/

4. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: extending BPEL
for modeling choreographies. In: IEEE International Conference on Web Services

2007

5. Sorda)rl, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS Stand. 11, 1-10 (2007)

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-

tion language (WSDL) 1.1. W3c note, WWW Consortium, March 2001

World Wide Web Consortium: Simple Object Access Protocol (SOAP) 1.2 (2003)

Haupt, F., Leymann, F., Pautasso, C.: A conversation based approach for model-

ing REST APIs. In: Proceedings of the 12th Working IEEE/IFIP Conference on

Software Architecture (WICSA 2015), Montreal, Canada, May 2015

9. OMG: Unified Modeling Language (UML), Version 2.0, July 2005. http://www.
omg.org/spec/UML/2.0/

10. Pautasso, C., Ivanchikj, A., Schreier, S.: Modeling RESTful conversations with
extended BPMN choreography diagrams. In: Weyns, D., et al. (eds.) ECSA
2015. LNCS, vol. 9278, pp. 87-94. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23727-5_7

11. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd edn. Springer, Berlin (2012)

12. Pautasso, C., Wilde, E.: Push-enabling RESTful business processes. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Computing. LNCS,
vol. 7084, pp. 32-46. Springer, Heidelberg (2011)

% N

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://dx.doi.org/10.1007/978-3-319-23727-5_7
http://dx.doi.org/10.1007/978-3-319-23727-5_7

	Formal Specification of RESTful Choreography Properties
	1 Introduction
	2 Foundations
	3 Related Work
	4 Formal RESTful Choreography
	5 Completeness of RESTful Choreographies
	6 Evaluation
	7 Conclusion
	References

