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Abstract. RDF stream processing (RSP) has become a vibrant area of
research in the semantic web community. Recent advances have resulted
in the development of several RSP engines that leverage semantics to
facilitate reasoning over flows of incoming data. These engines vary
greatly in terms of implemented query syntax, their evaluation and
operational semantics, and in various performance dimensions. Existing
benchmarks tackle particular aspects such as functional coverage, result
correctness, or performance. None of them, however, assess RSP engine
behavior comprehensively with respect to all these dimensions. In this
paper, we introduce YABench, a novel benchmarking framework for RSP
engines. YABench extends the concept of correctness checking and pro-
vides a flexible and comprehensive tool set to analyze and evaluate RSP
engine behavior. It is highly configurable and provides quantifiable and
reproducible results on correctness and performance characteristics. To
validate our approach, we replicate results of the existing CSRBench
benchmark with YABench. We then assess two well-established RSP
engines, CQELS and C-SPARQL, through more comprehensive exper-
iments. In particular, we measure precision, recall, performance, and
scalability characteristics while varying throughput and query complex-
ity. Finally, we discuss implications on the development of future stream
processing engines and benchmarks.

1 Introduction

Major developments such as the Internet of Things, Smart Cities, and Smart
Devices increasingly shift data processing challenges from a static towards a
continuous paradigm. In many domains, it is crucial to make sense of frequently
changing data flows in order to draw timely conclusions about the state of a sys-
tem. This necessitates means for the efficient processing of and reasoning over
dynamic data while accounting for its temporal dimension. Application exam-
ples include decision support in a smart city context, environmental monitoring,
public transport management, and pervasive healthcare systems.
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The notion of continuous queries, which was introduced by Terry et al. [14]
in 1992, is central to dynamic data processing. These queries are issued once and
executed continuously to provide up-to-date results as new data arrives [7]. Data
stream management systems (DSMSs) and their respective query languages,
which make use of continuous queries, have been the topic of intense research
since 2002 [2]. More recently, dynamic data streams have attracted consider-
able interest within the semantic web community. This led to the development
of various approaches to enable SPARQL-like data access on flows of incom-
ing data under the labels stream processing and stream reasoning. The result-
ing RDF stream processing engines, including C-SPARQL [3], CQELS [10], and
SPARQLStream [6], combine stream data processing with semantic web technolo-
gies. By leveraging the explicit semantics of RDF streams, these engines facilitate
reasoning over dynamic data. They also allow to integrate and fuse data streams
through federated queries and provide a platform for innovative applications in
data stream analytics.

Implementations of these engines result in considerable differences in both
performance characteristics [8,11,15] and crucial differences in operational
semantics. A common benchmarking framework would help to assess differences
and limitations of these existing implementations, but also provide a basis for
steering future research directions and standardization efforts. The need for such
standardization is highlighted by the formation of an RDF Stream Processing
community group backed by W3C1. Design decisions in this context should be
informed by comprehensive benchmarks, which this work aims to provide.

Previous studies analyzed isolated aspects such as functional coverage [15],
performance [11], or correctness [8] through specialized benchmarks. This work
focuses on window-based stream processing engines and compares them along
all these dimensions. To this end, we developed YABench (Yet Another RDF
Stream Processing Benchmark), an integrated framework to assess both correct-
ness and performance of RSP engines. YABench provides means for the definition
of test scenarios, generates reproducible test data streams, performs evaluation
runs, and provides analyses of the results. It provides full reproducibility and
emphasizes visual presentation of results to foster an understanding of engines’
individual characteristics, including correctness under varying input loads, win-
dow sizes, and window frequencies.

The remainder of the paper is organized as follows (contributions high-
lighted):

– Sect. 2 provides an overview of related work and differentiates YABench from
other RSP benchmarks and work in related domains;

– Sect. 3 introduces our stream generator (Sect. 3.2), discusses currently sup-
ported engines (Sect. 3.3), and outlines the design of the oracle component
(Sect. 3.4);

– next, we validate YABench against CSRBench (Sect. 4), and
– discuss results of our experiments (Sect. 5) that analyze engines’ correctness

under varying input parameters.
1 http://www.w3.org/community/rsp/, Accessed Jan. 12th, 2016.

http://www.w3.org/community/rsp/
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– We conclude with a discussion on implications and an outlook on future work
in Sects. 6 and 7, respectively.

2 Related Work

In the traditional data streaming domain, the Linear Road (LR) benchmark [1]
is widely used for evaluating DSMSs. It is based on a configurable toll system
simulation and consists of a historical data generator, a traffic simulator, a data
driver, and a validator. LR provides a comprehensive framework for experiments
and served as an inspiration for YABench, where our goal is to provide a similarly
comprehensive benchmark for RDF stream processing. Like LR, YABench is
capable of testing functional aspects such as window-based queries, joins, filters,
and aggregations. In addition, YABench covers RSP-specific aspects not covered
by LR, such as the influence of query complexity and varying throughput on
precision, recall, and delay per window.

In the semantic web domain, there are several well-established benchmarks,
including LUBM [9], FedBench [13], BSBM [4], and DBPSP [12]. These bench-
marks, however, operate on static knowledge bases and focus on characteristics
such as query execution and load times. They do not address aspects that arise in
a streaming context, such as correctness under high load. RSP engines’ inconsis-
tent interpretation of streaming operators’ semantics poses additional challenges
and precludes the reuse of existing (non-streaming) benchmarks.

The RSP research community has also developed a number of specialized
benchmarks. LSBench [11] first allowed comparisons between Linked Stream Data
processing engines. Using a social network scenario, the benchmark uncovered
conceptual and technical differences between CQELS, C-SPARQL, and JTALIS.
Furthermore, it highlighted performance differences between these engines and
included limited functionality and correctness tests. Because LSBench does not
include means to determine the correct output, however, it does not provide
absolute correctness figures to RSP engine developers. The benchmark is also not
customizable for engines’ varying execution strategies. YABench overcomes these
limitations by introducing a configurable oracle that allows to emulate the behav-
ior of different engines. This is an essential requirement due to the fact that cur-
rently available engines do not agree on common operational semantics. Hence,
the oracle represents a means to create reproducible results based on configurable
operational semantics allowing to compare results from different engines along dif-
ferent dimensions such as performance and correctness.

SRBench (Streaming RDF/SPARQL Benchmark) [15] defines a set of queries
that cover RSP-specific aspects, such as ontology-based reasoning or the appli-
cation of static background knowledge to streaming data. The authors conduct a
functional evaluation of C-SPARQL, CQELS, and SPARQLStream and conclude
that the capabilities of these engines are still fairly limited. Due to the focus
on functional aspects, SRBench does not recognize differences in the operational
semantics of the benchmarked systems. To validate the query results, the authors
propose correctness metrics such as precision and recall. YABench implements
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these metrics on a per-window basis and thereby makes it possible to quantify
engines’ retrieval performance on the most granular level.

CSRBench (Correctness checking Benchmark for Streaming RDF/SPARQL)
[8] focuses on the correctness of stream query results. To this end, CSRBench eval-
uates RSP engines’ compliance to their respective operational semantics using an
oracle that determines the validity (i.e., correct or incorrect) of the query results.
It thereby complements functional (SRBench) and performance (LSBench) eval-
uations. The authors find that none of the tested engines passes all tests and pro-
vide a detailed account on why certain engines fail at specific queries. CSRBench
takes first steps towards validating RSP engines, but lacks comprehensive correct-
ness evaluations over time. YABench extends the idea of oracle-based validation
using more comprehensive correctness metrics (i.e., precision and recall) for each
window.Moreover,we relate these correctnessmetricsdirectly toperformancemet-
rics such as delay in query result delivery or memory consumption and CPU uti-
lization. Thereby, YABench provides insights into throughput and scalability and
provides a comprehensive toolset to investigate RSP engine characteristics, includ-
ing both performance and correctness. In addition, our modular architecture also
allows researchers to easily exchange the RSP engines, stream generators, and con-
tinuous queries used in the benchmark. To the best of our knowledge, YABench is
the first RSP benchmarking framework to provide such functionality.

3 YABench Framework

We define the following requirements for comprehensive RSP benchmarking:

R1 Scalable and configurable input : Input data should be scalable and con-
figurable to allow for the flexible definition of benchmark scenarios. This
allows researchers to conduct experiments under varying conditions, such as
high/low load and varying window sizes.

R2 Comprehensive correctness checking : It should be possible to check the cor-
rectness of results, despite engines’ varying operational semantics. Moreover
we aim at measuring real throughput, i.e., how does input load affect cor-
rectness of results.

R3 Flexible queries: Queries should be parameterizable, i.e., it should be possi-
ble to create test configurations using the same queries, but varying query
parameters.

R4 Reproducibility : Experiments need to be reproducible to ensure independent
validation of results is possible at a later point in time.

The YABench framework implements these requirements through four ele-
ments: (i) a stream generator that create test data streams; (ii) an oracle that
tests the correctness of results; (iii) supported engines to be benchmarked; and
(iv) a reporting tool that visualizes the results.
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Fig. 1. Architecture of YABench framework

3.1 Architecture

YABench is designed around a modular architecture (Fig. 1) that decouples test
configuration from execution. It allows to define tests in a declarative manner
and can run complete benchmarking workflows with a single command.

The framework consists of four separately executable modules, i.e., the Stream
Generator,RSP engine, theOracle and theRunner which controls the overall exe-
cution flow of a test. The test configuration consists of a configuration file (con-
fig.json) and two query templates, engine.query for the engine and oracle.query
for the oracle. The configuration file defines a set of tests that use the same query
templates, but with varying parameters such as window size and slide (R3 ).

Each benchmark yields oracle results (ORACLE < name >) and perfor-
mance measurements (P < name >). These results can be visualized by means of
a provided reporting web application. More details about the architecture and the
test configuration can be found on the wiki of the project’s GitHub repository2.

3.2 Stream Generator

The Stream Generator implements R1 and is used to create input data that is
subsequently fed to the respective engines. It turned out to be more practical to
separate the steps of creating data, feeding it to the engines, and creating mea-
surements. The stream generator emulates an environmental monitoring scenario
and draws on the LinkedSensorDataset3 which is also used for SRBench [15] and
CSRBench [8]. The data set consists of weather observations from hurricanes in
the USA. We selected this simple data model for two reasons: (i) it makes our work
2 http://github.com/YABench/yabench, Accessed Jan. 12th, 2016.
3 http://wiki.knoesis.org/index.php/SSW Datasets, Accessed Jan. 12th, 2016.

http://github.com/YABench/yabench
http://wiki.knoesis.org/index.php/SSW_Datasets
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comparable to previous work, particularly to CSRBench (see Sect. 4); and (ii) hav-
ing such a simple and generic model allows for scenario parameterization, e.g., by
changing the number of simulated weather stations to vary load on an engine.

To simulate more complex data flows, YABench can easily be extended with
additional stream generators by extending the class AbstractStreamGenerator
from the yabench-generator module4. Note however, that more complex data
streams increasingly make it difficult to isolate effects (i.e., which parameter
influences which measurable performance indicator).

Figure 2 illustrates the structure of the data model. A central element
of the data model is weather:TemperatureObservation, which represents a
single observation. This observation is connected to actual measure data via
om-owl: result. The om-owl:observedProperty indicates which environmen-
tal condition was sensed by the ssw:system. The system represents a sensor
which is creating measurements. It is connected to the observation via the
om-owl:procedure relation.5

Based on an input function gen(s, i, d, r, n), the process generates an RDF
stream S where s denotes the number of simulated systems, i denotes the time
interval between two measurements of a single station, d denotes the duration
of the generated output stream, r denotes a seed for randomization to vary the
timestamps of initial measurements of each system, and n defines the generator
which should be used. Input load for experiments can be varied with the s and i
parameters. The combination of parameters s, i , and r ensures reproducibility,
because the stream generator guarantees that the exact same stream is generated
every time for a given parameter set, hence, this satisfies R4.

3.3 Engines

YABench can currently benchmark two engines, i.e., C-SPARQL 0.9.56, and
CQELS 1.0.07. After a stream has been generated, the YABench engine compo-
nent calls a function stream(d, q, s), where d denotes the destination of output
files, q defines the continuous query which will be registered at the engine, and s
defines the input stream, which was previously generated. At this stage output
files will be created for performance measurements and query results.

YABench essentially wraps each engine to allow stream data feeding
under controlled conditions. The input RDF stream S consists of a sequence
of timestamped triples in non-decreasing time order in the form of S =
((〈s, p, o), t0〉), (〈s, p, o), t1〉), ...). The wrapper iterates over the input stream S

and feeds sets of RDF statements with same timestamps to the engine, hence,
4 https://github.com/YABench/yabench/tree/master/yabench-generator, Accessed

Jan. 12th, 2016.
5 The authors are aware of the fact that at the time of writing, two properties of

the used vocabulary for the data model have undergone quasi-standardization as
part of the SSN ontology and were changed in the process (result changed to
observationResult and procedure changed to observedBy).

6 http://github.com/streamreasoning/CSPARQL-engine, Accessed Jan. 12th, 2016.
7 https://code.google.com/p/cqels/, Accessed Jan. 12th, 2016.

https://github.com/YABench/yabench/tree/master/yabench-generator
http://github.com/streamreasoning/CSPARQL-engine
https://code.google.com/p/cqels/


286 M. Kolchin et al.

Fig. 2. Data model of generated streams based on LinkedSensorData.

Ft0 = {(〈s, p, o)〉 | (〈s, p, o), t0〉 ∈ S } while respecting time intervals i = t1 − t0
between feeds Ft0 and Ft1 .

While feeding the engines with the graphs, we continuously take measure-
ments, i.e., absolute and relative memory consumption, cpu usage, and the
number of threads spawned. Because YABench is implemented in Java, addi-
tional Java-based RSP engines can be easily integrated for benchmarking. To
this end, it is sufficient to extend the classes AbstractEngine, AbstractQuery,
ContinuousListener, and AbstractEngineLauncher, all of which are available
in the yabench-commons module8.

3.4 Oracle

To check the correctness of query results and thereby satisfy R2, we implemented
an oracle. The implementation is inspired by the oracle used in CSRBench [8],
but built on top of Jena ARQ9 and extended with more granular metrics, which
are computed for each window: precision and recall, delay of query results, num-
ber of triples in the window, and number of tuples in the query results.

The semantics used by the oracle can be configured, i.e., the specification
of the oracle can be changed in accordance to the benchmarked engine. Report
policy parameters [5] are provided to emulate either CQELS (OnContentChange)
or C-SPARQL (OnWindowClose). Hence, we are able to provide correct results
that account for the respective report policy.

The oracle checks the results (recorded in QR < name > file) of a continuous
query q by using the same input stream S and an equivalent, but static, SPARQL
query q ′ (oracle.query). It takes into account the report policy which the given

8 https://github.com/YABench/yabench/tree/master/yabench-commons, Accessed
Jan. 12th, 2016.

9 https://jena.apache.org/documentation/query/, Accessed Jan. 12th, 2016.

https://github.com/YABench/yabench/tree/master/yabench-commons
https://jena.apache.org/documentation/query/
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engine applies as well as window size α and slide β parameters of the continuous
query q . The following report policies are provided by the oracle:

– Content change: reporting when the content of the active window changed
(used by CQELS).

– Window close: reporting when the active window closes (used by C-SPARQL).

The oracle uses the following procedure to check correctness:

1. Determine the scope [ts, te) of the next window that will report based on the
given window size α, window slide β, and report policy.

2. Use the scope [ts, te) to select window content from the input stream S where
the relevant triples are Fts ,te = {(〈s, p, o)〉 | (〈s, p, o), t〉 ∈ S, ts ≤ t < te}.

3. Compute the expected result by executing the SPARQL query q ′ on Fts,te on
the query engine.

4. Compare the result of this query with the next result of continuous query q
and compute precision/recall metrics.

5. Compute remaining metrics, i.e., delay, window size, and result size.

Delay. The delay d of query results is defined as the difference between the
end timestamp of the oracle window tWi

eo and the actual timestamp tWi
es of the

engine’s output for this window. The timestamp when the engine output the
result is recorded in file QR < name >.

Gracious Mode. In addition to the algorithm described above, the oracle
implements a new gracious mode to reveal issues associated with wrong window
content. In the default non-gracious mode, the oracle strictly uses the defined
window size and range from the registered continuous queries to calculate the
content of windows which, in turn, is used to measure precision and recall. How-
ever, we found that low precision and recall are often caused by imprecise event
processing near windows borders. To determine the magnitude of this effect and
isolate incorrect query results that are not caused by window border issues, we
implemented a gracious mode. In this mode, the oracle iteratively shifts window
borders to determine for which borders an engine achieves maximum precision
and recall. This method allows to reconstruct the actual window borders which
were applied by the engines at the time of running the experiments. By looking at
the reconstructed windows (see results of experiment four in Sect. 6) researchers
can gain visual and quantifiable insights into the extent and cause of incorrect
RSP engine behavior.

4 Validation Against CSRBench

By validating YABench against CSRBench, we ensure that it produces equivalent
results. In later experiments (see Sect. 5), we then show that our framework
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facilitates evaluations that go beyond the scope of CSRBench. The source code
and instructions on how to run the validation are published on GitHub10.
The methodology for the validation is as follows:

– We convert the original data used by CSRBench to N-Triples format, and
extend it with timestamps to emulate the input stream load. By doing so, the
data stream looks the same as the output of our stream generator.

– For each of the seven CSRBench queries we need to setup tests configurations.
These configuration files define parameters such as window size, window slide,
and filter parameters, which will be used when registering the queries.

– For each engine and for each of the seven CSRBench queries we then execute
the test, i.e., feeding the engines with the input stream and registering queries
with the defined parameters.

– After all tests are complete, we compare the results of CSRBench11 with the
results created by YABench.

Table 1. Results of YABench validation against CSRBench results. Cells which include
asterisks are referred to in the text.

Query C-SPARQL CQELS

CSRBench YABench CSRBench YABench

Q1 � � � �
Q2 � � � �
Q3 � �∗ � �
Q4 � � × ×
Q5 × × � �
Q6 � �∗ × ×
Q7 � �∗ × ×∗∗

Table 1 summarizes the results of the validation. Results were compared and
inspected manually. Checkmarks indicate that YABench produced equivalent
results to CSRBench. Columns of CSRBench which contain an × denote that
the respective engine did not produce correct results. In all such cases, YABench
also indicated that the engine did not deliver correct results.

Checkmarks denoted with one asterisk (*) indicate that YABench produced
largely identical results, but that some results were missing. This occurred in
some cases were triples were very close to a window border. In these cases, we
found that in C-SPARQL such triples may fall either into the scope of Wn or
Wn+1. This can be attributed to timing discrepancies, which we encountered
10 https://github.com/YABench/csrbench-validation, Accessed Jan. 12th, 2016.
11 Obtained from https://github.com/dellaglio/csrbench-oracle-engines, Accessed Jan.

12th, 2016.

https://github.com/YABench/csrbench-validation
https://github.com/dellaglio/csrbench-oracle-engines
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when running benchmarks multiple times and/or on different systems. However,
we verified that all results are present, if not in the correct window, then at the
latest in the subsequent window.

Crosses in the YABench columns indicate that results did not match those
of CSRBench experiments. This is expected behavior, because the same queries
did not pass correctness tests of CSRBench in the original tests either. The cross
denoted with two asterisks (**) indicates that the query (Q7 ) did not execute
successfully on the CQELS engine.12

We can conclude that, besides minor, well-explained inconsistencies,
YABench reproduces the results of CSRBench. Beyond the scope of previous
benchmarks, however, YABench employs a more comprehensive approach that
allows (i) to define experiments including test data, input load parameters, and
queries, (ii) to perform experiments that consider the varying operational seman-
tics of the tested engines, and (iii) to conduct in-depth analyses based on new
throughput, delay, and correctness metrics. These capabilities are used for the
experiments discussed in the following section.

5 Experimental Setup

We use YABench and its oracle to perform experiments with two engines, C-
SPARQL and CQELS. In particular, we are interested in how the correctness
of results is affected by changes in the input data streams. Whereas previous
correctness metrics exclusively focused on checking whether engine results are
included in the oracle results, i.e., a yes/no evaluation, we provide more granular
metrics. To this end, we use precision and recall calculations in combination
with performance metrics. These metrics uncover issues that can be caused by,
for instance, shifting of window borders under load, leading to lower precision
or recall values. Moreover, we measure an engine’s delay in delivering results
and the amount of RDF statements inside a window’s scope to understand and
to explain low retrieval rates. Hence, YABench is the first RSP benchmark to
provide a comprehensive picture of an engine’s behavior under stress.

Generally, we reuse the queries introduced by CSRBench, however, for each
query we are able to parametrize window size α, window slide β, and filter
values f thereby satisfying R3. For the input streams, we control the number of
stations s to simulate low, medium, and high load scenarios. The interval time
i between measurements will be 1 s and the duration of each experiment is 30s.
The experiments are run in non-gracious mode, unless otherwise stated.

Performance measurements, such as memory consumption, are taken at reg-
ular intervals, i.e., 500 ms. Because all other metrics observe characteristics of
the windows, they are taken and displayed on a per window basis. We repli-
cated each experiment ten times and illustrate the distribution of result metrics
obtained for precision, recall, and delay as boxplots.

12 The system crashed before returning the query results.
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We use the CSRBench queries available on the W3C wiki13 for our experi-
ments, which were executed on an Intel Core i7-3630QM @ 2.4 GHz, Quad Core,
64bit, 12 GB RAM running Windows 7 Professional. In parantheses we denote
which queries of CSRBench are reused in each experiment. Complete results are
published on GitHub14 and can be visualized with our web application YABench-
reports.

5.1 Experiment 1 (Q1)

This experiment uses a simple SELECT statement combined with a FILTER ask-
ing for the latest temperature observations above a specified threshold and the
sensor which took the measurement. We run the experiment with the following
parameters: α = 5 s, β = 5 s, s = 50/1000/10000 (small/medium/big), i = 1 s.

5.2 Experiment 2 (Q4)

The second query makes use of the aggregation function AVG combined with a
FILTER to return the average temperature value over a given window. To answer
such aggregate queries, depending on the report policy as well as window content
and window size, stream processors typically face high resource costs. Because
CQELS does not comply with the semantics of AVG as defined by SPARQL 1.115,
we had to implement a custom AVG operator that returns an empty result if there
are no matches. We run the experiment with the following parameters: α = 5 s,
β = 5 s, s = 1/1000/10000, i = 1 s.

5.3 Experiment 3 (Q6)

This query returns sensors that made two observations (of different timestamps)
with a variation between measurements higher than a given threshold. The query
uses the SELECT keyword to ask for shifts of measured values over time from the
same sensor. To execute this query, engines must be capable of joining triples over
different timestamps. In order to produce meaningful and comparable results for
both engines in this experiment, we slightly changed the number of simulated
stations (s) and ran the experiment with the following parameters: α = 5 s,
β = 5 s, s = 50/200/500, i = 1 s.

5.4 Experiment 4 (Q6)

This experiment is designed to reveal issues of lower precision and recall values
encountered for both engines in particular cases. When running experiment three
we observed deteriorating precision and recall due to the following reasons: For
CQELS the reason is delayed deletion of window content, for C-SPARQL slight
13 http://www.w3.org/wiki/CSRBench, Accessed Jan. 12th, 2016.
14 http://github.com/YABench/yabench-one, Accessed Jan. 12th, 2016.
15 http://www.w3.org/TR/sparql11-query/#defn aggAvg, Accessed Jan. 12th, 2016.

http://www.w3.org/wiki/CSRBench
http://github.com/YABench/yabench-one
http://www.w3.org/TR/sparql11-query/#defn_aggAvg
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window shifts are responsible. This led us to the development of a so called
gracious mode where the oracle eliminates these issues resulting in both high
precision and recall and the possibility to detect new issues unrelated to potential
window delays. Hence, this experiment, shows the effects of the gracious mode
by comparing its results with the non-gracious mode as well as discussing and
explaining the differences. In non-gracious mode the oracle does not account for
any issues and expects ideal behavior of the engines.

We ran two similar tests for both engines with the following parameters, one
of them in gracious mode and the other one in non-gracious mode: α = 5 s,
β = 5 s, s = 1, i = 1 s.

6 Discussion

The YABench framework provides a reporting web application named YABench-
reports. Based on results of the oracle and performance measurements it displays
three graphs, i.e., (i) a precision/recall graph that includes indicators for the
windows, (ii) a graph showing delay of result delivery, and expected/actual result
size, and (iii) a graph providing performance measurements. For the sake of
brevity we only discuss the results of experiments one and four in this paper.
Experiments two and three are discussed in an online appendix16.

Figure 3 illustrates the results of the first experiment; Figs. 3a–c show box-
plots of precision and recall values for each of the three load scenarios (small:
s = 50, medium: s = 1000, and big: s = 10000); Figs. 3d–f show boxplots of the
observed delay; and Figs. 4a–c show line charts of an engine’s memory consump-
tion during the stream feeding and query evaluation.

We found that CQELS maintains 100 % precision and accuracy under small
load, whereas C-SPARQL achieves slightly lower values (precision is at 100 %
except for window three and four, the mean for recall ranges between 97 % and
100 %). Generally, we observe that recall is lower than precision for C-SPARQL.
This is due to the shifting of the actual engine windows compared to the ideal
expected windows from the oracle due to delays and will be explained in more
detail later (see Fig. 5).

We observed similar behavior under medium and high load (see Figs. 3b–c).
For this simple query, CQELS still scores perfect precision and recall, whereas we
observe deteriorating effects for C-SPARQL. The recall values from window two
and three show a particularly higher spread. The mean of all recall measurements
is still high. The spread can be explained by the higher delays of the first two
windows (see Fig. 3e). Because C-SPARQL delivers results upon the closing of
a window, the delay has an effect on precision and recall. This is not the case
in CQELS, where delay in result delivery does not necessarily mean that the
window content – and consequently the computed results – are incorrect. In fact,
for CQELS the opposite is the case, meaning that delayed results still provide
correct results. This is also reflected by our oracle.

16 https://github.com/YABench/yabench-one, Accessed Jan. 12th, 2016.

https://github.com/YABench/yabench-one
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Fig. 3. Precision/recall results of Experiment 1 for CQELS and C-SPARQL

Delay of result delivery under low load is depicted in Fig. 3d. For CQELS
mean result delivery varies between 81.5 ms and 201.5 ms. The values rise
steadily, but even out for the last three windows. Interestingly, delay in
C-SPARQL exhibits the opposite characteristics. The first window always yields
longer delay (mean = 153.5 ms), whereas the following windows show short delays
between 7 ms and 38 ms. Delay can also be negative, when results are delivered
earlier than expected.

Figures 3e and 3f show the delay for medium and big load respectively. We
observe similar behavior as before, but on a much higher scale. Moreover, CQELS
delays do not even out anymore for the last windows, but continue to increase.
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Fig. 4. Performance results of Experiment 1 for CQELS and C-SPARQL

Finally, we found that YABench reveals a correlation between the result size
and delay times, as shown in Fig. 4d, which shows both metrics for a single test
run. We see that delay times increase when result size increases. This relation
is expected, but YABench allows to quantify the influence of large amount of
result bindings on an engine’s performance.

Figures 4a–c provide details about both engines’ performance. C-SPARQL is
more memory efficient and exhibits a moderate increase in memory consump-
tion between low (mean = 123 MB) and medium (mean = 250 MB) load. For
both engines, the removal of window content is apparent in the charts – partic-
ularly in Fig. 4a– in the form of rapid decreases after every five seconds, i.e., the
defined window size. Under medium load, memory consumption of CQELS rises
to about 1100 MB where it then flattens out. Both engines show similar behavior
under high load (see Fig. 4c), where the charts show a steep increase in memory
consumption until ten seconds. Beyond that, the graph flattens out again with
a maximum of 1506 MB (CQELS) and 1288 MB (C-SPARQL).

As already noted, for C-SPARQL precision always stays higher than recall,
if both values deteriorate. The reason why precision and recall decrease, is given
by the fact that higher load leads to bigger delays in query result delivery.
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Fig. 5. Lower precision and recall due to delay of actual window Wa

The observed delay supports the conclusion that the actual windows are
shifted, therefore, deviating from the ideal windows computed by the oracle as is
shown in Fig. 5. Given a query which asks for all statements occurring on stream
S, a delay between start and end timestamps of the expected window computed
by the oracle We and the actual window Wa by the engine, can be observed.
This is also the reason for lower precision and recall values. We contains only
one (s2 ) of three relevant statements (blue filling), hence, recall r = 1/3. Out
of the two selected statements of We ({s1 , s2}) only the latter one is relevant,
hence, precision p = 1/2. In other words, whereas the scope of an ideal window is
[ts, te), the scope of shifted windows adds a delay to the start and end timestamps
and is denoted as [ts + ds, te + de). It is worth to note that ds and de can
be different due to timing issues of engines. This explains different declines in
precision and recall.

In experiment four, we investigate and explain issues that we experienced
while manually testing the engines. Under certain conditions, which are emulated
in this experiment, we observed that precision and recall values are decreasing.
For CQELS, which employs a content change report strategy, these lower val-
ues are caused by delayed purging of active window content. By purging, we
mean that all elements are deleted from the content of a window. As time in a
streaming setting moves on, elements exit the scope of windows, hence, engines
are responsible of correctly maintaining the content of windows. In C-SPARQL,
which employs a window close report strategy, the values can be explained by
the shifting of an engine’s active window forward on the timeline (see Fig. 5).

To investigate the root causes of these issues we implemented the gracious
mode. In this mode, the oracle adjusts its window scope to match the scope of
an actual window, even though the actual window may contain incorrect ele-
ments (see Sect. 3.4). This has two consequences: First, precision and recall values
increase, because gracious mode reverts the effects of incorrect window content.
This allows us to confirm our assumptions on why low precision and recall val-
ues were observed. Second, we are able to reconstruct and visualize the window
borders that were actually used internally by the engines. Thereby, we unveil dif-
ferences between expected and actual windows. Expected windows are windows
which we would expect from a correctly implemented engine with zero delays.

Figure 6 shows the oracle results of the tests for CQELS. As we can see in
Fig. 6a, precision and recall values decrease after the first window for CQELS in
non-gracious mode. This confirms the issues we experienced when performing
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Fig. 6. Experiment 4 results for CQELS in gracious and non-gracious mode

manual testing. Figure 6b shows results of the same test, but with gracious mode
enabled. Here we can see that precision and recall values are both at 100 %.
YABench achieves this by shifting the window borders of the oracle until reaching
maximum precision and recall values. As a result we can see the adapted window
borders at the bottom of the charts. The oracle had to shift the window starts
to the left in order to reach high precision and recall. This indicates that the
engine forgets to delete outdated elements from the content of the active window
for the query which is used in this experiment.

Finally, Table 2 presents observations which we made while executing exper-
iments on CQELS. It shows the time the final result was delivered of the tests
for small (S), medium (M), and big (B) load scenarios. One would expect the
final result to arrive immediately after the last triple was streamed to the engine,
which equals the duration of one test, i.e., 30 s in our case. This is the case when
we put CQELS under low load as can bee seen in the columns denoted by an S.
However, under medium and high load, denoted by M and B columns, we see
that delivery delay of the results grows. The reason for that is that CQELS uses
the OnContentChange report strategy, where queries are evaluated after each
streamed triple. Obviously, more complex queries increase the time needed for
computation of query results, resulting in a progressive increase in delay. Hence,
by showing the arrival of the last result, we can quantify and infer the influence

Table 2. Arrival time (average, minimum, maximum) of final results in seconds for
each conducted experiment (E1, E2, E3) under different loads (S = small, M = medium,
B = big) with CQELS.

E1 (SELECT) E2 (AVG) E3 (SELECT + JOIN)

S (50) M (1000) B (10000) S (50) M (1000) B (10000) S (50) M (1000) B (10000)

AVG 30 s 32 s 98 s 31 s 432 s 12966 s 31 s 62 s 269 s

MIN 30 s 32 s 97 s 31 s 426 s 12305 s 31 s 58 s 263 s

MAX 30 s 33 s 100 s 31 s 440 s 13523 s 31 s 65 s 277 s
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of different query types on the capability of CQELS to provide timely results.
These numbers should not be compared with C-SPARQL where such delays did
not appear due to its report strategy, where queries are only evaluated when a
window closes resulting in much lower computational effort.

7 Conclusions and Future Work

In this paper, we introduced YABench, a comprehensive RSP benchmarking
framework that provides detailed insights into RSP engines’ performance and
correctness characteristics. These insights are derived from granular metrics,
including those that capture engines’ capability to produce correct results under
load. The framework supports a complete benchmarking workflow from defining
tests, generating suitable test data, executing tests, and finally analyzing the
results. We have shown that the framework replicates the basic results of an
existing benchmark (i.e., CSRBench) and conducted and discussed four more
comprehensive experiments, each of which focused on particluar aspects of RSP
engines. The resulting visualizations provide insightful information on the char-
acteristics of the tested engines and highlight key differences. In the process of
our benchmarks, we also identified and discussed previously unknown issues.

To sum up our findings, YABench reveals that C-SPARQL operates more
memory-efficiently than CQELS in all experiments. Both engines perform simi-
larly in terms of delay, but C-SPARQL outperforms CQELS when more complex
queries are used and under increasing input load. This can mainly be attributed
to the different report strategies implemented by the engines. Concerning pre-
cision and recall, CQELS yields better results for simple queries. However, we
identified an issue in CQELS which results in decreasing precision and recall mea-
surements. On the other hand, C-SPARQL suffers from window delays, which
increase when load on the engine is raised. By introducing a gracious mode for
running the oracle, we are able to estimate the extent of these effects.

There are several directions for future research. First, we plan to extend func-
tional coverage of the test cases. It would be interesting to evaluate the influence
of multiple windows in one query on an engine. To this end, it would be necessary
to extend the oracle to support other window operators and combinations of mul-
tiple windows. Second, we aim to support benchmarks that involve background
knowledge, multiple input streams, and multiple queries. This will broaden our
understanding of how well engines can deal with merging high-frequency data
streams with large static data sources, which is one of the promising application
scenarios for RSP engines.

Finally, we aim to obtain further insights on how engines cope with variations
in inter-arrival times of elements.
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