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Abstract. Ontology reasoning is typically a computationally intensive
operation. While soundness and completeness of results is required in
some use cases, for many others, a sensible trade-off between computa-
tion efforts and correctness of results makes more sense. In this paper,
we show that it is possible to approximate a central task in reasoning,
i.e., A-box consistency checking, by training a machine learning model
which approximates the behavior of that reasoner for a specific ontology.
On four different datasets, we show that such learned models constantly
achieve an accuracy above 95 % at less than 2% of the runtime of a rea-
soner, using a decision tree with no more than 20 inner nodes. For exam-
ple, this allows for validating 293M Microdata documents against the
schema.org ontology in less than 90 min, compared to 18 days required
by a state of the art ontology reasoner.
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1 Introduction

Ontologies have been a central ingredient of the Semantic Web vision from the
beginning on [2,14]. With the invention of OWL, the focus has been on rather
expressive ontologies that describe a rather limited set of instances. A number of
advanced reasoning systems have been developed to exploit the logical semantics
of OWL [11,13,42,47] to support tasks like consistency checking and the deriva-
tion of implicit information. While ontological reasoning has been shown to be
useful for ensuring the quality of ontological models, it is also known that rea-
soning is very resource demanding both in theory and in practice. The tableaux
algorithm for consistency checking in the Description Logic SHOIN that pro-
vides the formal underpinning of OWL-DL [16] is NExpTime-complete.1 Further,
for large ontologies, the size of the data structures created during the reasoning
process easily exceeds the working memory of standard desktop computers.

Although there have been major improvements on the performance of
Description Logic reasoners, using them for large real world data sets like DBpe-
dia [20], YAGO [45], or schema.org [28] is not possible in real time. To overcome

1 http://www.cs.man.ac.uk/∼ezolin/dl/.
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this problem, tractable fragments, i.e. OWL QL and OWL EL [27] have been
proposed and corresponding reasoners have been developed that offer much bet-
ter performance on models that adhere to these subsets [1,43]. However, real
world ontology often do not adhere to the defined sublanguages, but rather use
logical operators as needed for the purpose of capturing the intended seman-
tics. Examples for popular ontologies outside the tractable fragments of OWL
include FOAF, schema.org, and GoodRelations. This means that we need alter-
native solutions to be able to perform real time reasoning on large real world
datasets.

On the other hand, there are good reasons to assume that in many practical
settings, the reasoning process can be drastically simplified. For many ontolo-
gies, some constructs defined in the T-box are never or only scarcely used in
actual A-boxes. For example, for the schema.org ontology, we have shown in [24]
that a significant portion of the classes and properties defined in schema.org are
never deployed on any web site. Similarly, for DBpedia, we have analyzed the
reasoning explanations for A-box inconsistencies in [31]. We have observed that
those inconsistencies are not equally distributed; on the contrary, no more than
40 different types of inconsistencies are responsible for 99 % of all inconsisten-
cies in DBpedia. Such findings could help tailoring approximate reasoners for a
specific ontology which focus on those parts of the ontology which are actually
required to address the majority of all cases.

So far, the major part of research on ontology reasoning focuses on developing
reasoning systems that are both sound and complete. However, we argue that
reasoning results that are 100 % accurate are not required in many use cases
for which ontology reasoning has been proposed and/or applied in the past,
e.g., information retrieval [40], recommender systems [26], or activity recognition
[4]. On the other hand, many of those use cases have very strict performance
requirements, as they are usually applied in real time settings. For these settings,
approximations of ontological reasoning are a promising approach. A common
approach that has already been investigated in the early days of description
logics is the idea of language weakening where a given model is translated into a
weaker language that allows for more efficient reasoning [38]. While early ideas on
approximating Description Logic reasoning have been shown to not be effective
in practice [12], recent work on reducing OWL 2 to tractable fragments and using
special data structures for capturing dependencies that cannot be represented
in the weaker logic has been reported to provide good results [32].

In this paper, we show how to learn an approximate A-box consistency check-
ing function automatically. To this end, we represent that task as a binary clas-
sification problem and apply machine learning method to construct a classifier
that efficiently solves the problem. Such a classifier automatically learns to focus
on those concepts and axioms in an ontology that are relevant in a particular
setting, as discussed above. This idea can essentially be applied to any ontology
and does not require any manual ground truth annotations, since we can use a
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sound and complete reasoner for generating the training data for the classifier.
The contributions of this paper are the following:

– We present the general idea of imitating A-box consistency checking using
machine learning.

– We apply the approach to the problem of consistency checking of a large
number of A-boxes adhering to the same T-box.

– We evaluate the approach on four real world datasets, i.e. DBpedia, YAGO,
schema.org Microdata, and GoodRelations RDFa.

– We show that the approach reaches more than 95 % accuracy, and performs
the reasoning task at least 50 times faster than a state of the art Description
Logic reasoner.

We see this work as a first step towards a more complete investigation of a
principle of compiling complex logical reasoning into an efficient decision model
that can be executed in the case of highly limited resources.

The paper is structured as follows. Section 2 discusses previous efforts on fast,
approximate reasoning. We introduce our approach in Sect. 3, and an evaluation
on four real-world Semantic Web datasets in Sect. 4. We conclude the paper with
a summary and an outlook on future research directions.

2 Related Work

Some approaches have been proposed in the past to accelerate ontology reason-
ing. In essence, those encompass three families of techniques: approximating the
deduction process itself (e.g. [3]), weakening the expressivity of the language, or
compiling some intermediate results off-line (e.g. [32]).

Some reasoning approaches have been proposed that are specifically tailored
to the needs of a particular model. For instance, the FacT reasoner, one of
the first reasoners for OWL-DL, was originally designed for reasoning about
knowledge in the GALEN Ontology [15]. More recently, the SnoRocket System
was created to reason about the SnoMed Terminology [23], and in [46], Suda
et al. present a special calculus and reasoning system for logical reasoning on
the YAGO Ontology. Nevertheless, optimizing reasoning so far has focused on
providing more efficient reasoning methods for a particular logic. In particular
the EL fragment for OWL has been proposed as a language for very large models
and highly optimized reasoners for OWL EL have been built (e.g. [18,43]) to solve
the performance problem.

In contrast to those works, which always require some explicit assumptions
on how to simplify a given reasoning problem (e.g., which deduction rules to
weaken, which logic language concepts to drop, which intermediate results to
materialize, etc.), the approach we follow is to train a machine learning model,
where the learning algorithm automatically finds a good approximation for a
given ontology, implicitly selecting an appropriate subset of strategies from all
of the above.
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The use of machine learning techniques to complement reasoning has been
proposed for different purposes, e.g., as ontology learning for assisting ontology
engineering and enrichment [19,48], or to introduce approximate class defini-
tions, which are not part of standard ontology languages [33]. There have been
attempts to apply machine learning techniques to reasoning problems in descrip-
tion logics ontologies. The corresponding approaches have addressed the prob-
lems query answering, classification, and instance retrieval, all of which can be
reduced to deciding whether an instance belongs to a class expression in the
ontology.

The connection between the classification and the reasoning problem is estab-
lished through the definition of Kernel [8] or dissimilarity functions respectively
that are defined based on joint membership of instances in ontological classes
or their negation, where the membership is either determined using logical rea-
soning or approximated by a lookup of explicitly membership statements. These
functions are then used as a basis for inductive methods, i.e. kNN [5] and Support
Vector Machines [7].

In more recent work [36] from the same group, terminological extensions of
decision tree [35] and random forest classifiers [34] have been proposed. The
nodes of the decision trees may contain conjunctive concept expressions which
are also represent the feature space. The induction of the trees is guided by an
information gain criterion derived from positive, negative and unknown examples
which correspond to instances known to belong to the class, to its negation, or
that are not known to belong to any of the former. Similar extensions have been
proposed for Bayesian classifiers and regression trees.

These methods were evaluated on a set of rather small ontologies with 50–100
classes (with one exception) and up to 1000 individuals.

The methods proposed in this paper share the motivation with the work
above, the efficient approximation of deductive reasoning tasks by inductive
methods. There are are some differences, however. While the work above focuses
on the development of new machine learning methods for terminological data, our
approach is based on existing machine learning techniques. Further, we address
a different reasoning task, namely consistency checking instead of deciding class
membership. We chose this task as it is the most basic operation in deductive
reasoning. This allows us to later extend our approach to any kind of deductive
reasoning by reduction to unsatisfiability checking. In particular, being able to
approximately check inconsistency provides us with an approximate entailment
operator using the principle of proof by refutation. Finally, to the best of our
knowledge, our work is the first attempt to apply the idea to very large real world
ontologies that are actually used in many applications. We consider models that
are an order of magnitude larger than the ones considered in the works above,
and it not clear whether the existing approaches scale to models of the size
considered in this paper.

In another line of work, machine learning techniques have been used to pre-
dict the efficiency of terminological reasoning [17,37] – that work, however, is
only weakly related as it uses different features and its goal is to predict the
reasoning performance, not its result.
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Fig. 1. Schematic view of our approach

3 Approach

With our approach, we try to approximate a reasoner that checks an A-box for
consistency, given a T-box. Since the outcome of such a consistency is either
true or false, we regard the problem as a binary classification problem when
translating it to a machine learning problem.

Figure 1 depicts a schematic view of our approach. An ontology reasoner is
run on a T-box and a small number of A-boxes, denoted as training data. At
the same time, the A-boxes are translated to feature vectors for the machine
learning classifier. The pairs of feature vector representations of the A-box and
the consistency detection outcome of the reasoner are used as labeled training
examples for the classifier, which then learns a model. This model can be applied
to a (potentially larger) set of A-boxes (denoted as application data).

Formally, we train a classifier C for a T-box T that, given an A-box a in the
set of all A-boxes A, determines whether that A-box is consistent or not:

CT : A → {true, false} (1)

Standard machine learning classifiers do not work on A-boxes, but on feature
vectors, i.e., vectors of nominals or numbers. Thus, in order to exploit standard
classifiers, we require a translation from A-boxes to feature vectors, which is
given by a function F (denoted as feature vector builder in Fig. 1). In this work,
we use binary feature vectors, although other types of feature vectors would be
possible:

F : A → {0, 1}n (2)

With such a translation function, a binary machine learning classifier M , which
operates on feature vectors, can be used to build CT :

CT := M(F (a)) → {true, false} , where a ∈ A (3)

In the work presented in this paper, we use path kernels (often referred to
as walk kernels as well) as defined in [22] for the translation function F . We
slightly altered the original definition such that for literals, we only use the
datatype (xsd:string if none exists), but not the literal value as such. Those
kernels generate an enumeration of all paths up to a certain lengths that exist



140 H. Paulheim and H. Stuckenschmidt

Fig. 2. Example excerpt of an RDF graph

in an RDF graph, and each path is used as a binary feature (i.e., the path is
present in a given A-box or not).

Figure 2 depicts an example graph, which is a sub-part of an actual RDF
graph in our schema.org Microdata dataset (see below). That graph would be
represented by the following six features2, which represent the number of differ-
ent paths that exist in the graph:

schema.org/name_xsd:string
schema.org/director_schema.org/name_xsd:string
schema.org/director_rdf:type_schema.org/Person
schema.org/actor_schema.org/name_xsd:string
schema.org/actor_rdf:type_schema.org/Person
rdf:type_schema.org/Person

4 Evaluation

We evaluate our approach in four different settings:3

1. Validating relational assertions in DBpedia with DOLCE
2. Validating type assertions in YAGO with DOLCE
3. Validating entire Microdata documents against the schema.org ontology
4. Validating entire RDFa documents against the GoodRelations ontology

Furthermore, we compare four different learning algorithms for each setting:
Decision tree, Naive Bayes, SVM with linear kernel4, and Random Forest. Her-
miT [11] is used as a reasoner which produces the ground truth, and also as

2 i.e., for those features, the feature value would be 1, for all others, it would be 0.
3 All the datasets created in this paper are available online at http://dws.informatik.

uni-mannheim.de/en/research/reasoning-approximation.
4 In essence, since we use root paths, this is equivalent to using an SVM whose kernel

function is the count of overlapping root paths of two instances.[6].

http://dws.informatik.uni-mannheim.de/en/research/reasoning-approximation
http://dws.informatik.uni-mannheim.de/en/research/reasoning-approximation
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Table 1. Datasets used for the evaluation. The table shows the ontology complexity of
the schema, the feature set size for the different sample sizes, as well as the percentage
of consistent A-boxes in the samples.

Dataset Complexity # Features % consistent

DBpedia-11 SHIN (D) 61 72.73

DBpedia-111 216 84.68

DBpedia-1111 854 87.67

YAGO-11 SHIN (D) 101 63.64

YAGO-111 621 73.87

YAGO-1111 4,344 71.38

schema.org-11 ALCHI(D) 90 27.28

schema.org-111 250 35.14

schema.org-1111 716 35.10

GoodRelations-11 SHI(D) 200 54.55

GoodRelations-111 508 60.36

GoodRelations-1111 862 63.10

a baseline for performance comparisons.5 All experiments were conducted with
RapidMiner Studio6, for Random Forest, we use the implementation in the Weka
extension. For the latter, the number of trees was set from 10 to 50 due to the
large number of features in some datasets (see below), all other operators were
used in their standard settings.

4.1 Datasets

While most type assertions in DBpedia are correct, the main sources of errors are
relational and literal assertions [30,49]. Since the latter can hardly be detected
by reasoners without literal range definitions (which do not exist in DBpedia),
we concentrate on relational assertions. As a dataset, we use all mapping-based
properties and types in DBpedia [20]. Since DBpedia as such comes with only
few disjointness axioms, which are required for detecting inconsistencies, we add
the top-level ontology DOLCE-Zero [9,10] to the reasoner. In this setting, we
check whether a relational assertion is consistent with the subject’s and object’s
type assertion. Hence, as proposed in [31], each A-box to be checked consists of
a relation assertion and all the type assertions for the subject and object.

In YAGO, types are derived from Wikipedia categories and mapped to Word-
Net [44]. Thus, in contrast to DBpedia, incompatible class assertions are possible

5 A reasoner capable of handling the SHIN (D) complexity class is required for the
experiments (cf. Table 1). In a set of preliminary experiments, we tried both Pellet
[42] and HermiT, where only the latter was able to handle the DBpedia+DOLCE
ontology.

6 http://www.rapidminer.com.

http://www.rapidminer.com
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in YAGO. For example, the instance A Clockwork Orange has both the types
1962 Novels and Obscenity Controversies, among others, which are ontologically
incompatible on a higher level (a controversy being subsumed under Activity, a
novel being subsumed under Information Entity). Again, since the YAGO ontol-
ogy as such does not contain class disjointness axioms, we use it in conjunction
with the DOLCE top level ontology. Similar to the DBpedia case, the reasoner
checks individual A-boxes, each consisting of all the type assertions of a single
entity. Here, we use types which have already been materialized according to the
full hierarchy.

For the schema.org case, we use a sample of documents from the WebData-
Commons 2014 Microdata corpus [25], and the corresponding schema.org ontol-
ogy version.7 Here, a single document is the set of triples extracted from one
Web page. Since schema.org does not come with disjointness axioms, we have
defined a set of disjointness axioms between the high level classes as follows:
Starting from the largest class, we inspect all the class definitions (both formal
and textual), and insert disjointness axioms where appropriate as long as the
T-box does not become inconsistent. The set of those inconsistencies is shown
in Table 2.

Likewise, we proceed with the GoodRelations RDFa documents. From the
WebDataCommons RDFa corpus, we use a subset of documents that use at
least one concept from the GoodRelations namespace, and validate it against
the GoodRelations 1.0 ontology8.

In all cases, we use root paths of arbitrary lengths. This is possible since
there are no cycles in the graphs, since we are only validating single relational
statements for DBpedia, single instances for YAGO, and the documents in the
schema.org Microdata are also cycle-free [29]. For the GoodRelations dataset,
cycles would be possible in theory, however, we did not encounter any in our
sample. If an A-box to test was not proper DL (e.g., an object property was

Table 2. Disjointness Axioms inserted for schema.org. An X denotes a disjointness
axiom defined, an e denotes that the disjointness axiom was expected, but lead to a
T-box inconsistency. Since Local Business in schema.org is both a subclass of Organi-
zation and Place, the latter two cannot be disjoint. Likewise, Exercise Plan is both a
subclass of Creative Work and Medical Entity.

Product Place Person Organization Medical Entity Intangible Event Creative Work
Action X X X X X X X
Creative Work X X X e X
Event X X X X X
Intangible X
Medical Entity X X X
Organization X e X
Person X X
Place X
Product

7 We have followed the recommendations on this web page to create the OWL version:
http://topbraid.org/schema/.

8 http://purl.org/goodrelations/v1.

http://topbraid.org/schema/
http://purl.org/goodrelations/v1
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used with a literal object), the instance was directly marked as inconsistent,
without passing it to the reasoner.

For each of the three use cases, we extracted three versions, i.e., one with
11, one with 111, and one with 1,111 A-box instances. The rationale for those
numbers is that it is possible to evaluate the performance of our approach using
10, 100, and 1,000 training instances, respectively, in a ten-fold cross validation
setting. Table 1 summarizes the characteristics of the datasets.

4.2 Results

For all four pairs of datasets, we compare the results for the four learning meth-
ods. All experiments were conducted in 10-fold cross validation. Table 3 depicts
the accuracy of all approaches.

From the results, we can see that in general, 10 training instances are too few
to train a classifier significantly outperforming the majority prediction baseline.
For the other cases, the decision tree classifier usually provides the best results
(on the DBpedia datasets, the difference to SVM is not significant). Unlike the
other classifiers, the performance of Naive Bayes is worse when trained with 1,000
instances than when trained with 100. This can be explained with the increase
in the number of features when increasing the number of training examples
(cf. Table 1). At the same time, there are many interdependent features, which
violate the independence assumption of Naive Bayes.

Figure 3 depicts ROC curve plots for the four classifiers and the six problems.
Since the table shows that meaningful models are only learned for 100 and more
instances, we only depict ROC curves for the 111 and 1,111 datasets. ROC curves

Table 3. Performance of the different classifiers on the three problems. The table
depicts the accuracy for all classifiers, including the confidence intervals obtained across
a 10-fold cross validation. The best result for each dataset is marked in bold. The
baseline is formed by predicting the majority class.

Dataset Baseline Decision Tree Naive Bayes SVM Random Forest

DBpedia-11 .727 .700± .458 600± .490 .600± .490 .600± .490

DBpedia-111 .847 .937± .058 .756± .101 .946± .073 .901± .049

DBpedia-1111 .877 .951± .016 .856± .043 .961± .015 .926± .017

YAGO-11 .636 .550± .472 .850± .320 .650± .450 .650± .450

YAGO-111 .739 .955± .061 .805± .153 .892± .066 .901± .064

YAGO-1111 .714 .976± .015 .672± .056 .929± .052 .913± .034

schema.org-11 .727 .700± .458 .600± 0.490 .700± .458 .600± .490

schema.org-111 .645 .936± .071 .730± .158 .695± .066 .749± .182

schema.org-1111 .649 .977± .020 .762± .066 .778± .060 .906± .038

GoodRelations-11 .545 .700± .458 .700± .458 .700± .458 .700± .458

GoodRelations-111 .604 .901± .076 .847± 0.129 .901± .076 .892± .078

GoodRelations-1111 .631 .969± .016 .874± .027 .945± 0.20 .945± .027
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(a) DBpedia-111 (b) DBpedia-1111

(c) YAGO-111 (d) YAGO-1111

(e) schema.org-111 (f) schema.org-1111

(g) GoodRelations-111 (h) GoodRelations-1111

Fig. 3. ROC curves for the six datasets and four classifiers. A classifier is better than
another if its curve runs above the other classifiers curve. A random prediction baseline
would lead to to a diagonal.
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Table 4. Computation times for 1,000 statements with HermiT vs. Decision Tree, and
size of the models learned. For the tree size, the first number is the number of inner
nodes, while the number in parantheses depicts the maximum path length to a leaf
node.

Dataset 1000 k instances (ms) All A-boxes (s)

HermiT Features Training Classification HermiT Trained DT Size

DBpedia 86,240 259 256 2 1,293,733 4,002 13 (8)

YAGO 20,624 179 814 6 186,022 556 9 (7)

schema.org 7,769 138 285 2 1,574,014 4,110 19 (19)

GoodRelations 15,577 236 229 2 5,545 101 18 (13)

do not take into account only correct and incorrect predictions, but also reflect
how good the confidence scores computed by the classifiers are. We can see that
the curves often run close to the upper left corner, i.e., the confidence scores are
also usually quite accurate.

In addition to the qualitative results, we also look into computation times.
Here, we compare the runtime for the reasoner to the runtime of a Decision Tree
based classifier, which has been shown to perform best in terms of accuracy. We
compare the runtime for classifying 1,000 A-boxes, as well as provide an estimate
for classifying all A-boxes in the respective settings. For the latter, we consider
all relational statements in DBpedia (ca. 15M in the dbpedia-owl namespace),
all typed YAGO instances (ca. 2.9M), all URLs from which schema.org Micro-
data can be extracted (ca. 293M), and all URLs from which RDFa annotations
with GoodRelations can be extracted (ca. 356k). For estimating the time for
checking all A-boxes, we extrapolated from the time to check 1,000 A-boxes.
The extrapolation of the time for the trained model includes the time for run-
ning the reasoner and training the Decision Tree on 1,000 instances, as well
as the classification with that Decision Tree on the remaining instances. More
formally, the extrapolated time for all A-boxes is

Text = |A| · TF + TT + (|A| − 1000) · TC , (4)

where TF is the time to create features on a single A-box, TT is the time to train
the model on 1,000 instances, TC is the time to check an A-box with the trained
model, and |A| is the total number of A-boxes.9 In total, it can be observed that
the computation time based on the trained model is lower than the reasoning
based computation time by at least a factor of 50.

For the runtimes, only pure computation times for the consistency determi-
nation were measured, but no initialization time for the reasoner (i.e., loading
the ontology for the first time) and no I/O times.10 Furthermore, to make the

9 Note that the features are generated on each A-box in isolation, so there is only a
linear dependency on the number of A-boxes.

10 All runtimes were measured on a Windows 7 laptop with an Intel i7 quadcore proces-
sor and 8 GB of RAM.
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comparison fair for YAGO, the reasoner was also provided with fully materialized
type statements, and the type hierarchy was not loaded by the reasoner.

Table 4 sums up the computation times. It can be observed that for the
Decision Tree based approach, the larger amount of time is spent on the creation
of feature vector representations of the instances, rather than the classification
itself. For example, we see that checking all of DBpedia’s relational assertions11

with our approach would take less than 90 min, whereas HermiT would take
around 15 days. Likewise, checking all the schema.org Microdata documents in
the Web Data Commons Corpus would take more than 18 days with HermiT,
while our approach would also finish that task in less than 90 min.

Another interesting observation is that the size of the models used for classi-
fication is relatively small. While the ontologies are fairly large (loading DBpedia
and DOLCE into HermiT for validating a single statement consumes 1.5 GB of
RAM), the corresponding Decision Trees are surprisingly small, with no more
than 20 inner nodes. Furthermore, the longest path to a leaf node, which cor-
responds to the number of tests to be performed on the A-box for computing
the results, is also strongly constrained, which explains the high computational
performance of the approach.

5 Conclusion and Outlook

In this paper, we have shown that it is possible to approximate a reasoner for
A-box consistency checking by training machine learning classifiers. Especially
decision trees have turned out to be quite effective for that problem, reaching
an accuracy of more than 95 % at computation times at least 50 times as fast
as a standard ontology reasoner. The resulting trees are surprisingly small, with
no more than 20 decision nodes and tests to perform. This makes the approach
appealing to be applied in scenarios with very strongly limited computation
resources where not only computation time, but also memory is constrained.

The fact that the learned decision trees use only a very small number of
features would allow for even faster implementations of such reasoners, since the
tests in the inner nodes could also be performed by pattern matching against
the A-box instead of the explicit creation of the entire set of features.

So far, we have focused on consistency checking. However, we believe that the
approach is versatile enough to be transferred to other reasoning tasks as well.
For example, the task of instance classification could be modeled and solved as a
hierarchical multi-label classification problem [41]. Similarly, the task of explain-
ing an inconsistency could be modeled as a multi-label classification problem,
with the target of predicting the axioms in the explanation.

The evaluation has shown that with decision tree classifiers, it is not only
possible to make predictions at high accuracy. The ROC curves furthermore
show that the classifier is aware of its quality, i.e., wrong predictions usually
go together with low confidence values. This gives way to developing a hybrid
11 Note that this is not equivalent to checking the consistency of the entire A-box of

DBpedia as a whole.
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system which could deliver high quality results by exploiting active learning [39],
i.e., deciding by itself when to invoke the actual reasoner (and incorporate its
result in the machine learning model).

For the learning task, a challenging problem is to use an appropriate feature
vector representation and configuration of the learning algorithm. For the former,
we assume that there is a correlation between the ontology’s expressivity and
the optimal feature vector representation – e.g., for ontologies incorporating
numerical restrictions other than 0 and 1, numeric feature vector representations
should be preferred over binary ones. For the latter, we assume that there is
a correlation between certain characteristics of the ontology and the machine
learning algorithm configuration – for example, the number of required decision
trees in a Random Forest is likely to depend on the number of classes and
properties defined in the ontology.

The models issued by the learning algorithms have, so far, not been taken
into account for any other purpose than the prediction. However, looking at
which features are actually used by the decision tree could be exploited as well,
e.g., for ontology summarization [21], since they refer to concepts that are likely
to influence a reasoner’s outcome.

In summary, we have shown that it is possible to train rather accurate
approximate reasoners using machine learning. The findings give way to fast
implementations of reasoning in scenarios which do not require 100 % accuracy.
On a theoretical level, the approach opens up a number of interesting research
questions.
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22. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS,
vol. 7295, pp. 134–148. Springer, Heidelberg (2012)

23. Metke-Jimenez, A., Lawley, M.: Snorocket 2.0: concrete domains and concurrent
classification. In: ORE, pp. 32–38. Citeseer (2013)

24. Meusel, R., Bizer, C., Paulheim, H.: A web-scale study of the adoption and evolu-
tion of the schema. org vocabulary over time. In: 5th International Conference on
Web Intelligence, Mining and Semantics (WIMS), pp. 15. ACM (2015)

25. Meusel, R., Petrovski, P., Bizer, C.: The WebDataCommons microdata, RDFa and
microformat dataset series. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS,
vol. 8796, pp. 277–292. Springer, Heidelberg (2014)

26. Middleton, S.E., De Roure, D., Shadbolt, N.R.: Ontology-based recommender sys-
tems. Handbook on Ontologies. International Handbooks on Information Systems,
pp. 779–796. Springer, Heidelberg (2009)



Fast Approximate A-Box Consistency Checking Using Machine Learning 149

27. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web
ontology language: profiles. W3C recommendation, vol. 27, p. 61 (2009)

28. Patel-Schneider, P.F.: Analyzing schema.org. In: Mika, P., et al. (eds.) ISWC 2014,
Part I. LNCS, vol. 8796, pp. 261–276. Springer, Heidelberg (2014)

29. Paulheim, H.: What the adoption of schema.org tells about linked open data. In:
Dataset PROFIling & fEderated Search for Linked Data (2015)

30. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical
distributions. Int. J. Seman. Web Inf. Syst. (IJSWIS) 10(2), 63–86 (2014)

31. Paulheim, H., Gangemi, A.: Serving DBpedia with DOLCE – more than justadding
a cherry on top. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 180–
196. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25007-6 11

32. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for tbox rea-
soning. In: AAAI, pp. 351–356 (2010)

33. Rizzo, G., dAmato, C., Fanizzi, N.: On the effectiveness of evidence-based termi-
nological decision trees. In: Esposito, F., et al. (eds.) ISMIS 2015. LNCS, vol. 9384,
pp. 139–149. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25252-0 15

34. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Tackling the class-imbalance
learning problem in semantic web knowledge bases. In: Janowicz, K., Schlobach,
S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 453–468.
Springer, Heidelberg (2014)

35. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Towards evidence-based termi-
nological decision trees. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager,
R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 36–45. Springer, Heidelberg
(2014)

36. Rizzo, G., dAmato, C., Fanizzi, N., Esposito, F.: Inductive classification through
evidence-based models and their ensembles. In: Gandon, F., Sabou, M., Sack, H.,
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