
RMLEditor: A Graph-Based Mapping
Editor for Linked Data Mappings

Pieter Heyvaert1(B), Anastasia Dimou1, Aron-Levi Herregodts2,
Ruben Verborgh1, Dimitri Schuurman2,
Erik Mannens1, and Rik Van de Walle1

1 Data Science Laboratory, Ghent University - iMinds, Ghent, Belgium
pheyvaer.heyvaert@ugent.be

2 Ghent University – iMinds – MICT, Ghent, Belgium

Abstract. Although several tools have been implemented to generate
Linked Data from raw data, users still need to be aware of the underlying
technologies and Linked Data principles to use them. Mapping languages
enable to detach the mapping definitions from the implementation that
executes them. However, no thorough research has been conducted on
how to facilitate the editing of mappings. We propose the rmleditor,
a visual graph-based user interface, which allows users to easily define
the mappings that deliver the rdf representation of the corresponding
raw data. Neither knowledge of the underlying mapping language nor the
used technologies is required. The rmleditor aims to facilitate the editing
of mappings, and thereby lowers the barriers to create Linked Data. The
rmleditor is developed for use by data specialists who are partners of
(i) a companies-driven pilot and (ii) a community group. The current
version of the rmleditor was validated: participants indicate that it is
adequate for its purpose and the graph-based approach enables users to
conceive the linked nature of the data.

1 Introduction

Semantic Web technologies rely on data which is interlinked and whose semanti-
cally enriched representation is available, the so-called Linked Data [1]. Most of
the current Linked Data stems originally from (semi-)structured formats. Map-
pings specify in a declarative way how Linked Data is generated from such
raw data. Nevertheless, defining and executing them still remains complicated,
despite the significant number of tools implemented for this scope. At first, most
approaches that map raw data to its rdf representation [2] incorporated the
mappings in the implementation that executes them. Thus, not only knowledge
of Semantic Web and Linked Data is required. However, also dedicated software
development cycles for creating, updating and extending the implementations,

The described research activities were funded by Ghent University, iMinds, the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research Flanders (FWO Flanders), and the European Union.

c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 709–723, 2016.
DOI: 10.1007/978-3-319-34129-3 43



710 P. Heyvaert et al.

whenever new or updated semantic annotations are desired, are needed. Mapping
languages, such as r2rml [3] and rml [4], enable to detach the mapping defin-
itions from the implementation that executes them. Besides knowledge of the
underlying mapping language that is required to define the mappings, manually
editing and curating them requires a substantial amount of human effort [5].
Moreover, data specialists are not Semantic Web experts or developers. Thus,
the task of editing mappings should be addressed independently, and disasso-
ciated from the corresponding mapping language and/or underlying technology
used. Facilitating the editing of mappings further lowers the barriers of obtaining
Linked Data and, thus stimulates the adoption of Semantic Web technologies.
Nevertheless, dedicated environments that support users to intuitively edit map-
pings were not thoroughly investigated yet, as it occurred with applications that
actually execute them and deliver its rdf representation. Step-by-step wizards
prevailed, e.g., fluidOps editor [6], as an easy-to-reach solution. However, such
applications restrict data publishers’ editing options, hamper altering parame-
ters in previous steps, and detach mapping definitions from the overall knowledge
modeling, since related information is separated in different steps. We propose
the rmleditor1, an editing environment for specifying mappings of raw data
to their rdf representation based on graph visualizations, without requiring
knowledge of the underlying mapping language. The rmleditor is developed to
support partners of (i) a companies-driven pilot for sharing and integrating the
rdf representations of their data and co-develop third-party applications, and
of (ii) a community-group-driven bootstrap for showcasing the advantages of
Linked Data and Semantic Web technologies. The tool is available to interested
parties under custom licensing conditions. We performed an exploratory user val-
idation of our proposed solution, which showed that the rmleditor achieves the
goal it was implemented for. 82 % of the participants found the use of graphs ben-
eficial for editing mappings using the rmleditor and 70 % could better conceive
that a relationship exists between multiple data sources. The remainder of the
paper is structured as follows: Sect. 2 outlines existing mapping languages and
mapping editors. Section 3 describes the mapping process without and with the
use of a mapping editor. Section 4 presents our proposed solution, the rmleditor.
Section 5 outlines the use cases and explains the exploratory user validation and
presents the results. Last, Sect. 6 discusses the results and presents the conclu-
sions of our solution.

2 Related Work

In this section, we discuss existing mapping languages. Moreover, we elaborate
on existing mapping editors, with a distinction between editors either supporting
homogeneous or heterogeneous data sources.

1 http://rml.io/RMLeditor.

http://rml.io/RMLeditor


RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 711

2.1 Mapping Languages

Mapping languages specify in a declarative way how Linked Data is generated
from raw data. At first, existing formalizations were considered as mapping lan-
guages, such as xpath [7] or xquery language [8]. Nevertheless, there were also
languages defined for this particular task. r2rml [3] is the w3c-recommended
language to define mappings to generate rdf from data derived from rela-
tional databases. Besides r2rml, other format-specific languages were defined,
such as x3ml2 for xml data. There are also query-oriented languages such as
xsparql [9], which combines xquery and sparql to map xml data, and Tarql3,
for data in csv. However, these languages only support homogeneous data
sources. A number of tools were developed supporting mappings from heteroge-
neous data sources to rdf, such as Datalift4, RDFizers5 and Virtuoso Sponger6.
However, those tools actually employ separate source-centric approaches for each
format they support, which does not allow the interlinking between sources in
different formats. The rdf Mapping Language (rml) [4] circumvents this, by
enabling the generation of data in rdf representation based on multiple hetero-
geneous data sources, e.g., xml and json.

2.2 Mapping Editors

Despite the significant number of mapping languages, the number of correspond-
ing editors that support users to define the mappings is not comparable. Similar
to the mapping languages, a distinction can be made between tools supporting
homogeneous data sources and tools supporting heterogeneous data sources.

Homogeneous Data Sources. The fluidOps editor [6] is a browser application
that provides an intuitive user interface for editing mappings. The underlying
mapping language is r2rml. The fluidOps editor relies on a single step-by-step
workflow. There are six successive steps, similar to actually creating a map-
ping document. Although its Graphical User Interface (gui) aims to hide the
r2rmlvocabulary, it still strongly focuses on concepts and terminology intro-
duced by r2rml(e.g., subject maps and object maps). Therefore, knowledge of
the language is required to use the editor. This decreases its adoption by non-
Semantic Web experts and lowers the gui’s reusability potential. Additionally,
only once the users reach the final step, they are able to preview the mappings
in r2rmlsyntax and identify possible inconsistencies. Consequently, they need
to restart the workflow to update the definitions of the previous steps. Pinkel
et al. [5] adapted the original fluidOps editor to overcome flexibility limitations
imposed by the database-driven step-by-step workflow. Their extension supports

2 https://github.com/delving/x3ml/blob/master/docs/x3ml-language.md.
3 https://tarql.github.io/.
4 http://datalift.org/.
5 http://simile.mit.edu/wiki/RDFizers.
6 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger.

https://github.com/delving/x3ml/blob/master/docs/x3ml-language.md
https://tarql.github.io/
http://datalift.org/
http://simile.mit.edu/wiki/RDFizers
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger


712 P. Heyvaert et al.

the ontology-driven approach. With the former approach creating the mappings
starts with the data in the databases, semantic annotations are added after-
wards. With the latter approach the mappings are created based on an existing
ontology. Next, the mappings are complemented with data fractions from the
databases. sheet2rdf [10] is a platform that uses a pearl [11] document to map
data in spreadsheets to rdf. Its gui allow users to view the source data, define
the mappings by editing the pearldocument directly, and view the resulting
rdf through a tabular-structure. However, the adoption of the tool decreases
because users need knowledge about pearlto edit the mappings. An alternative
approach is proposed by Rodrıguez-Muro et al. [12] who introduced -ontopPro-7,
a plugin for Protégé [13]. It allows users to generate rdf based on data from
database(s) and an ontology. Tabs are provided to manage the databases and
the mappings. Users need to write sparql-like templates to define how to map
the original data. However, data sources are limited to databases and users need
to understand the template’s custom syntax.

Heterogeneous Data Sources. Karma8 differentiates from aforementioned
tools because it supports heterogeneous sources, such as databases, delimited
text files (e.g., csv files), json, xml, Microsoft Excel and web apis. It uses
Global-Local-As-View [14] rules to perform the mappings. These rules can be
exported using r2rmlor d2rq [15]. When displaying the mappings to the users,
Karma takes a data-centric approach: users can only view the input data. Users
are not able to follow the ontology-driven approach, as it occurs with the flu-
idOps editor. DataOps [16] uses the latter to support heterogeneous data for-
mats. However, users are still confronted with the syntax of the used languages.
RDF123 [17] is similar to sheet2rdf, however, it also supports csv files, and it
uses custom map graphs to represent the mappings, which are converted to a
custom map function that produces rdf based on the input data. Consequently,
users are not required to understand or know about the map function to define
mappings, as it occurs with pearlfor sheet2rdf. Additionally, they offer a web
service that uses a link to a Google Spreadsheet or a csv file, and generates rdf
based on the mappings defined with the application. Therefore, the maps can
be used outside the desktop application. However, their use is limited to that
web service, as a custom map function is used and not a mapping language.
TopBraid Composer9 supports heterogeneous sources. It allows data integration
from databases, xml, uml, rss, spreadsheets and rdf data backends. The data
can be reconciliated with DBpedia [18]. However, as in the case of Karma, inter-
linking data from different sources is not possible. To set up the mapping process,
the gui offers a data-driven step-by-step workflow. However, an ontology-driven
approach is not possible. Similar to the original fluidOps editor, a more simpli-
fied wizard has been built on top of rml, instead of r2rml. This form-based

7 http://ontop.inf.unibz.it/components/sample-page/.
8 http://www.isi.edu/integration/karma/.
9 http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-

edition/.

http://ontop.inf.unibz.it/components/sample-page/
http://www.isi.edu/integration/karma/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/


RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 713

browser application10 supports heterogeneous data sources, because it has rmlas
its underlying mapping language, compared to only homogeneous sources (i.e.,
databases) which are supported by the fluidOps editor. Last, OpenRefine11 is a
browser-based tool for cleansing raw data, changing the data format and incorpo-
rating external data using Web services. The rdf Refine extension12 [19] allows
users to export the data in rdf. A rdf graph is used to visualize the map-
pings. However, the rdf graph is forced in a hierarchy-layout, which weakens the
advantages of using a graph representation. Additionally, this extension supports
reconciliation services that offer http interfaces. User intervention is needed to
assess the quality of each reconciliation. A preview of candidate entities is avail-
able to help the user.

3 Mapping Process

The mapping process is a series of steps performed in order to generate Linked
Data from raw data. There are two variations of the process, depending on
whether a mapping editor is used or not.

Mappings Without Editor. Generating rdf from (semi-)structured data,
using a mapping language without a mapping editor, consists of two consecutive
steps: First, the mapping is created (see Fig. 1a). In this step, the user needs
to be aware of the input data and has to have knowledge about the domain
and the mapping language’s specification. The latter is, in principle, possessed
by Semantic Web experts. In most cases, a text editor is used to create the
mappings. Statements in the mapping language follows this step. In the second

Mapping 
Language 

Statements

Mapping 
Processor

Mapping 
Language

Specification

(b) mapping execution

Mapping 
Language 

Specification
Domain 

Knowledge

Text Editor

Domain 
Knowledge

Mapping 
Editor

(a) mapping creation
without mapping editor

(c) mapping 
statements
generation

(a’) mapping creation
with mapping editor

Fig. 1. The difference in the mapping process if during the mapping creation a mapping
editor is used or not.

10 http://pebbie.org/mashup/rml.
11 http://openrefine.org/.
12 http://refine.deri.ie/.

http://pebbie.org/mashup/rml
http://openrefine.org/
http://refine.deri.ie/


714 P. Heyvaert et al.

step the statements together with the input data sources are used by the mapping
processor to generate the rdf triples (see Fig. 1b). The mapping processor is a
tool that knows how to interpret the mapping language’s specification to generate
the rdf representation of the corresponding data, taking into consideration the
statements derived from the previous step.

Mappings with Editor. When the mapping process is done with a mapping
editor, the users do not longer need to be aware of the mapping language’s
specification (see Fig. 1a’). This allows non-Semantic Web experts to define the
mappings. Additionally, the text editor is replaced by the mapping editor. The
mapping editor knows how to interpret the mappings created by the user using
the editor based on the language’s specification. Subsequently, it generates the
mapping language statements (see Fig. 1c). Important to note is that in this step
no user knowledge about the specification is needed. Subsequently, the mapping
is executed, and rdf triples are generated.

4 RMLEditor

The rmleditor is a browser-based gui with the goal to support users in pro-
duction environments to define, in a uniform way, mappings that specify how to
generate Linked Data represented using the prevalent rdf framework. In previ-
ous work [20], we listed 7 desired features of a gui for uniform mapping editors.
First, it should be independent of the underlying mapping language, so that
users are able to create mappings without knowledge of the language’s syntax.
Second, it should allow users to execute the mappings outside of the editor,
because it is only meant to create the mappings. Third, it should enable users
to map multiple data sources at the same time, as it might occur that data is
spread across multiple sources. Fourth, the editor should support data sources
in different data formats, as the generation of Linked Data should be indepen-
dent of the original format. Fifth, as multiple ontologies and vocabularies can be
used to create a mapping, an editor should support the use of both existing and
customs ontologies and vocabularies. Sixth, it should allow multiple alternative
modeling approaches, as certain use cases might benefit from using a specific
approach. Finally, by supporting non-linear workflows, users are able to keep an
overview of the mapping model and its relationships. The gui of the rmleditor is
designed to implement these features. The gui uses graphs to visualize the map-
pings. Manipulation of these graphs results in creating, updating and extending
the mappings, which can be done without any knowledge of the underlying map-
ping language or other used technologies. The graphs express how the raw data
will be represented as rdf. However, this expressiveness is independent of the
language’s expressiveness. The rmleditor triggers the mapping processor which
executes the mappings exported by the rmleditor and generates rdf state-
ments. For the rmleditor, we chose rmlwhich can support mappings derived
from a gui that covers all of the aforementioned features. However, any other
mapping language could be used instead, if it allows to implement the features.



RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 715

In Sect. 4.1 we discuss the rmleditor’s architecture. In Sect. 4.2, we elaborate on
how the features are implemented in the gui. In Sect. 4.3, we explain how the
rmlprocessor, the mapping processor for rml, is used with the rmleditor. In
Sect. 4.4, we present two real-life use cases of the rmleditor.

4.1 Architecture

The rmleditor’s high-level architecture is based on the multilayered architec-
ture pattern [21]. This allows to separate the presentation and the logic of the
mappings, using the presentation layer and application layer, respectively. The
loading of mappings and data sources is done using the data access layer. The lat-
ter only communicates with the application layer. Communication between the
presentation layer and the data access layer is not possible, as the architecture
prohibits communication between layers that are not directly under or above
each other. For the presentation layer, the Webix JavaScript library13 is used to
build the gui, in cooperation with the d3.js library [22] for the presentation of the
graphs. The communication with application layer is facilitated by the Model-
View-Controller pattern [23]. The Graph Markup Language (GraphML) [24]
is used to represent the graph visualization of the mappings independently of
the underlying mapping language. This allows users to export the graphs in
an application-independent format. Additionally, the GraphML-version of the
graphs are used to generate the corresponding rmlstatements. Users are able to
load graphs by instructing the rmleditor to load the corresponding GraphML
document. When rmlstatements need to be loaded, the statements are first con-
verted to a GraphML document, then interpreted as graph elements, and shown
in the gui.

4.2 Graphical User Interface

The graphical user interface of the rmleditor allows users to define mappings
on existing data. To implement the aforementioned features for the gui, the
rmleditor offers three panels to the users: Input Panel, Modeling Panel and
Results Panel (see Fig. 2). They are aligned next to each other, however, when
users want to focus on a specific panel, they are able to hide the other pan-
els. The Input Panel shows the data sources to users (Feature 3). Each data
source is assigned with a unique color. Depending on the data format, an ade-
quate visualization is chosen (Feature 4). The Modeling Panel shows the map-
pings using a graph representation. The color of each node and edge depends
on the data source that is used in that specific mapping, if any. It offers the
means to manipulate the nodes and edges of the graphs in order to update
the mappings. Semantic annotations can be added using multiple vocabularies
and ontologies (Feature 5). The Linked Open Vocabularies14 (LOV) can be con-
sulted via the gui to get suggestions on which classes, properties and datatypes

13 http://webix.com/.
14 http://lov.okfn.org/dataset/lov/.

http://webix.com/
http://lov.okfn.org/dataset/lov/


716 P. Heyvaert et al.

to use. As the graphs offer a generic representation of the mappings, because
they do not depend on the underlying mapping language, this panel addresses
Feature 1. Additionally, the graph representation and the rmlstatements can
be exported (Feature 2), allowing the execution of the mappings outside the
rmleditor. The Results Panel shows the resulting rdf dataset when the map-
pings defined in the Modeling Panel are executed on the data in the Input Panel.
For each rdf triple of the dataset it shows the subject, predicate and object.
The functionality and the interaction between the panels supports the different
mapping generation approaches, as we described in previous work [20,25] (Fea-
ture 6). The data-driven approach uses the input data sources as the basis to
construct the mappings. The classes, properties and datatypes of the schemas
are then assigned to the mappings. When users start with the vocabularies and
ontologies to generate the mappings, the schema-driven approach is followed.
Next, data fractions from the data sources can be associated to the mappings.
Additionally, by not restricting users in when to interact with which panels –
as would be the case for linear workflows – the rmleditor supports non-linear
workflows (Feature 7).

Fig. 2. The rmleditor with the Input Panel on the left, the Modeling Panel in the
center and the Results Panel on the right

4.3 RMLProcessor Server

As the rmleditor uses rml, it needs the functionality of the rmlprocessor15,
a Java application which generates rdf based on provided rmlmapping doc-
uments. However, the processor is not needed to define the mappings. For the
rmleditor’s needs, the rmlprocessor’s functionality is offered through a Web api.
The Web api is developed using Node.js16 and offers three functions: (i) execut-
ing a mapping document on a set of data sources; (ii) converting a GraphML
document to rmlto execute the mappings using the rmlprocessor, and (iii) con-
verting rmlstatements to a GraphML document to visualize the mappings that
are loaded in the rmleditor.
15 https://github.com/RMLio/RML-Mapper.
16 https://nodejs.org/.

https://github.com/RMLio/RML-Mapper
https://nodejs.org/


RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 717

4.4 Real-Life Use Cases

The rmleditor is developed for a pilot (combust17), initiated by companies in
Flanders who aim to build their collaboration network on top of their inter-
linked data. The rmleditor covers their need to generate the rdf representation
of their raw data to be further used in other third-party applications. Moreover,
the rmleditor supports the partners of the Open Tourism working group of the
Belgian Chapter of Open Knowledge Foundation (okfn)18 to semantically anno-
tate their data with the Open Standard for Tourism Ecosystems Data19 in the
frame of the Sustainable Mobile Guides for Tourism (in Flanders) bootstrap.
In both cases, the partners of the project have the raw data and the required
knowledge about the domain. However, they have no understanding of map-
ping languages, and without the use of the rmleditor they need assistance of a
Semantic Web expert. Additionally, for every update and execution of the map-
pings the expert is consulted, which introduces significant overhead. We collected
feedback during the deployment of the rmleditor and concluded that they were
able to create mappings for their data using their own domain knowledge. This
is confirmed during our exploratory user validation, which involved members of
the aforementioned pilot (see Sect. 5). Furthermore, the rmleditor is the topic
of a number of workshops and tutorials for interested groups and users20.

5 Exploratory User Validation

We performed an exploratory user validation to assess the rmleditor’s adequacy
to support users in defining mappings that generate rdf datasets. In Sect. 5.1 we
discuss the two use cases that the participants completed. In Sect. 5.2 we explain
the two groups of participants, the apparatus and the procedure followed during
the validation. In Sects. 5.3 and 5.4 we elaborate on both the subjective and
objective aspect of the validation. Finally, in Sect. 5.5 we discuss the results.

5.1 Use Cases

In this section, two use cases are outlined and it is explained in more detail how
the rmleditor is used to generate the mappings. Each use case covers a differ-
ent mapping generation approach: data-driven or schema-driven [25]. The first
use case involves data about employees and projects they work on, originally
in two different data sources. The goal is to semantically annotate them, and
link the employees to the projects they work on. The data-driven approach is
recommended for editing the mappings to rdf. Users start by loading the two
data sources into the rmleditor. Next, mappings are generated based on data

17 http://www.iminds.be/en/projects/2015/03/11/combust.
18 http://www.openknowledge.be/.
19 http://tourism.openknowledge.be:8080/spec/.
20 http://rml.io/RMLevents.

http://www.iminds.be/en/projects/2015/03/11/combust
http://www.openknowledge.be/
http://tourism.openknowledge.be:8080/spec/
http://rml.io/RMLevents


718 P. Heyvaert et al.

fractions from the sources. Subsequently, users semantically annotate the map-
pings. Identifying suitable classes, properties and datatypes is supported by the
LOV. The second use cases involves data about movies and their directors. The
goal is to semantically annotate them, and to interlink each movie to the per-
son that directed it. The schema-driven approach, supported by the rmleditor,
is recommended to the users for editing the mappings. Users start by generat-
ing mappings reusing movie concepts from the DBpedia Ontology21 and person
concepts from FOAF22. When the modeling is completed, the data sources are
loaded. Subsequently, the mappings are updated with the data fractions to be
used for generating the final rdf dataset.

5.2 Method

Participants. 15 participants from both Ghent University and the combust
network took part. They were divided in two major groups: (i) Semantic Web
experts with 10 participants and (ii) non-Semantic Web experts with 5 partici-
pants. A Semantic Web expert is a user who has knowledge about Semantic Web
technologies and standards, including Linked Data and rdf. A non-Semantic
Web expert is not aware of the Semantic Web technologies, including the editor’s
underlying language rml. The Semantic Web experts are further distinguished
in two sub-categories: (i) 5 experts with experience in Linked Data publishing,
and (ii) 5 experts with no previous experience in Linked Data publishing.

Apparatus. The evaluation was carried out using the current version of the
rmleditor. Participants used their own computer with Chrome23. Both the
rmleditor and the rmlprocessor were hosted on the same physical server. Each
participant participated in both use cases described in Sect. 5.1.

Procedure. The following steps were followed during the evaluation:

Step 1. We gave a presentation24 to the participants where basic concepts,
such as Linked Data, rdf and schemas were explained. In order for them to
understand the purpose of the rmleditor. Additionally, the user interface’s
panels were described. However, no introductory tutorial regarding how to
use the rmleditor was given.
Step 2. We conducted a pre-assessment by asking the participants to fill in
a questionnaire.
Step 3. Half of each group’s participants started with Use Case A, and the
other half with Use Case B. This was done to eliminate the influences of
the use case-specific data and editing approach on the final results of the

21 http://dbpedia.org/ontology/.
22 http://xmlns.com/foaf/0.1/.
23 Version 45.0.2454.101 or higher; https://www.google.com/chrome/.
24 http://www.slideshare.net/secret/vI6AO0ywqzyk1m.

http://dbpedia.org/ontology/
http://xmlns.com/foaf/0.1/
https://www.google.com/chrome/
http://www.slideshare.net/secret/vI6AO0ywqzyk1m


RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 719

evaluation. Subsequently, they completed the other use case. During the exe-
cution of the use cases, the experts were able to ask questions when they had
problems with the rmleditor. It was recorded when intervention was needed.
For the non-Semantic Web experts, closer observation was conducted and the
think-aloud method [26] was taken into consideration. This allowed for the
identification of specific usability issues related to the rmleditor. After each
use case, we conducted an assessment to inquire about the difficulty of the
use case.
Step 4. (Experts with prior rmlknowledge only) Half of the experts, with
knowledge of the underlying mapping language rml, also had to create a map-
ping using a plain text editor, to observe differences and preferences between
use and non-use of the rmleditor. However, this could not be done by all
participants, as they do not possess the required knowledge.
Step 5. At the end of each use case, we collected the created mappings. Addi-
tionally, a second and third questionnaire were filled in by the participants
after their first and second use case, respectively.
Step 6. We conducted a post-assessment by providing the participants with
a fourth questionnaire to fill in.

5.3 Subjective Validation

We conducted a subjective validation of the rmleditor by presenting the partic-
ipants with four questionnaires during the validation in step 2, 5 and 6. With
the pre-assessment we assess the participants expectations before interacting
with the rmleditor. For the pre-assessment’s questionnaire, we used the System
Usability Scale (SUS) scale [27]. The SUS statements were translated to the use
of the rmleditor. The intermediate questionnaires of step 5 allowed for a sub-
jective self-assessment of the previously completed use case, and more specific
the approach of the specific use case. With the post-assessment we assess the
participants’ experience with the rmleditor and determine what the positive
and negative aspects are of the rmleditor. For the intermediate questionnaires
and the post-assessment’s questionnaire, we used the 7-point Likert scale [28]
from ‘not difficult at all’ to ‘very difficult’ to measure difficulty, from ‘not useful
at all’ to ‘very useful’ to measure usefulness, and from ‘not agree at all’ to ‘very
much agree’ to measure the degree of agreement to a given statement.

5.4 Objective Validation

After each completed use case, we collected each participant’s mapping. We
conducted a objective validation of the rmleditor by comparing all mappings
to the baseline mapping that we created ourselves. Additionally, if a participant
also created a mapping using rmldirectly, it was compared with the participant’s
mapping created using the rmleditor.



720 P. Heyvaert et al.

5.5 Results

During the pre-assessment we measured that both groups of participants had
high expectations regarding the ease-of-use and the improvements the rmleditor

would bring to the mapping process. Interesting to note is that Semantic Web
experts expected the tool to be hard to use if no introduction tutorial is provided,
in contradiction to the non-Semantic Web experts.

Learning Curve. After having completed the first use case in row, we measured
via the subjective validation that 60 % of both the Semantic Web experts and
non-experts found it difficult to use the rmleditor to define the mappings that
generate the rdf representation. After having completed the second use, all
non-experts found it easier to use the rmleditor. However, 30 % of the experts
still found it difficult to use the rmleditor over all. This is partially due to
the fact that they all had high expectations of the rmleditor. All participants
needed at least once help during the first in row use case. However, during
the participants their second use case, 40 % of the Semantic Web experts did
not need any help at all anymore. However, all non-Semantic Web experts still
needed help during their second use case. Nevertheless, over all, a significant
lower level of intervention by us was needed. We deduced that the completeness
and accuracy of the mappings increased when users performed their second use
case, compared to their first one. This shows that there is a learning curve to use
the rmleditor, however, once users learn how to use it, the rmleditor is adequate
for its scope. The latter is verified via subjective validation by the fact that 47 %
of the participants found that the overall usage of the rmleditor was not difficult.
However, still 20 % found it too difficult to use. Again, this is partially due to the
fact that the participants had high expectations of the rmleditor. Even though
the rmleditor aims to eliminate language and rdf-specific terminology, through
the observation during the validation we found that 40 % of the participants had
trouble with the used terminology in the gui, such as ‘child’ and ‘parent’ when
data sources need to be interlinked, and ‘templates’ when the URIs of the entities
are constructed based on a data fraction from the data source. However, once
explained to the users, 90 % of the users could use the terminology as intended.

Editing Approaches. 67 % of the participants were able to start editing the map-
pings using the given approach with no assistance at all. Through oral feedback
during the evaluation, participants stated their preferred approach. Because of
that preference, when they were asked to follow the other approach, they stated
it was counterintuitive. If users prefer the data-driven approach, the schema-
driven approach is counterintuitive, because no data is loaded initially. If users
prefer the schema-driven approach, the data-driven is counterintuitive, because
no predefined schema to be used is given.

Graph Visualizations. During the post-assessment, participants were asked to
what extend they agree with the statement that the use of graph is beneficial
for editing mappings, and the statement that the graphs make the linked nature



RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 721

of the final rdf dataset clear. Through the subjective validation, we found that
82 % of all participants found the use of graphs beneficial for editing mappings,
and that graph-based visualizations are adequate for conceiving how the final
rdf dataset will be. The objective validation showed that in the case of Semantic
Web experts, in only 15 % of the total twenty use cases there were incomplete or
inaccurate mappings, regarding the modeling of the domain. In 67 % of the use
cases they were able to create mappings as complete and accurate as expected.

Linking Data Sources. In 33 % of the use cases, participants missed the inter-
linking between multiple data sources when using rml, when we compared the
mapping created with the rmleditor and the mapping created directly using
rml, via the objective validation. Through the post-assessment, we concluded
that the links were missing because of the difficulties with the terminology of
the language, or because the participants just forgot the interlinking. With the
rmleditor this only happened in 10 % of the use cases. However, it still occurred
because not all terminology was well covered in the gui, as the participants made
clear in the post-assessment.

6 Discussion and Conclusions

During the assessment both groups of participants were able to generate Linked
Data through the rmleditor’s gui, with the graph-based visualization as the
most important contributor. Therefore, the rmleditor fulfills its initial goal to
supports users to define, in a uniform way, mappings that specify how to gen-
erate Linked Data. We present four main findings. First, non-Semantic Web
experts are able to generate Linked Data when using the rmleditor. Addi-
tionally, for experts, the quality of the Linked Data is better when using the
rmleditor instead of rmldirectly, by looking at the mapping created with the
rmleditor and the mapping created by using rmldirectly. Therefore, second,
when Semantic Web experts generate Linked Data using the rmleditor, the
resulting rdf dataset is of at least the same quality as the dataset generated
when using directly the rmllanguage, if quality metrics, defined by the Semantic
Web experts, are kept constant. Furthermore, for example, when a relationship
between two data sources exists, however, not made explicit by the user, this is
reflected in the graph: a link between the resource nodes belonging to the sources
is not present. Using rmldirectly, finding the missing relationship is more diffi-
cult. Therefore, third, graph-based visualizations of mappings improve the inter-
linking between multiple data sources during the mapping creation, compared to
the use of no visualizations. Nevertheless, improvements to the rmleditor, and
more specifically to the gui can be made during the next development sprints.
As the main aspect of the rmleditor is the use of graphs, it is important that
manipulations on them are made as easy as possible. Although the required func-
tionality for the manipulations is available, improving even more its accessibility
will benefit the mapping process. Additionally, allowing users to determine the
size of the graphs allows them to select the desired detail-level of their map-
pings. As the participants where presented with two use cases, they were able to



722 P. Heyvaert et al.

perceive a learning curve. Future evaluations need to be conducted to determine
how steep this learning curve is. However, as the fourth finding, by providing a
set of tutorials, where the features of the rmleditor are discussed will already
improve the initial use of the rmleditor by new users. Topic of future research is
the validation of these observations during further large-scale user testing. More-
over, the rmleditor supports both the data-driven and schema-driven approach.
Whether a user starts with the use case using the data-driven or the schema-
driven approach, the second use case in row is less difficult. Therefore, there is
no approach enforced on the user by the rmleditor, and the preferred approach
depends on the person and the circumstances [5]. Both Semantic Web experts
and non-Semantic Web experts have different expectations from the rmleditor.
Non-Semantic Web experts expect that they can generate Linked Data without
any knowledge about a mapping language or Semantic Web technology. Seman-
tic Web experts can already generate Linked Data, as they can use rmldirectly.
Therefore, they expect that they can at least do the same as with rml. Addition-
ally, they have a set of requirements for their Linked Data, for which they look
in the rmleditor. These requirements improve, according to them, the quality of
their generated Linked Data. In the long run, we want to see these expectations
united. Non-Semantic Web experts do not only generate Linked Data. They are
also concerned with the quality of their Linked Data, in order to further improve
its adoption.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Emerging
Concepts, Semantic Services, Interoperability and Web Applications (2009)

2. Brickley, D., Guha, R.: RDF Schema 1.1. Working group recommendation, W3C,
February 2014. http://www.w3.org/TR/rdf-schema/

3. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
Working group recommendation W3C, September 2012. http://www.w3.org/TR/
r2rml/

4. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous
data. In: Workshop on Linked Data on the Web (2014)

5. Pinkel, C., Binnig, C., Haase, P., Martin, C., Sengupta, K., Trame, J.: How to best
find a partner? An evaluation of editing approaches to construct R2RML mappings.
In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. LNCS, vol. 8465, pp. 675–690. Springer, Heidelberg (2014)

6. Sengupta, K., Haase, P., Schmidt, M., Hitzler, P.: Editing R2RML mappings made
easy. In: Proceedings of the 12th International Semantic Web Conference (2013)

7. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: XML path language (XPath). World Wide Web Consortium (W3C)
(2003)

8. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.,
Stefanescu, M.: XQuery 1.0: An XML query language (2002)

9. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between
rdf, xml with xsparql. J. Data Seman. 1(3), 147–185 (2012). ISSN 1861–2032

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/


RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings 723

10. Fiorelli, M., Lorenzetti, T., Pazienza, M.T., Stellato, A., Turbati, A.: Sheet2RDF:
a flexible and dynamic spreadsheet import&lifting framework for RDF. In: Ali, M.,
Kwon, Y.S., Lee, C.-H., Kim, J., Kim, Y. (eds.) IEA/AIE 2015. LNCS, vol. 9101,
pp. 131–140. Springer, Heidelberg (2015)

11. Pazienza, M.T., Stellato, A., Turbati, A.: Pearl: Projection of annotations rule
language, a language for projecting (uima) annotations over rdf knowledge bases.
In: LREC (2012)

12. Rodrıguez-Muro, M., Hardi, J., Calvanese, D.: Quest: efficient SPARQL-to-SQL
for RDF and OWL. In: 11th International Semantic Web Conference ISWC, p. 53.
Citeseer (2012)

13. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protege-2000. IEEE Intell. Syst. 2, 60–71
(2001)

14. Friedman, M., Levy, A.Y., Millstein, T.D., et al.: Navigational plans for data inte-
gration. In: AAAI/IAAI, pp. 67–73 (1999)

15. Bizer, C., Seaborne, A.: D2RQ - treating non-RDF databases as virtual RDF
graphs. In: Proceedings of the 3rd International Semantic Web Conference (ISWC
2004), vol. 2004. Citeseer, Hiroshima (2004)

16. Pinkel, C., Schwarte, A., Trame, J., Nikolov, A., Bastinos, A.S., Zeuch, T.:
DataOps: seamless end-to-end anything-to-RDF data integration. In: Gandon, F.,
Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC
2015. LNCS, vol. 9341, pp. 123–127. Springer, Heidelberg (2015)

17. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: from spreadsheets to
RDF. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer,
Heidelberg (2008)

18. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Seman.
Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)

19. Maali, F., Cyganiak, R., Peristeras, V.: Re-using cool URIs: entity reconciliation
against LOD hubs. In: LDOW, vol. 813 (2011)

20. Heyvaert, P., Dimou, A., Verborgh, R., Mannens, E., Van de Walle, R.: Towards a
uniform user interface for editing mapping definitions. In: Proceedings of the 4th
Workshop on Intelligent Exploration of Semantic Data, October 2015

21. Richards, M.: Software Architecture Patterns. O’Reilly, Sebastopol (2015)
22. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.

Vis. Comput. Graph. 17(12), 2301–2309 (2011)
23. Osmani, A.: Learning JavaScript Design Patterns. O’Reilly Media, Sebastopol

(2012)
24. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML

progress report layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002)

25. Heyvaert, P., Dimou, A., Verborgh, R., Mannens, E., Van de Walle, R.: Approaches
for generating mappings to RDF. In: Proceedings of the 14th International Seman-
tic Web Conference: Posters and Demos, October 2015

26. Charters, E.: The use of think-aloud methods in qualitative research an introduc-
tion to think-aloud methods. Brock Educ. J. 12(2), 68–82 (2003)

27. Brooke, J.: SUS - a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4–7 (1996)

28. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22, 1–55
(1932)


	RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings
	1 Introduction
	2 Related Work
	2.1 Mapping Languages
	2.2 Mapping Editors

	3 Mapping Process
	4 RMLEditor
	4.1 Architecture
	4.2 Graphical User Interface
	4.3 RMLProcessor Server
	4.4 Real-Life Use Cases

	5 Exploratory User Validation
	5.1 Use Cases
	5.2 Method
	5.3 Subjective Validation
	5.4 Objective Validation
	5.5 Results

	6 Discussion and Conclusions
	References


