
Knowledge Extraction for Information Retrieval

Francesco Corcoglioniti, Mauro Dragoni(B), Marco Rospocher,
and Alessio Palmero Aprosio

Fondazione Bruno Kessler, Trento, Italy
{corcoglio,dragoni,rospocher,aprosio}@fbk.eu

Abstract. Document retrieval is the task of returning relevant textual
resources for a given user query. In this paper, we investigate whether
the semantic analysis of the query and the documents, obtained exploit-
ing state-of-the-art Natural Language Processing techniques (e.g., Entity
Linking, Frame Detection) and Semantic Web resources (e.g., YAGO,
DBpedia), can improve the performances of the traditional term-based
similarity approach. Our experiments, conducted on a recently released
document collection, show that Mean Average Precision (MAP) increases
of 3.5 % points when combining textual and semantic analysis, thus sug-
gesting that semantic content can effectively improve the performances
of Information Retrieval systems.

1 Introduction

Recent years have seen the growing maturity of Knowledge Extraction (KE) from
natural language text. State-of-the-art KE approaches, such as FRED [1], News-
Reader [2], and PIKES [3], exploit Natural Language Processing (NLP) tech-
niques as well as Semantic Web (SW) and Linked Open Data (LOD) resources
(e.g., DBpedia [4]) to extract semantic content from textual resources, linking it
to well-known ontologies and to a growing body of LOD background knowledge.

In this paper we investigate the benefits of using the semantic content auto-
matically extracted from text for Information Retrieval (IR). The goal in IR is
to determine, for a given user query, the relevant documents in a text collection,
ranking them according to their relevance degree for the query. Our approach
aims to overcome known limitations of traditional IR approaches. Let us consider
the following query example: “astronomers influenced by Gauss”. Traditional
IR approaches match the terms or possible term-based expansions (e.g., syn-
onyms, related terms) of the query and the documents, but relevant documents
may not necessarily contain all the query terms (e.g., the term “influenced” or
“astronomers” may not be used at all in a relevant document); similarly, some
relevant documents may be ranked lower than other ones containing all three
terms, but in an unrelated way (e.g., documents about some astronomers born
centuries before Gauss, influenced by Leonardo Da Vinci).

In our approach, both queries and documents are processed to extract
semantic content pertaining to the following semantic layers: (i) entities,
e.g., dbpedia:Carl Friedrich Gauss from “Gauss”; (ii) types of entities, either
c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 317–333, 2016.
DOI: 10.1007/978-3-319-34129-3 20

318 F. Corcoglioniti et al.

explicitly mentioned, such as yago:Astronomer109818343 from “astronomers”,
or indirectly obtained from external resources for mentioned entities, such
as yago:GermanMathematicians from “Gauss”; (iii) semantic frames and frame
roles, such as framebase:Subjective influence from “influenced”; and, (iv) tempo-
ral information, either explicitly mentioned in the text or indirectly obtained
from external resources for mentioned entities, e.g., via DBpedia properties
such as dbo:dateOfBirth (1777) and dbo:dateOfDeath (1855) for entity dbpedia:
Carl Friedrich Gauss. We then match queries and documents considering both
their textual and semantic content, according to a simple retrieval model based
on the Vector Space Model (VSM) [5]. This way, we can match documents men-
tioning someone who is an astronomer (i.e., entities having type yago:Astro-
nomer109818343) even if “astronomers”, or one of its term-based variants, is not
explicitly written in the document text. Similarly, we can exploit the entities
and the temporal content to better weigh the different relevance of documents
mentioning dbpedia:Carl Friedrich Gauss and dbpedia:GAUSS (software), as well
as to differently rank documents about Middle Age and 17th/18th centuries
astronomers.

While other ontology-based IR approaches typically builds only on termino-
logical knowledge (e.g., classes, subclasses), to the best of our knowledge our
work is the first in exploiting such a variety of automatically extracted semantic
content (i.e., entities, types, frames, temporal information) for IR.

We developed a first implementation of our approach, named KE4IR (read:
kee-fer), using PIKES for KE and Apache Lucene1 for indexing documents and
evaluating IR queries. We performed a first assessment of the approach on a
recently released dataset [6], showing that enriching textual information with
semantic content outperforms retrieval performances over using textual data
only.

The paper is structured as follows. In Sect. 2, we briefly review the state
of the art in IR and KE. Section 3 presents the KE4IR approach, detailing the
semantic layers and the retrieval model used for combining semantic and textual
information. In Sect. 4, we describe the actual implementation of our approach,
while in Sect. 5, we report a first assessment of the effectiveness of adding seman-
tic content for IR, discussing in details some outcomes and findings. Section 6
concludes with some final remarks and future work directions.

2 State of the Art

Previous works have exploited some semantic information for IR. An early ten-
tative in injecting domain knowledge information for improving the effectiveness
of IR systems is presented in [7]. In this work, authors manually built a the-
saurus supporting the expansion of terms contained in both documents and
queries. Such a thesaurus modeled a set of relations between concepts including
synonymy, hyponymy and instantiation, meronymy and similarity. An approach
based on the same philosophy was presented in [8], where the authors propose an
1 http://lucene.apache.org/.

http://lucene.apache.org/

Knowledge Extraction for Information Retrieval 319

indexing technique where WordNet [9] synsets, extracted from each document
word, are used in place of textual terms in the indexing task.

In the last decade, semantic IR systems started to embed ontologies for
addressing the task of retrieving domain-specific documents. An interesting
review on IR techniques based on ontologies is presented in [10], while in [11]
the author studies the application of ontologies to a large-scale IR system for
Web usage. Two models for the exploitation of ontology-base knowledge bases
are presented in [12,13]. The aim of these models is to improve search over large
document repositories. Both models include an ontology-based scheme for the
annotation of documents, and a retrieval model based on an adaptation of the
classic Vector Space Model (VSM) [5]. Finally, in [14] an analysis of the usefulness
on using ontologies for the retrieval task is discussed. More recently, approaches
combining many different semantic resources for retrieving documents have been
proposed. In [15], the authors describe an ontology-enhanced IR platform where
a repository of domain-specific ontologies is exploited for addressing the chal-
lenges of IR in the massive and heterogeneous Web environment.

A further problem in IR is the ranking of retrieved results. Users typically
make short queries and tend to consider only the first ten to twenty results [16].
In [17], a novel approach for determining relevance in ontology-based IR is pre-
sented, different from VSM. When IR approaches are applied in a real-world
environment, the computational time needed to evaluate the match between
documents and the submitted query has to be considered too. Systems using the
well-known VSM have typically higher efficiency with respect to systems adopt-
ing more complex models to account for semantic information. For instance, the
work presented in [18] implements a non-vectorial data structure that exhibits
high computational times for both indexing and retrieving documents.

In the last few years, several approaches and tools performing comprehen-
sive analyses to extract quality knowledge from text were presented. FRED [1]
extracts Discourse Representation Structures (DRSs), mapping them to linguis-
tic frames that in turn are transformed in RDF/OWL via Ontology Design
Patterns.2 In NewsReader [2], a comprehensive processing pipeline extracts and
corefer events and entities from large (cross-lingual) news corpora. PIKES3 [3]
is an open-source frame-based knowledge extraction framework that combines
the processing of various NLP tools to distill knowledge from text, aligning it to
Linked Data resources such as DBpedia and FrameBase4 [19], a recently released
broad-coverage SW-ready inventory of frames based on FrameNet.5 We exploit
PIKES for the implementation of our approach, as described in Sect. 4.

3 Approach

Standard IR systems look at documents and queries as bags of terms (e.g.,
stemmed tokens). In KE4IR we augment textual terms with additional terms
2 http://ontologydesignpatterns.org/.
3 http://pikes.fbk.eu/.
4 http://framebase.org/.
5 http://framenet.icsi.berkeley.edu/.

http://ontologydesignpatterns.org/
http://pikes.fbk.eu/
http://framebase.org/
http://framenet.icsi.berkeley.edu/

320 F. Corcoglioniti et al.

coming from different semantic annotation layers produced using NLP-based KE
techniques as well as Linked Open Data background knowledge (Sect. 3.1), and
then propose a simple retrieval model that makes use of this additional semantic
information to find and rank the documents matching a query (Sect. 3.2).

3.1 Semantic Layers

We consider four semantic layers—uri, type, frame, time—that complement
the base textual layer with ‘semantic terms’. These terms can be obtained
using KE techniques that identify mentions (i.e., snippets of text) denoting
entities, events and relations. From each mention, a set of semantic terms is
extracted, and the number of mentions a term derives from can be used to
quantify its relevance for a document. Table 1 (first three columns) reports an
example of terms and associated mentions that can be extracted from the simple
query of Sect. 1: “astronomers influenced by Gauss”.

URI Layer. The semantic terms of this layer are the URIs of entities men-
tioned in the text, disambiguated against external knowledge resources such as
DBpedia. Disambiguated URIs are the result of two NLP/KE tasks:6 Named
Entity Recognition and Classification (NERC), which identifies proper names
of certain entity classes (e.g., persons, organizations, locations) in a text, and
Entity Linking (EL), which disambiguates those names against the individuals
of a knowledge base. The Coreference Resolution NLP task can be also exploited
to ‘propagate’ the URI associated to a disambiguated named entity to its core-
ferring mentions in the text, so to proper count the number of entity mentions.

TYPE Layer. This layer contains as terms the URIs of the ontological types
(and super-types) associated to noun phrases in the text. For disambiguated
named entities (resulting from NERC and EL), associated types can be retrieved
from external background knowledge resources describing those entities (e.g.,
DBpedia). For common nouns, disambiguation against WordNet via Word Sense
Disambiguation (WSD) provides synsets, which can be mapped to types of
known ontologies using existing mappings. Given these two extraction tech-
niques, an ontology particularly suited to this layer is the YAGO taxonomy [20],
due both to its WordNet origins and the availability of YAGO types for DBpedia
entities.

TIME Layer. The terms of this layer are temporal values mentioned in the
text, either because explicitly expressed in a time expression (e.g., “the eigh-
teenth century”) recognized via the Temporal Expression Recognition and Nor-
malization (TERN) NLP task, or because associated via some property to a
disambiguated entity in the background knowledge (e.g., the birth date associ-
ated to dbpedia:Carl Friedrich Gauss). We propose to represent time at different
granularities—day, month, year, decade, and century—in order to support both
6 We report in this section the main NLP/KE tasks for the extraction of semantic

terms. Some of them typically build on additional NLP analyses, such as Tokeniza-
tion, Part-of-Speech tagging, Dependency Parsing and Constituency Parsing.

Knowledge Extraction for Information Retrieval 321

precise and fuzzy temporal matching. Therefore, each mentioned date time value
(e.g., 2015-12-18) is mapped to (max) five time terms, one for each granularity
level (e.g., day:2015-12-18, month:2015-12, year:2015, decade:201, century:20).

FRAME Layer. A semantic frame is a star-shaped structure that represents
an event or n-ary relation, having a certain frame type (e.g., framebase:frame-
Subjective influence, from “influenced”) and zero or more participants (e.g., dbpe-
dia:Carl Friedrich Gauss) playing a specific semantic role in the context of the
frame. Semantic frames are typically extracted using NLP tools for Semantic
Role Labeling (SRL) based on certain predicate models, such as FrameNet, and
then mapped to an ontological representation using an RDF/OWL frame-based
ontology aligned to the predicate model, such as FrameBase [19]. Semantic
frames provide relational information that helps matching queries and docu-
ments more precisely. Different approaches can be used to transform a star-
shaped semantic frame into a set of terms of the frame layer. In this work,
we propose to map each 〈frame type, participant〉 pair whose participant is a
disambiguated entity (e.g., the pair 〈framebase:frame-Subjective influence, dbpe-
dia:Carl Friedrich Gauss〉) to a term, including also the terms obtainable by
replacing the frame type URI with the URIs of its super-classes in the ontol-
ogy. We investigated also using non-disambiguated participant entities, obtaining
however worse results.

3.2 Retrieval Model

We adopt a retrieval model inspired to the Vector Space Model (VSM). Given a
document collection D, we represent each document d ∈ D (resp. query q) with
a vector d = (d1 . . . dn) (q = (q1 . . . qn)) where each element di (qi) is the weight
corresponding to a term ti and n is the number of distinct terms in collection D.
Differently from text-only approaches, terms of our model come from multiple
layers [21], both textual and semantic, and each document (query) vector can
be thought as the concatenation of smaller, layer-specific vectors. Given a term
t, we denote its layer with l(t) ∈ L = {textual,uri,type, frame,time}.

To compute the similarity between a document d ∈ D and a query q, we
use a similarity function sim(d, q). The documents matching q are the ones with
sim(d, q) > 0, and they are ranked according to decreasing similarity values. To
derive sim(d, q) we start from the cosine similarity of VSM:

simvsm(d, q) =
d · q

|d| · |q| =
∑n

i=1 di · qi
√∑n

i=1 d
2
i · √∑n

i=1 q
2
i

(1)

and we remove the normalization by |d| and |q|, thus obtaining:

sim(d, q) = d · q =
n∑

i=1

di · qi (2)

Normalizing by |q| does not affect the ranking and only serves to compare scores
of different queries, thus we drop it for simplicity. Normalizing by |d| has the

322 F. Corcoglioniti et al.

Table 1. Terms extracted from the query “astronomers influenced by Gauss”, with
mentions m1 = “astronomers”, m2 = “influenced”, m3 = “Gauss”; the textual layer
is weighted 0.5; the four semantic layers are weighted 0.125 each.

Layer l Term t i M(t i, q) tfq(t i,q) idf(t i,q) w(l) q i

textual astronom m1 1.0 2.018 0.5 1.009

textual influenc m2 1.0 3.404 0.5 1.702

textual gauss m3 1.0 1.568 0.5 0.784

uri dbpedia:Carl Friedrich Gauss m3 1.0 3.404 0.125 0.426

type yago:GermanMathematicians m3 0.030 2.624 0.125 0.010

type yago:NumberTheorists m3 0.030 2.583 0.125 0.010

type yago:FellowsOfTheRoyalSociety m3 0.030 1.057 0.125 0.004

type . . . other 18 terms . . . m3 0.030 . . . 0.125 . . .

type yago:Astronomer109818343 m1, m3 0.114 1.432 0.125 0.020

type yago:Physicist110428004 m1, m3 0.114 0.958 0.125 0.014

type yago:Person100007846 m1, m3 0.114 0.003 0.125 ∼0

type . . . other 9 terms . . . m1, m3 0.114 . . . 0.125 . . .

frame 〈Subjective influence-influence.v,
dbpedia:Carl Friedrich Gauss〉

m2 0.333 5.802 0.125 0.242

frame 〈Subjective influence,
dbpedia:Carl Friedrich Gauss〉

m2 0.333 5.802 0.125 0.242

frame 〈Frame, Carl Friedrich Gauss〉 m2 0.333 3.499 0.125 0.146

time day:1777-04-30 m3 0.1 3.404 0.125 0.043

time day:1855-02-23 m3 0.1 3.404 0.125 0.043

time century:1700 m3 0.1 0.196 0.125 0.002

time . . . other 7 terms m3 0.1 . . . 0.125 . . .

effect of making the similarity score obtained by matching m terms in a small
document higher than the score obtained by matching the same m terms in
a longer document. This normalization is known to be problematic in some
document collections, is implemented differently and optionally disabled in real
systems (e.g., Lucene and derivatives), and we deem it inappropriate in our
scenario, where the document vector is expanded with a large amount of semantic
terms whose number is generally not proportional to the document length.

We assign the weights of document and query vectors starting from the usual
product of Term Frequency (tf) and Inverse Document Frequency (idf):

di = tfd(ti, d) · idf(ti,D) (3)
qi = tfq(ti, q) · idf(ti,D) · w(l(ti)) (4)

The values of tf are computed differently for documents (tfd) and queries (tfq),
while weights w(l(ti)) quantify the importance of each layer. Given the form of
Eq. 2, it suffices to apply w(l(ti)) only to one of d and q: we chose q so to allow

Knowledge Extraction for Information Retrieval 323

selecting weights on a per-query basis. Table 1 reports the tfq, idf, w, and qi
values for the terms of the example query “astronomers influenced by Gauss”.

Several schemes for computing tf and idf have been proposed in the literature.
Among them, we adopt the following scheme,7 where f(t, o) and f ′(t, o) are two
measures of the frequency of a term t in a text (document or query) x:

tfd(t, d) = 1 + log(f(t, d)) (5)
tfq(t, q) = f ′(t, q) (6)

idf(t,D) = log
|D|

|{d ∈ D|f(t, d) > 0}| (7)

The raw frequency f(t, x) is defined as usual as the number of occurrences of
term t in x. To account also for semantic terms, we denote with M(t, x) the
set of mentions in text x from where term t has been extracted, valid also for
textual terms whose mentions are simply their occurrences in the text, and let
f(t, x) = |M(t, x)|. The normalized frequency f ′(t, x) is newly introduced to
account for the fact that multiple terms can be extracted from a single mention
for the same semantic layer, differently from the textual case. It is defined as:

f ′(t, x) =
∑

m∈M(t,x)

1
|T (m, l(t))| (8)

where T (m, l) is the set of terms of layer l extracted from mention m. Since
|T (m,textual))| is always 1, f(t, x) = f ′(t, x) for textual terms. Note that
Eq. 7 can indifferently use f(t, x) or f ′(t, x).

The formulation of f ′(t, x) and its use in Eq. 6 aim at giving each mention
the same importance when matching the query against the document collection.
To explain, let’s consider a query containing two mentions m1 and m2, with
respectively n1 and n2 disjoint terms of a certain semantic layer (e.g., type)
extracted from each mention, n1 > n2; also assume that these terms have equal
idf and tfd values in the document collection. If we give these terms equal tfq
values, then a document matching the n1 terms of m1 (and nothing else) will
be scored and ranked higher than a document matching the n2 terms of m2

(and nothing else). However, the fact that n1 > n2 does not reflect a preference
of m1 by the user; rather, it may merely reflect the fact that m1 is described
more richly than m2 in the background knowledge. Our definition of normalized
frequency corrects for this bias by assigning each mention a total weight of 1,
which is equally distributed among the terms extracted from it for each semantic
layer (e.g., weight 1/n1 assigned to terms of m1, 1/n2 to terms of m2).

For similar reasons, the use of f ′(t, x) in place of f(t, x) in Eq. 5 would be
inappropriate. Consider a query whose vector has a single type term t (similar
considerations apply to other semantic layers). Everything else being equal (e.g.,
idf values), two documents mentioning two entities of type t the same number

7 Given the lack of normalization in sim(d, q), our scheme can be roughly classified as
ltn.ntn using the SMART notation; see http://bit.ly/weighting schemes [22].

http://bit.ly/weighting_schemes

324 F. Corcoglioniti et al.

Fig. 1. Implementation: (a) term extraction; (b) indexing, searching and scoring.

of times should receive the same score. While this happen with f(t, x), using
f ′(t, x) the document mentioning the entity with fewest type terms (beyond t)
will be scored higher, although this clearly does not reflect a user preference.

4 Implementation

We built an evaluation infrastructure that implements the KE4IR approach pre-
sented in Sect. 3 and allows applying it on arbitrary documents and queries,
measuring retrieval performances against gold relevance judgments. All the code
is available for download on KE4IR website.8

Figure 1a shows the pipeline used to extract terms (with raw frequencies)
from documents and queries, combining both textual and semantic analysis of
input texts. Textual analysis generates the textual layer employing standard
components for text tokenization, stop word filtering, and stemming from Apache
Lucene. Semantic analysis makes use of a KE tool for transforming the input text
into an RDF knowledge graph where each instance is grounded to one or more
mentions. This graph is then enriched with triples about selected URIs (DBpedia
entities, YAGO types) retrieved from a persistent key-value store previously
populated with the required LOD background knowledge;9 the enrichment is
done recursively and RDFS reasoning is done at the end to materialize inferences.
The enriched graph is finally queried to extract semantic terms.

As KE extraction tool we use PIKES [3], a frame-based KE framework adopt-
ing a 2-phase approach. First—phase 1: linguistic feature extraction—an RDF
graph of mentions is built by distilling the output of several state-of-the-art
NLP tools, including Stanford CoreNLP10 (tokenization, POS-tagging, lemma-
tization, NERC, TERN, parsing and coreference resolution), UKB11 (WSD),
8 http://pikes.fbk.eu/ke4ir.html.
9 Subset of FrameBase ontology used in PIKES. Mapping-based properties with
xsd:date, xsd:dateTime, xsd:gYear, and xsd:gYearMonth objects, YAGO types and type
hierarchy from DBpedia 2015-04. All data available on KE4IR website.

10 http://nlp.stanford.edu/software/corenlp.shtml.
11 http://ixa2.si.ehu.es/ukb/.

http://pikes.fbk.eu/ke4ir.html
http://nlp.stanford.edu/software/corenlp.shtml
http://ixa2.si.ehu.es/ukb/

Knowledge Extraction for Information Retrieval 325

DBpedia Spotlight12 (EL), Mate-tools13 and Semafor14 (SRL). Then—phase 2:
knowledge distillation—the mention graph is processed to distill the knowl-
edge graph using SPARQL-like mapping rules, which are evaluated using RDF-
pro15 [23], an RDF manipulation tool used also for RDFS reasoning. KE and
the NLP tasks it relies on are computationally expensive. Using PIKES on a
server with 24 cores (12 physical) and 192 GB RAM we obtained a throughput
of ∼700K tokens/h (∼30K tokens/h core), corresponding to ∼1200 documents/h
for the document collection of Sect. 5 (570 tokens/document). While potentially
inappropriate for a Web-scale deployment, this throughput is however adequate
for small to medium-sized document collections (e.g., as encountered in corpo-
rate environments). Furthermore, larger collections can also be processed, with
some loss in retrieval performances, by disabling the extraction of some of the
layers.16

Figure 1b shows the workflow implemented for indexing extracted terms, exe-
cuting queries and computing evaluation metrics. Document terms are directly
indexed in a Lucene inverted index with their raw frequencies. At search time,
query terms are OR-ed in a Lucene query that locates the documents containing
at least one term (for which sim(d, q) > 0). Matched documents are scored and
ranked externally to Lucene (for ease of testing) according to the KE4IR retrieval
model of Sect. 3.2, starting from the term vectors of the query and the matched
documents, and computing the necessary tfd, tfq, and idf values based on raw
and normalized term frequencies and some statistics produced by Lucene (num-
ber of documents and document frequencies). The resulting ranking is compared
with the gold relevance judgments to compute a comprehensive set of evaluation
metrics, which are averaged along different queries.

5 Evaluation

In this section, we present an evaluation of KE4IR and discuss some insights
emerged from it. All the evaluation materials are available on KE4IR website.

5.1 Evaluation Setup

KE4IR has been validated on the ad-hoc IR task, consisting in performing a set
of queries over a document collection for which the list of relevance judgments
is available. For the presented evaluation, we adopted the document collection
created in [6], composed by a set of 331 documents and 35 queries. The relevance

12 http://spotlight.dbpedia.org/.
13 http://code.google.com/p/mate-tools/.
14 http://www.cs.cmu.edu/∼ark/SEMAFOR/.
15 http://rdfpro.fbk.eu/.
16 To give an idea, the impact of each semantic layer on the whole processing time for

the document collection of Sect. 5 is: uri (3.5 %), type (16.3 %), time (2.9 %), frame
(77.3 %). Note also that substantial improvements of KE4IR indexing throughput can
be achieved with further engineering and optimization, out-of-scope here.

http://spotlight.dbpedia.org/
http://code.google.com/p/mate-tools/
http://www.cs.cmu.edu/~ark/SEMAFOR/
http://rdfpro.fbk.eu/

326 F. Corcoglioniti et al.

of each document is expressed in a multi-value scale with scores going from 5
(the document contains exact information with respect to what the user is look-
ing for) to 1 (the document is of no interest for the query). The peculiarity of
this collection is the underlying semantic purpose with which it has been built.
Indeed, the set of queries has been selected by varying from queries very close
to keyword-based search (i.e., the query “Romanticism”) to queries requiring
semantic capabilities for retrieving relevant documents (i.e. “Aviation pioneers’
publications”). In that work, the authors discuss some techniques exploiting
manual annotations for semantic IR purposes. Unfortunately, their results and
our results described next are not directly comparable, as the semantic tech-
niques described in [6] are evaluated over annotations manually validated by
experts, whereas we rely on totally automatic (and thus inevitably noisy) anno-
tations.

Thus, we compared our approach against the two baselines introduced below:

– Google baseline: we exploited the Google custom search API for indexing pages
containing our documents. The rationale behind this choice is to assess the
performances of a commercial search engine, having as main challenge the
“scalability” of indexing and retrieving documents, when a more custom doc-
ument analysis is required. Google can be considered the same way as a black
box, and we were not able to customize the way it analyzes text and computes
document scores with respect to performed queries;

– Textual baseline: we indexed the raw text by adopting the standard Lucene
library customized with the scoring formula described in Sect. 4. In our exper-
iments, this customization provides the same (actually, slightly better) per-
formances of a standard Lucene configuration,17 and it also allows properly
assessing the impact of semantic layers by excluding any interference related
to slight differences in the definition of the scoring formula.

The protocol we used has been inspired by TREC [24]; however, due to
the small size of the collection, we had to carry out some changes. Instead of
drawing the precision/recall curve, we computed the precision values after the
first (Prec@1), fifth (Prec@5), and tenth (Prec@10) document, respectively. The
rationale behind this decision is the fact that the majority of search result click
activity (89.8 %) happens on the first page of search results [16] corresponding
to a set varying from 10 to 20 documents. Then, we provided two further met-
rics: (i) the Mean Average Precision (MAP) and (ii) the Normalized Discounted
Cumulated Gain (NDCG) [25], computed both on the entire rank and after the
first ten documents retrieved (resp., MAP@10 and NDCG@10). Validation on
the NDCG metric is necessary in scenarios where multi-value relevance is used.

17 For comparison, on KE4IR website we make available for download an instance of
SOLR (a popular search engine based on Lucene) indexing the same document col-
lection used in our evaluation, and we report on its performances on the test queries.

Knowledge Extraction for Information Retrieval 327

Table 2. Comparison of KE4IR against the two baselines.

Approach/System Prec@1 Prec@5 Prec@10 NDCG NDCG@10 MAP MAP@10

Google 0.543 0.411 0.343 0.434 0.405 0.255 0.219

Textual 0.943 0.669 0.453 0.832 0.782 0.733 0.681

KE4IR 0.971 0.680 0.474 0.854 0.806 0.758 0.713

KE4IR vs. Textual 3.03% 1.71% 4.55% 2.64% 2.99% 3.50% 4.74%

p-value (paired t-test) 0.324 0.160 0.070 0.003 0.015 0.024 0.029

p-value 1.000 0.496 0.111 0.003 0.020 0.020 0.030

(approx. random.)

Table 3. KE4IR results using different layer combinations.

Layers Prec@1 Prec@5 Prec@10 NDCG NDCG@10 MAP MAP@10

textual,uri,type, 0.971 0.680 0.474 0.854 0.806 0.758 0.713

frame,time

textual,uri,type,frame 0.971 0.680 0.474 0.853 0.804 0.757 0.712

textual,uri,type,time 0.971 0.680 0.474 0.851 0.802 0.757 0.712

textual,uri,type 0.971 0.680 0.474 0.849 0.801 0.755 0.710

textual,uri,frame,time 0.971 0.674 0.465 0.844 0.796 0.750 0.702

textual,uri,frame 0.971 0.674 0.465 0.842 0.795 0.749 0.702

textual,uri,time 0.971 0.674 0.465 0.840 0.791 0.747 0.700

textual,uri 0.971 0.674 0.465 0.837 0.791 0.747 0.700

textual,type,frame,time 0.943 0.674 0.471 0.848 0.799 0.745 0.700

textual,type,time 0.943 0.674 0.471 0.843 0.794 0.743 0.697

textual,type,frame 0.943 0.674 0.468 0.847 0.797 0.743 0.695

textual,frame,time 0.943 0.674 0.462 0.842 0.793 0.741 0.693

textual,type 0.943 0.674 0.468 0.842 0.792 0.740 0.693

textual,time 0.943 0.669 0.462 0.836 0.786 0.737 0.689

textual,frame 0.943 0.674 0.453 0.839 0.789 0.737 0.686

5.2 Overall Evaluation Results

We report here an overview of the results obtained, using equal weights for tex-
tual and semantic information in KE4IR, i.e., w(textual) = w(semantics) =
0.5, with w(semantics) divided equally among semantic layers. We also provide
a first analysis of KE4IR behavior using different layer combinations.

Comparison with the Baselines. Table 2 shows the comparison between
the results achieved by KE4IR exploiting all the semantic layers, and the ones
obtained by the proposed baselines. It is possible to see that KE4IR matches or
outperforms the baselines for all the considered metrics. With respect to the tex-
tual baseline, the higher improvements are registered on the MAP, MAP@10, and
Prec@10 values that quantify the capability of the proposed approach of produc-
ing an effective documents ranking. While the gains on the MAP and MAP@10

328 F. Corcoglioniti et al.

metrics assess only the retrieval of relevant documents without considering their
relevance scores, the improvements obtained on the NDCG and NDCG@10 met-
rics highlight that produced rankings are effective also from a quality point of
view. The improvements over the textual baseline are statistically significant for
MAP, MAP@10, NDCG, and NDCG@10 (significance threshold 0.05), based on
the p-values computed with the paired t-test (claimed as one of the best tests
for IR in [26]) and the approximate randomization test [27]. With respect to
the Google baseline, the marked difference of performances derives from Google
returning far less results than KE4IR for the evaluation queries. Indeed, large-
scale (web-scale) IR systems such as Google are heavily tuned for precision, as
any query usually matches a large number of documents and the problem is to
discard the irrelevant ones. In our context, small-scale IR, systems as our tool
deal with fewer documents and hence they must be tuned also for recall.

Impact of Various Layer Combinations. A detailed analysis of the results
obtained using different layer combinations in KE4IR is shown in Table 3. Com-
bining all the semantic layers produces the best performances for all the consid-
ered metrics. In particular, the URI layer seems to be the most effective, as it is
always included in the top settings for MAP. These results show that the inte-
gration of different semantic information leads to a general improvement of the
effectiveness of the IR task, in line with the purpose of the proposed approach.

5.3 Query-by-Query Analysis

To complete the analysis of the overall results, we investigate the performances of
the system query-by-query, discussing four representative queries more in-depth.

Impact of Each Single Layer. Table 4 shows, query by query, the impact
of each semantic layer on system effectiveness. The first column contains the
query identifier; from the second to the fifth columns, we show the comparison
between the NDCG@10 computed using textual and single-layer semantic infor-
mation, and the NDCG@10 computed by using only the textual information.
From the sixth to the ninth columns, the same values are shown for the MAP
metric. We selected only the MAP and the NDCG@10 metrics because those
are the most indicative metrics for evaluating the performances of IR systems in
general (MAP), and for deployment in a real-world environment (NDCG@10).

The type layer affects the highest number of queries, but for some of them
(e.g., “q28”) its contribution is negative. This issue is likely a consequence of the
large quantity of information inserted when the query is expanded with type
terms, especially the ones corresponding to super-types of entities and concepts
mentioned in the query, which may lead documents scarcely related to the query
to be matched by the system. Indeed, by injecting too much information in
queries, it is possible to obtain a detrimental effect as shown in [28], where the
authors discuss query expansion trade-offs and impact on IR effectiveness.

The uri layer also impacts on many queries with both positive and negative
effects. Differences on NDCG@10 and MAP scores are larger than the ones
resulting from the type layer (see, e.g., queries “q16” and “q28”), reflecting the

Knowledge Extraction for Information Retrieval 329

Table 4. Differences on NDCG@10 and MAP obtained using textual and a single
semantic layer with respect to textual only. Queries with no performance change
are omitted (“q01”, “q04”, “q06”, “q12”, “q26”, “q32”, “q34” and “q46”). Note that
semantic information may be available even if no difference is observed.

Query Δ NDCG@10 Δ MAP

URI TYPE FRAME TIME URI TYPE FRAME TIME

q02 0.001

q03 0.002

q07 0.005

q08 0.049 0.012

q09 0.029

q10 0.093 0.061

q13 0.066 0.066

q14 0.015 0.005

q16 0.018 0.283

q17 0.026 0.015

q18 0.002 0.011

q19 0.014 0.007

q22 0.021 −0.001

q23 0.012 0.003

q24 −0.012 −0.009

q25 0.007 0.002 0.004 0.004

q27 −0.007 0.011 0.218 0.011 0.020 0.135

q28 −0.117 −0.016 −0.090 −0.042

q29 0.002

q36 −0.016

q37 0.013

q38 0.028 −0.003

q40 0.054 0.007 0.017 0.005 0.030 0.021 0.021 0.021

q41 0.104 −0.004 0.140 0.010 0.032

q42 0.011 0.023

q44 0.149 0.091 0.141 0.131 0.049 0.088

q45 −0.002 −0.002 −0.002 −0.007 −0.007

fact that uri terms impact more on document scores (with respect to the textual
layer) since they are generally more selective (high idf) and often correspond to
entities mentioned multiple times in a document (high tf).

330 F. Corcoglioniti et al.

The frame and time layers, where available, have almost always a positive
impact on the performances (esp. for “q27” and “q44”). The frame layer affects
the smallest number of queries. As described in Sect. 3, this layer describes rela-
tions between entities detected in the text, and thus requires to have a query
structure that is more complex with respect to a simple keyword-based one.

Analysis of Selected Queries. While a comprehensive analysis of the perfor-
mances of each query is not doable due to lack of space, we select four queries
giving hints about pros and cons of using semantic information in IR. Table 5
shows these queries and their performances when using all the semantic layers.

Table 5. Results for selected queries using all the semantic layers.

Query Query text Δ NDCG@10 Δ MAP

q27 Nazis confiscate or destroy art and literature 0.154 0.099

q28 Modern age in English literature −0.117 −0.095

q44 Napoleon’s Russian campaign 0.151 0.147

q46 First woman who won a nobel prize 0 0

Query “q46” is an example where semantic information has no effects. This is
because entities at different granularities are injected in the uri layers of query
and documents. Specifically, the query is annotated with dbpedia:Nobel Prize,
while relevant documents have annotations like dbpedia:Nobel Prize in X, where
X is one of the disciplines for which Nobel Prizes are assigned. Unfortunately,
these entities are not related in DBpedia (also in terms of types), thus it is not
possible to expand the query in order to find matches with relevant documents.

Query “q28” is an example where worse performances are achieved by using
semantic information, due to Entity Linking errors. From the query, two uri
terms (and related type terms) are correctly extracted: dbpedia:Modern history,
with no matches in the document collection, and dbpedia:English literature, with
12 matches. Of these matches, 11 are incorrect and refer to irrelevant documents
where dbpedia:English literature is wrongly linked to mentions of other “English”
things (e.g. “English scholar”, “English society”, “English medical herbs”).

Queries “q27” and “q44” are examples where semantic information signifi-
cantly boost performances. In “q44”, the correct link to dbpedia:Napoleon and the
type and time information associated to that entity in DBpedia allow extracting
uri, type and time terms that greatly help ranking relevant documents higher.
In “q27”, the major improvement derives from the extraction and matching of
frame term 〈framebase:frame-Destroying, dbpedia:Nazism〉; while time informa-
tion is also available (as dbpedia:Nazism is linked to category dbc:20th century in
DBpedia), our KE4IR implementation is not sophisticated enough to exploit it.

5.4 Balancing Semantic and Textual Content

In our work, we combine both textual and semantic content to improve the
performances of IR. While in previous analyses we assigned equal weights to

Knowledge Extraction for Information Retrieval 331

0.0 0.2 0.4 0.6 0.8 1.0

0.60

0.65

0.70

0.75

0.80

Semantic Weight

N
D

C
G

@
10

textual+semantics
textual

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

Semantic Weight

M
A

P

textual+semantics
textual

(b)

Fig. 2. Graphs showing the trend of (a) NDCG@10 and (b) MAP based on the quantity
of semantic information considered with respect to the textual one.

semantic and textual information, here we experiment with different balances.
Figure 2 shows how the NDCG@10 and MAP metrics change when the impor-
tance given to the semantic information changes as well. On the y-axis, we
have the NDCG@10 (Fig. 2a) and MAP (Fig. 2b) values, while on the x-axis
we have the weight w(semantics) assigned to all the semantic information and
divided equally among semantic layers, with w(textual) = 1−w(semantics);
a w(semantics) value of 0.0 means that only textual information is used (and no
semantic content), while a value of 1.0 means that only semantic information is
used (and no textual content). Results show that semantic information impacts
positively on system performances up to w(semantics) ≤ 0.89 for NDGC@10
and w(semantics) ≤ 0.92 for MAP, reaching the highest scores around 0.61 and
0.65, respectively. Similar behaviors can be observed for NDCG and MAP@10.
The highest scores obtained (NDCG@10 = 0.809, MAP = 0.763) are better than
the scores reported where equal textual and semantic weights were intuitively
used, suggesting the importance of a methodology for optimal weight tuning.

6 Concluding Remarks and Future Work

In this paper we investigated the benefits of using semantic content automatically
extracted from text for Information Retrieval. Building on the Vector Space
Model, we designed and implemented an approach, KE4IR, where both queries
and documents are processed to extract semantic content such as entities, types,
semantic frames, and temporal information. By evaluating our approach on a
state-of-the-art document collection, we showed that complementing the textual
information of queries and documents with the content resulting by processing
them with typical knowledge extraction tools, enables to outperform document
retrieval performances when only textual information is exploited.

Performance measured with different layer combinations shows that the
aggregation of different semantic layers leads to effective rankings of relevant
documents even in a multi-value relevance setting. The analysis of the NDCG
and MAP values, representing the most meaningful metrics for evaluating an IR
system, both in general and with respect to common user behaviors, validated
the possibility of deploying KE4IR in a real-world environment.

332 F. Corcoglioniti et al.

Starting from the results obtained in this first experience, future work on
the platform will touch different aspects. The evaluation here reported may be
considered a first step for observing the behavior of the approach under different
configurations and for enabling an analysis of the impact of each semantic layer.
Extending the evaluation campaign to additional, larger document collections
(e.g., TREC WT10g, ClueWeb) will be the next step for comparing the presented
platform in different environments where further issues have also to be addressed
as, for example, the scalability of the entire pipeline.

Results gave interesting insights about the components that should be
improved for augmenting the effectiveness of the retrieval system. As shown in
Table 5, concerning queries “q28” and “q46”, single issues in the linking phase
may lead to poor results. Thus, instead of trying to enrich as much text as pos-
sible with linked information coming from different knowledge bases, the use
of approaches favoring precision of suggested links instead of recall may be the
best strategy for obtaining a better average improvement of system effectiveness.
Similar considerations can be done about all the other semantic layers.

Finally, in the presented version of KE4IR, we considered only general-purpose
knowledge bases for enriching documents. However, the deployment in more
domain-specific contexts would require the use of domain-specific resources able to
provide more effective annotations. For instance, domain-specific KBs can be used
with KB-agnostic entity linking tools to extract domain-specific uri and type
terms. For frame terms, domain-specific frames can be defined and annotated
in a corpus to retrain the SRL tools used. We plan to validate these strategies to
assess the usability of KE4IR with domain-specific document collection.

References

1. Gangemi, A., Draicchio, F., Presutti, V., Nuzzolese, A.G., Recupero, D.R.: A
machine reader for the semantic web. In: Demos of ISWC, pp. 149–152 (2013)

2. Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa,
A., Ploeger, T., Bogaard, T.: Building event-centric knowledge graphs from news.
J. Web Semant. (to appear)

3. Corcoglioniti, F., Rospocher, M., Palmero Aprosio, A.: A 2-phase frame-based
knowledge extraction framework. In: Proceedings of ACM Symposium on Applied
Computing (SAC 2016) (2016, to appear)

4. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6(2),
167–195 (2015)

5. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

6. Waitelonis, J., Exeler, C., Sack, H.: Linked data enabled generalized vector space
model to improve document retrieval. In: Proceedings of NLP & DBpedia 2015
Workshop in Conjunction with 14th International Semantic Web Conference
(ISWC 2015). CEUR Workshop Proceedings (2015)

7. Croft, W.B.: User-specified domain knowledge for document retrieval. In: Bernardi,
L.R., Rabitti, F. (eds.) SIGIR, pp. 201–206. ACM (1986)

Knowledge Extraction for Information Retrieval 333

8. Gonzalo, J., Verdejo, F., Chugur, I., Cigarrán, J.: Indexing with WordNet synsets
can improve text retrieval. CoRR (1998)

9. Fellbaum, C. (ed.): WordNet: An Electonic Lexical Database. MIT Press,
Cambridge (1998)

10. Dridi, O.: Ontology-based information retrieval: overview and new proposition. In:
RCIS, pp. 421–426 (2008)

11. Tomassen, S.L.: Research on ontology-driven information retrieval. In: Meersman,
R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1460–
1468. Springer, Heidelberg (2006)

12. Castells, P., Fernández, M., Vallet, D.: An adaptation of the vector-space model
for ontology-based information retrieval. IEEE Trans. Knowl. Data Eng. 19(2),
261–272 (2007)

13. Vallet, D., Fernández, M., Castells, P.: An ontology-based information retrieval
model. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
455–470. Springer, Heidelberg (2005)

14. Jimeno-Yepes, A., Llavori, R.B., Rebholz-Schuhmann, D.: Ontology refinement for
improved information retrieval. Inf. Process. Manage. 46(4), 426–435 (2010)

15. Fernández, M., Cantador, I., Lopez, V., Vallet, D., Castells, P., Motta, E.: Seman-
tically enhanced information retrieval: an ontology-based approach. J. Web Sem.
9(4), 434–452 (2011)

16. Spink, A., Jansen, B., Blakely, C., Koshman, S.: A study of results overlap and
uniqueness among major web search engines. Inf. Process. Manage. 42(5), 1379–
1391 (2006)

17. Stojanovic, N.: An approach for defining relevance in the ontology-based informa-
tion retrieval. In: Web Intelligence, pp. 359–365 (2005)

18. Baziz, M., Boughanem, M., Pasi, G., Prade, H.: An information retrieval driven
by ontology: from query to document expansion. In: RIAO (2007)

19. Rouces, J., de Melo, G., Hose, K.: FrameBase: representing n-ary relations using
semantic frames. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-
Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 505–521.
Springer, Heidelberg (2015)

20. Hoffart, J., Suchanek, F.M.,Berberich,K.,Weikum,G.:YAGO2: a spatially and tem-
porally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

21. da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional relevance: prioritized
aggregation in a personalized information retrieval setting. Inf. Process. Manage.
48(2), 340–357 (2012)

22. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

23. Corcoglioniti, F., Rospocher, M., Mostarda, M., Amadori, M.: Processing billions
of RDF triples on a single machine using streaming and sorting. In: ACM SAC,
pp. 368–375 (2015)

24. Voorhees, E., Harman, D.: Overview of the sixth text retrieval conference (trec-6).
In: TREC, pp. 1–24 (1997)

25. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

26. Sanderson, M., Zobel, J.: Information retrieval system evaluation: effort, sensitivity,
and reliability. In: SIGIR, pp. 162–169. ACM (2005)

27. Noreen, E.W.: Computer-Intensive Methods for Testing Hypotheses: An Introduc-
tion. Wiley, New York (1989)

28. Abdelali, A., Cowie, J., Soliman, H.: Improving query precision using semantic
expansion. Inf. Process. Manage. 43(3), 705–716 (2007)

	Knowledge Extraction for Information Retrieval
	1 Introduction
	2 State of the Art
	3 Approach
	3.1 Semantic Layers
	3.2 Retrieval Model

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Overall Evaluation Results
	5.3 Query-by-Query Analysis
	5.4 Balancing Semantic and Textual Content

	6 Concluding Remarks and Future Work
	References

