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Abstract. The Semantic Web is founded on a number of Formal Lan-
guages (FL) whose benefits are precision, lack of ambiguity, and ability
to automate reasoning tasks such as inference or query answering. This
however poses the challenge of mediation between machines and users
because the latter generally prefer Natural Languages (NL) for access-
ing and authoring knowledge. In this paper, we introduce the N<A>F

design pattern based on Abstract Syntax Trees (AST), Huet’s zippers
and Montague grammars to zip together a natural language and a formal
language. Unlike question answering, translation does not go from NL
to FL, but as symbol N<A>F suggests, from ASTs (A) of an intermediate
language to both NL (N<A) and FL (A>F). ASTs are built interactively
and incrementally through a user-machine dialog where the user only
sees NL, and the machine only sees FL.

1 Introduction

The Semantic Web is founded on a number of formal languages to represent and
reason on facts (RDF), logical axioms (OWL), or queries (SPARQL). Those lan-
guages make data processable by machines but they also constitute a language
barrier to the production and consumption of semantic data by end users. An
important issue in the Semantic Web is to bridge the gap between formal lan-
guages (FL) designed for the machines, and natural languages (NL) understood
by humans. A crucial aspect of this issue is the adequacy between the expres-
sivity of FL and NL. Users should be guided to NL expressions that have a FL
counterpart to avoid the habitability problem [11]; and all or most of the expres-
sivity of the FL should be expressible through NL if we are to avoid two-class
citizenship among users.

We propose the N<A>F design pattern to bridge the gap between NL and
FL, along with techniques to ease its implementations. As a design pattern, it
is not a finished design but a reusable template. We have successfully used it
to deal with the NL-FL gap in different tasks: querying SPARQL endpoints [5],
authoring RDF descriptions [8], and completing OWL ontologies [7]. However,
in those previous works, the design pattern was mixed with other aspects, and
only presented through its concrete applications. We here give a detailed and
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independent account of the N<A>F design pattern in order to facilitate its reuse
in other contexts.

The N<A>F design pattern drastically differs from Question Answering (QA)
approaches [13] in two ways. First, translation does not go from NL to FL through
intermediate representations, but as symbol N<A>F suggests, from an interme-
diate language (A) to both NL (N<A) and FL (A>F). Second, questions are not
written but interactively and incrementally built through a user-machine dia-
logue. That approach provides a number of added values compared to existing
approaches (see Sect. 6 for details). Compared to QA, it ensures a strong reliabil-
ity because it has no habitability problem, and it allows for higher expressivity.
Compared to Controlled Natural Languages (CNL) with auto-completion [10],
it offers similar expressivity with more flexibility in query construction, and
more semantic and more fine-grained guidance. Compared to graphical query
builders [11], it hides FL behind NL, and also offers more semantic and more
fine-grained guidance. In truth, those added values do not guarantee user pref-
erence, a subjective value, but they are objective values along which different
approaches can be characterized and compared precisely. Still, user preference is
our ultimate goal, and this is why we develop and maintain a number of tools,
one of which (Sparklis [5]) has already attracted a large number of users1. The
design pattern is computationally lightweight, and can adapt to all sorts of FL
and tasks. Its main limitation is that it cannot be used to process NL expressions
that were not edited through it, typically existing texts.

The paper is structured as follows. Section 2 presents the theoretical founda-
tions: Abstract Syntax Trees (AST), Huet’s zippers, and Montague grammars.
Section 3 presents an overview of our design pattern, and Sect. 4 illustrates it
in detail to SPARQL-based querying. Section 5 demonstrates the generality of
our design pattern by reporting on three different applications. Finally, Sect. 6
discusses related work, and Sect. 7 concludes.

2 Theoretical Foundations

2.1 Abstract Syntax Trees

Abstract syntax is a way to describe the structure of the sentences of a language,
while abstracting over their concrete representation. Abstract syntax is generally
not represented as a text but as a tree data structure called Abstract Syntax
Tree (AST). In the compilation of programming languages, ASTs are commonly
used as an intermediate representation between the source code (a text) and the
target code (a binary). They here play the same role between NL and FL.

ASTs are best defined with algebraic datatypes that allow to recursively com-
pose base types2. For example, assuming base type term for SPARQL variables
and RDF nodes, the following datatypes define a simplified subset of SPARQL

1 http://www.semantic-web-journal.net/system/files/swj1236.pdf.
2 In OO programming, algebraic datatypes are modelled with the Composite pattern.

http://www.semantic-web-journal.net/system/files/swj1236.pdf
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Fig. 1. AST graphical representation of the SPARQL graph pattern { ?x a

:Person } UNION { ?x a :Organization } ?x :age ?a FILTER (?a >= 10)

graph patterns (gp), and expressions (expr):

gp ::= Triple(term, term, term) | Filter(gp, expr)
| Join(gp, gp) | Union(gp, gp) | Optional(gp, gp)

expr ::= Term(term) | Geq(expr , expr) | Regex(expr , expr)

Each italic name is a datatype, and each boldface name is a constructor (AST
node label). Every datatype may have any number of alternative constructors,
and every constructor may have any number of arguments (including 0 for con-
stant constructors). Figure 1 shows a graphical representation of the AST of a
SPARQL graph pattern.

2.2 Huet’s Zippers

In his “Functional Pearl” [9], Huet introduced the zipper as a technique for
traversing and updating a data structure in a purely functional way, and yet in
an efficient way. Purely functional programming completely avoids modification
in place of data structures, and makes it much easier to reason on program
behaviour, and hence to ensure their correctness [17]. We here use zippers for
the incremental construction of ASTs. A simple and illustrative example is on
simply chained lists, their traversal, and the insertion of elements. Given a base
type elt for list elements, the list datatype is defined with two constructors: one
for the empty list, one for adding an element at the head of another list.

list ::=Nil | Cons(elt , list)

The AST of list [1, 2, 3] is Cons(1,Cons(2,Cons(3,Nil))). The zipper idea
is to keep a location in the list such that it is easy and efficient to insert an
additional element at that location, and also to move that location to the left or
to the right. A location (e.g. at element 2 in the above list) splits the data struc-
ture in two parts: the sub-structure at the location ([2, 3]), and the surrounding
context ([1, ]). It has been shown that the context datatype corresponds to a
data structure with one hole, and can be seen as the derivative of the structure
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s → np vp (np vp)
vp → vt np λx.(np λy.(vt x y))
np → .dλe (d e)

| det nn λd.(det nn d)
det → a(n) λd1.λd2.(∃X.((d1 X) ∧ (d2 X)))

| every λd1.λd2.(∀X.((d1 X) ⇒ (d2 X)))
e → John | . . . | Mary Mary
nn → man | . . . | woman λx.(woman(x))
vt → . . . | loves λx.λy.(loves(x, y))

Fig. 2. Montague grammar of a small fragment of English

datatype [1]. We therefore name list ′ the context datatype for lists, and define
it as follows.

list ′ :: = Root | Cons′(elt , list ′)

That definition says that a list occurs either as a root list or as the right-argument
of constructor Cons, which has in turn its own context. For example, the context
at location 3 of list [1, 2, 3] is Cons′(2,Cons′(1,Root)). In fact, a list context is
the reverse list of elements before the location. Finally, a zipper data structure
combines a structure and a context: zipper ::=List(list , list ′). A zipper contains
all the information of a data structure plus a location in that structure. That
location is also called “focus”.

A zipper makes it easy to move the location to neighbour locations, and
to apply local transformations such as insertions or deletions. For example, to
insert an element x in a list zipper List(l, l′) is as simple as returning the zip-
per List(Cons(x, l), l′). Given a zipper List(l,Cons′(e, l′)), the location can be
moved to the left by returning the zipper List(Cons(e, l), l′).

2.3 Montague Grammars

Montague grammars [4] are an approach to translation from NL to FL that
is based on context-free grammars and simply typed λ-calculus. In a Montague
grammar, each rule is decorated by a λ-expression that denotes the FL semantics
of the syntactic construct defined by the rule. We can use them for translation
from ASTs to FL because our ASTs have a syntactic structure close to NL.

Figure 2 shows an example of Montague grammar for a small fragment of Eng-
lish, and its semantics in first-order logic. That fragment covers sentences like
’John loves Mary’, and ’every man loves a woman’. The semantics is defined in
a fully compositional style, i.e., the semantics of a construct is always a composi-
tion of the semantics of sub-constructs. The first rule in Fig. 2 says that a sentence
(s) whose syntax is made of a noun phrase (np) followed by a verb phrase (vp)
has its semantics defined by the λ-application (np vp) of the semantics of the
noun phrase to the semantics of the verb phrase. The semantics of a sentence is
a logical formula, e.g. ∀X.(man(X) ⇒ ∃Y.(woman(Y ) ∧ loves(X,Y ))) for the
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sentence ’every man loves a woman’3. The semantics of a verb phrase is a for-
mula λ-abstracted over an entity x (λx.) because a verb phrase misses an entity e
to form a complete sentence. If we call such an abstraction a description, then
the semantics of a noun phrase is a formula λ-abstracted over a description d
because a noun phrase misses a verb phrase vp to form a complete sentence. A
noun nn has the same semantic type as a verb phrase, i.e. a formula missing an
entity. The semantics of a transitive verb vt is a formula missing two entities,
a subject x and an object y. The semantics of a determiner det is a quanti-
fier introducing a fresh logical variable X, i.e. a formula abstracted over two
descriptions.

Given a sentence, its semantics is obtained by the bottom-up compo-
sition of λ-terms from the grammar through the parse tree. For exam-
ple, from the sentence ’every man loves a woman’ whose parse tree is
’[s [np [detevery] [nnman]] [vp [vtloves] [np [deta] [nnwoman]]]]’, we obtain the λ-term

((λd1.λd2.(∀X.((d1 X) ⇒ (d2 X))) λx.(man(x)))
λx.((λd1.λd2.(∃Y.((d1 Y ) ∧ (d2 Y ))) λx.(woman(x)))

λy.(λx.λy.(loves(x, y)) x y)))

which simplifies by β-reduction to the expected formula ∀X.(man(X) ⇒
∃Y.(woman(Y ) ∧ loves(X,Y ))).

Although initially designed for translating NL to formal logic, Montague
grammars as a technique can be used with other kinds of FLs as a target: e.g.,
SPARQL [6]. Their main benefits are to bridge the gap from natural to for-
mal languages, and to offer a fully-compositional semantics. Fully-compositional
semantics, like purely-functional data structures, makes it easier to ensure the
correctness of the translation because there are no side-effects.

3 Overview of the Design Pattern

The principles of the N<A>F design pattern are schematized as a “suspended
bridge over the NL-FL gap” in Fig. 3. The central pillar is made of AST
zippers, i.e. AST tree structures with a focus on one AST node. The nature
of the intermediate language abstracted by the ASTs depends on the applica-
tion: e.g., queries, descriptions, logical axioms. The AST zipper is initialized by
the system, and modified by users applying structural transformations, never by
direct textual input. For that reason, it is important to design a complete set
of transformations, so that every AST is reachable through a finite sequence of
transformations. Conversely, only safe transformations should be suggested to
users, so as to avoid syntactic and semantic errors. In the case of querying, a
semantic error could be applying a transformation that leads to an empty result.
In the case of ontology construction, it could be constructing an axiom that leads
to inconsistency.

3 We use capital letters for logical variables to distinguish them from λ-variables.
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Fig. 3. Principle of zipper-based edition for bridging the gap between NL and FL

In order for the AST structure to be understood by both the user and the
machine, verbalization translates ASTs to NL, and formalization translates ASTs
to FL. In addition to those translations, verbalization supports user control by
showing suggested transformations in NL, and formalization supports the com-
putation of suggestions by taking into account the semantics of the AST. A key
issue in the design of ASTs is to make the two translations semantically transpar-
ent, and simple enough. First, the AST structure should reproduce the syntactic
structure of NL (e.g., sentences, noun phrases, verb phrases), while abstracting
over as many details as possible. Indeed, starting with a flat representation like
SPARQL, it is possible to produce a NL version [15], but it is difficult to make
it stable across transformations. Second, the AST structure should semantically
align with the target FL. Indeed, every AST that can be obtained by a sequence
of transformations must have a semantics that is expressible in FL.

4 Application to a Core RDF Query Language

In this section, we explain in detail the application of the N<A>F design pat-
tern to a core RDF query language (CRQL for short)4. CRQL covers a signif-
icant fragment of SPARQL 1.0 SELECT queries (i.e., triple patterns, UNION,
simple filters) but restricted to tree patterns, and extended with negation
(NOT EXISTS). Section 5 discusses variations around CRQL to deal with more
expressive querying and other tasks.

4.1 AST Zippers

The following datatype definitions describe the structure of CRQL ASTs. Given
base types for RDF nodes (node), RDFS classes (class), RDFS properties (prop),
and literals (lit), we define abstract sentences (s), abstract noun phrases (np),
and abstract verb phrases (vp).

s ::= Select(np)
np ::= Something | Some(class) | Node(node) | That(np, vp)
vp ::= IsA(class) | Has(prop,np) | IsOf(prop,np) | Geq(lit)

| True | And(vp, vp) | Or(vp, vp) | Not(vp)
4 We also provide online the source code in two programming languages: Java and

OCaml. Visit http://www.irisa.fr/LIS/ferre/pub/CRQL/.

http://www.irisa.fr/LIS/ferre/pub/CRQL/
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Node npex in Fig. 4 points to the tree representation of an example CRQL
AST. It has type np, and specifies “any film that has director Steven Spielberg
and that has release date something that is after January 1st, 2010”. The AST
definitions reflect NL syntax with noun phrases and verb phrases, but is indeed
abstract because all sorts of syntactic distinctions are ignored. The two con-
structors Has and IsOf account for the traversal direction of a property, but
not whether the property is rendered by a verb, a noun, or a transitive adjec-
tive. Similarly, constructor Geq has different NL renderings depending on the
datatype of the literal.

NP (zipper)

IsOf ′
2 (np′

ex )

That′
2

Select’

Root

Sth

dbo:genre

That (npex )

And

Has

That

Geq

”2010-01-01”

Sth

dbo:releaseDate

Has

Node

dbr:Steven Spielberg

dbo:director

Some

dbo:Film

Fig. 4. Example CRQL zipper made of a sub-structure (npex ), and a context (np′
ex )

The following datatype definitions describe the structure of CRQL contexts.
They are automatically obtained as the derivatives of the AST datatypes (see
Sect. 2.2). When a constructor has several arguments (e.g., And), the derived
constructors are indexed by the position of the focus (e.g., And′

2 for a focus on
the second argument).

s ′ ::= Root
np′ ::= Select′(s′) | That′

1(np′, vp) | Has′
2(prop, vp′) | IsOf ′

2(prop, vp′)
vp′ ::= That′

2(np,np′) | Not′(vp′)
| And′

1(vp′, vp) | And′
2(vp, vp′) | Or′

1(vp′, vp) | Or′
2(vp, vp′)

Node np′
ex in Fig. 4 points to the tree representation of an example CRQL

context. It has type np′, and specifies the one-hole AST “select something that is
the genre of ”, where the underscore (hole) gives the location of the zipper sub-
structure. Finally, the following datatype definition describes a CRQL zipper,
combining an AST datatype and its derivative.

zipper ::= S(s, s′) | NP(np,np′) | VP(vp, vp′)

Therefore, when editing a CRQL query, the focus can be put on the whole
sentence, on any noun phrase (i.e. on any entity involved in the query), or on any
particular verb phrase (i.e. on any description of any entity in the query). Figure 4
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displays the tree representation of an example CRQL zipper that represents the
NL question “Give me the genre of films directed by Steven Spielberg and whose
release date is after January 1st, 2010”, where the focus is on films.

4.2 A Complete Set of Zipper Transformations

Because ASTs are only built by the successive and interactive application of
transformations, it is important to define an initial zipper and a set of zipper
transformations that makes the building process complete.

Definition 1 (Completeness). An initial zipper and a set of zipper transfor-
mations is complete w.r.t. AST datatypes iff every AST zipper can be reached
by applying a finite sequence of transformations starting with the initial zipper.

We start by defining an initial AST x0 for each AST datatype x:
s0 := Select(np0), np0 := Something, vp0 := True. The initial zipper is then
defined as zipper0 := S(s0,Root). It corresponds to the totally unconstrained
query that returns the list of everything.

We continue by defining a number of zipper transformations. A zipper trans-
formation is formally defined as a partial mapping from zipper to zipper. Trans-
formations are denoted by all-uppercase names, and are defined by unions of
mappings from a zipper pattern to a zipper expression. For example, transfor-
mations that introduce constructors That, Not, And, Or are defined as follows.
Transformation NOT toggles the application of negation; other transformations
coordinate a sub-structure x with an initial AST x0, and move the focus to x0.

THAT := NP(np,np′) → VP(vp0,That′
2(np,np′))

NOT := VP(Not(vp), vp′) → VP(vp, vp′)
| VP(vp, vp′) → VP(Not(vp), vp′)

AND := VP(vp, vp′) → VP(vp0,And′
2(vp, vp′))

OR := VP(vp, vp′) → VP(vp0,Or′
2(vp, vp′))

In order to allow transformations at an arbitrary focus, it is important to
allow moving the focus location through the AST. To this purpose, we define four
transformations UP , DOWN , LEFT , RIGHT to move the focus respectively
up to the parent AST node, down to the leftmost child, to the left sibling, and
to the right sibling. We only provide the definitions for constructor That as
other constructors work in a similar way.

DOWN := NP(That(np, vp),np′) → NP(np,That′
1(np′, vp))

UP := NP(np,That′
1(np′, vp)) → NP(That(np, vp),np′)

| VP(vp,That′
2(np,np′)) → NP(That(np, vp),np′)

RIGHT := NP(np,That′
1(np′, vp)) → VP(vp,That′

2(np,np′))
LEFT := VP(vp,That′

2(np,np′)) → NP(np,That′
1(np′, vp))

Most transformations are performed by inserting or deleting a sub-structure
at the focus. We define a generic transformation INSERT that works on any
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zipper with focus on an initial AST, X(x0, x
′), where x stands for any AST

datatype.

INSERT (x) := X(x0, x
′) → X(x, x′)

Note that INSERT takes an AST of type x as an argument, the sub-structure
to insert. Because ASTs cannot be textually edited, the insertable sub-structures
must be picked from a finite collection, and have to be suggested by the system.
A generic DELETE transformation can also be defined to undo insertions.

The above set of transformations can be proved complete provided that a
proper collection of insertable elements is defined.

Theorem 1 (Completeness). Assume the following insertable elements for
each datatype, where ’node’, ’class’, and ’prop’ hold for any value present in the
RDF dataset, and where’lit ’ holds for any filtering value input by users:

np : Some(class), Node(node),
vp : IsA(class), Has(prop,np0), IsOf(prop,np0), and Geq(lit).

Then, initial zipper0 and the set of transformations defined above (INSERT (x)
applying to insertable elements) is complete.

T (Select(np)) := DOWN ; T (np);UP

T (Something) := ID
T (Some(class)) := INSERT (Some(class))
T (Node(node)) := INSERT (Node(node))
T (That(np, vp)) := T (np);THAT ; T (vp);UP

T (IsA(class)) := INSERT (IsA(class))
T (Has(prop,np)) := INSERT (Has(prop,np0));DOWN ; T (np);UP
T (IsOf(prop,np)) := INSERT (IsOf(prop,np0));DOWN ; T (np);UP
T (Geq(lit)) := INSERT (Geq(lit))
T (True) := ID
T (And(vp1, vp2) := T (vp1);AND ; T (vp2);UP
T (Or(vp1, vp2) := T (vp1);OR; T (vp2);UP
T (Not(vp)) := T (vp);NOT

Fig. 5. Recursive definition of the transformation sequence T (x) from x0 to AST x

Proof. First, it is easy to show that the moving transformations give access to all
zippers of an AST. Therefore, to prove completeness, it is enough to prove that
every zipper in the form S(s,Root) is reachable. Figure 5 defines a recursive
function T (x) that returns a transformation sequence from an initial AST x0

to any AST x, where x stands for any AST datatype. For each case, it can be
proved that the transformation sequence T (x) indeed leads from x0 to x, and
that every recursive call is well defined (sub-structure x0 at focus). �
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The above proof provides an algorithm T for computing the transformation
sequence leading to any AST x. The example zipper given in Fig. 4 can be reached
with the following sequence:

DOWN ; THAT ; INSERT (IsOf(dbo:genre,np0)); DOWN ;
INSERT (Some(dbo:Film));
THAT ; INSERT (Has(dbo:director,np0)); DOWN ;
INSERT (Node(dbr:Steven Spielberg)); UP ;
AND ; INSERT (Has(dbo:releaseDate,np0)); DOWN ;
THAT ; INSERT (Geq("2010-01-01")); UP ; UP ; UP ; UP .

In practice, it appears useful to tune transformations so as to minimize the
number of interaction steps for users. For example, moving down after inserting
a property can be made automatic given its frequency.

4.3 Formalization to SPARQL

AST zippers are given a semantics by translating them to a formal language.
Here, we translate CRQL to SPARQL. Translating queries to SPARQL makes it
easy to evaluate them with SPARQL engines and through SPARQL endpoints.
Before the translation itself, we apply to zippers a transformation NORM to
normalize them into sentence zippers S(s,Root). This has the advantage to
simplify the translation by restricting it to ASTs, and making it unnecessary for
zipper contexts.

NORM := S(s,Root) → S(s,Root)
| VP(vp1,Or′

1(vp′, vp2)) → NORM (VP(vp1, vp′))
| VP(vp2,Or′

2(vp1, vp′)) → NORM (VP(vp2, vp′))
| VP(vp,Not′(vp′)) → NORM (VP(vp, vp′))
| X(x, x′) → NORM (UP(X(x, x′)))

By default, normalizing a zipper is simply moving the focus up repeatedly
(last line), until the sentence level is reached (first line). However, constructors
Or (union), and Not (negation) are removed when the focus is in their scope
(middle lines). The reason is to make sure that the query results are defined and
relevant to the focus. For example, if the focus is in one branch of an union,
then the other branch can be temporarily ignored in the semantics. In SPARQL,
a variable that is introduced inside a negation cannot be returned in results.
Moving the focus in the scope of a negation is then a way to access the values
of such a variable, by temporarily ignoring negation.

Once a sentence AST s is obtained by normalization, its translation to
a SPARQL SELECT query can be defined by the Montague grammar in
Fig. 6. SPARQL strings are delimited with quotes, and concatenated with +.
One SPARQL variable ’?xi’ is introduced for each indefinite head (construc-
tors Something and Some). For example, the translation of the zipper given
in Fig. 4 produces the following SPARQL query. The three variables correspond
respectively to the film’s genre, the film, and the film’s release date.

SELECT ?x1 ?x2 ?x3 WHERE
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s ::= Select(np) ’SELECT ?x1 ... ?xn WHERE {’ + (np λx.(’’)) + ’}’
np ::= Somethingi λd.((d ’?xi’))

| Some(class)i λd.(’?xi a’ + class + ’.’ + (d ’?xi’))
| Node(node) λd.((d node))
| That(np, vp) λd.(np λx.((d x) + ’.’ + (vp x)))

vp ::= IsA(class) λx.(x + ’a’ + class)
| Has(prop,np) λx.((np λy.(x + prop + y)))
| IsOf(prop,np) λx.((np λy.(y + prop + x)))
| Geq(lit) λx.(’FILTER(’ + x + ’>=’ + lit + ’)’)
| True λx.(’’)
| And(vp1, vp2) λx.((vp1 x) + ’.’ + (vp2 x))
| Or(vp1, vp2) λx.(’{’ + (vp1 x) + ’} UNION {’ + (vp2 x) + ’}’)
| Not(vp) λx.(’FILTER NOT EXISTS {’ + (vp x) + ’}’)

Fig. 6. Formalization to SPARQL of CRQL ASTs

{ ?x2 a dbo:Film . ?x2 dbo:genre ?x1 .
?x2 dbo:director dbr:Steven_Spielberg .
?x2 dbo:releaseDate ?x3 . FILTER (?x3 >= "2010-01-01") }

4.4 Verbalization to English

ASTs are given a concrete and user-friendly syntax by verbalizing them to NL. It
is simpler than direct verbalizations of FL expressions, e.g. SPARQL queries [15],
because ASTs follow the phrase structure of NL. A good quality verbalization
requires linguistic resources about lexical and syntactic aspects (e.g., Lemon lex-
icons [14], WordNet, Grammatical Framework [16]). However, because humans
are more robust than machines at language understanding, a naive verbalization
can be good enough in practice for simple languages like CRQL. We here sketch
such a verbalization, showing that the technique of Montague grammars is also
useful for AST to NL translation.

s ::= Select(np) ’Give me’ + np
np ::= That(np, vp) np + (vp 0)
vp ::= IsA(class) λn.(’that’ + (is n) + ’a(n)’ + class)

| Has(prop,np) λn.(’whose’ + prop + (is n) + np)
| And(vp1, vp2) λn.((vp1 n) + (and n) + (vp2 n))
| Not(vp) λn.(vp n)

Fig. 7. Verbalization to English of CRQL ASTs (partial)

Before verbalization, an AST zipper is normalized like for SPARQL transla-
tion (Sect. 4.3), except that constructors Or/Not in the context are not removed
but marked for dimmed display. Similarly, the zipper sub-structure is highlighted
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to show the focus. For a naive verbalization, we assume that nodes, classes
and properties are verbalized to their labels, which we assume to be common
nouns: e.g., ’film’, ’director’, ’release date’. The Montague grammar trans-
lates each AST to a string, and translations of verb phrases are relative clauses
abstracted by a Boolean flag, n, in order to propagate negation as a modifier to
the relevant verbs. Figure 7 shows a subset of the translation rules. Function is
verbalizes the copula depending on negation: (is 0) := ’is’, (is 1) := ’is not’.
Function and encodes De Morgan laws: (and 0) := ’and’, (and 1) := ’or’.
The translation of an AST can be post-processed to further simplify it. For
example, the sequence ’something that is NP’ can be replaced by NP , and
the sequence ’is something after’ by ’is after’. Then, the verbalization of
the example in Fig. 4 results in ’Give me the genre of a film whose director

is Steven Spielberg and whose release date is after January 1st, 2010’.

5 Validation of the Design Pattern

As the purpose of a design pattern is to provide a same solution to different
problems, we validate the N<A>F design pattern by showing how it has been
used to address the NL-FL gap in three quite different tasks related to the
Semantic Web. Each task brought its own contribution relative to the task,
and was properly evaluated w.r.t. expressivity, usability, and/or performance.
They constitute a demonstration of the effectiveness and genericity of our design
pattern. In this section, we shortly describe each tool, and how it can be seen as
a variation of querying with CRQL (detailed in Sect. 4).

5.1 Sparklis: Querying SPARQL Endpoints

Sparklis [5] is a tool for querying SPARQL endpoints. Its target FL is hence
SPARQL. The covered subset of SPARQL includes CRQL, extended with arbi-
trary basic graph patterns (including cycles), additional filters, OPTIONAL, aggre-
gation and grouping, and solution modifiers (ordering, HAVING). Cyclic graph
patterns are verbalized with anaphoras: e.g., ’a film that is starring the
director of the film’. Aggregations are verbalized with head modifiers: e.g.,
’Give me the number of film whose director is Tim Burton’. SPARQL end-
points are used not only to retrieve query answers, but also to compute the
insertable elements that do not lead to empty answers, i.e. that provide infor-
mation relevant to the current answers. For example, considering flights arriving
in Heraklion, only showing departure cities, not all cities.

Sparklis is available online5, had about 1000 unique users over 18 months,
and was used on more than 100 different endpoints. It scales to datasets as large
as DBpedia (several billions triples). In an experiment on QALD-3 DBpedia
questions, the median query construction time was 30 s, the maximum time was
109 s, and only one question led to a timeout.

5 Sparklis online at http://www.irisa.fr/LIS/ferre/sparklis/.

http://www.irisa.fr/LIS/ferre/sparklis/
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5.2 Utilis: Authoring RDF Descriptions

Utilis [8] is a functionality integrated to Sewelis6 for authoring RDF descrip-
tions. Its target FL is hence RDF. A subset of CRQL can be used to cover all of
RDF. Constructor Select(np) is replaced by constructor Describe(node, vp),
where node acts as the RDF node being described, and vp acts as its description.
Constructors Or, Not, and filters become irrelevant. Constructors Something
and Some correspond to the introduction of blank nodes. The key difference
with Sparklis lies in the semantics of AST zippers. Their semantics is a rank-
ing of the RDF nodes of a dataset, according to their similarity with the entity at
the zipper focus. Given the example zipper of Fig. 4, one gets first films by Spiel-
berg since 2010, then films by Spielberg until 2010, then films by other directors,
etc. The system uses the description of most similar nodes to suggest insertable
elements.

A user study comparing Utilis to Protégé has shown that users prefered
the fine-grained suggestions of Utilis to the static entity lists of Protégé.
We have also observed that those suggestions improve consistency across RDF
descriptions without the rigidity of a prescriptive schema.

5.3 PEW: Completing OWL Ontologies

PEW7 [7] is a tool for completing OWL ontologies. Its target FL is hence OWL.
The covered subset of OWL is made of expression classes with existential restric-
tions, nominals, conjunctions, disjunctions, atomic negations, and inverse roles.
Like for Utilis, a subset of CRQL can be used, excluding filters, and restricting
Not to atomic verb phrases. Constructor Select(np) is replaced by Sat(np) to
express the fact that the semantics of an AST is the satisfiability of the cor-
responding class expression. The suggested insertable elements are those that
preserve satisfiability. Negated elements are also suggested, and are the only
way to introduce negation in the AST. Because only satisfiable class expressions
can be built, PEW allows the exploration of the “possible worlds” of an ontology
(its models). When undesirable “possible worlds” are found, the tool allows to
automatically produce an OWL axiom so as to exclude them.

We have found the tool useful, and even playful, for completing an ontology
with negative axioms (e.g., class disjointness), which are often missing. An exper-
iment has been performed on the well-known Pizza ontology, and has revealed
many missing negative axioms through undesirable situations: e.g., “a country
that is also some food” (missing disjointness), “a country of origin that is not
a country” (missing range), and even “a vegetarian pizza that can have meat as
ingredient” (the definition uses hasTopping instead of hasIngredient).

6 Related Work

The FL-NL gap is not a new issue, and many solutions have been proposed to
reduce it. Question Answering (QA) consists in translating NL expressions to
6 Download and screencasts at http://www.irisa.fr/LIS/softwares/sewelis/.
7 Download and screencast at http://www.irisa.fr/LIS/softwares/pew/.

http://www.irisa.fr/LIS/softwares/sewelis/
http://www.irisa.fr/LIS/softwares/pew/
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FL, generally going through one or several intermediate representations (e.g.,
parse trees). In the Semantic Web, many systems translate English questions to
SPARQL queries (see [13] for a survey), and the QALD8 challenge is devoted to
that task. NL interfaces are attractive for their ease-of-use, and definetely have
a role to play, but they suffer from a weak adequacy: (habitability) spontaneous
NL expressions often have no FL counterpart or are ambiguous, (expressivity)
only a small FL fragment is covered in general. This makes it difficult to interpret
an empty answer: Does it reflect actual data? an out-of-scope question? a lack
of expressivity or simply a misundertanding by the system? Habitability can be
addressed in part by suggesting reformulations of user questions, e.g. based on
templates [2], but the number of suggestions tends to grow exponentially with
expressivity (query size and number of features). An alternative to spontaneous
NL is Controlled NL (CNL) [12]. A CNL typically defines a NL fragment that is
adequate to the target FL, and that eliminates or reduces ambiguity. However,
while much easier to read than FL, a CNL remains difficult to write because of
the constrained syntax. That is why CNL-based editors often come with auto-
completion to suggest the next possible words during edition: e.g., ACE Wiki for
facts and rules [10], Ginseng for queries [11], Atomate it! for reactive rules [18],
Halo for problem solving [3]. Auto-completion offers a limited flexibility because
suggestions are only at the end of a partial sentence, and because translation to
FL, and hence semantics, is only available when the sentence is complete. The
latter limitation also implies that suggestions are not based on semantics, but
on syntax and schema only. Note that, by semantics, we here mean not only the
FL expression, but also any interpretation that may come with it (e.g., query
results, satisfiability checks of OWL class expressions).

A noticeable approach that is not based on NL is structural edition, e.g. query
builders like SemanticCrystal [11], where a point-and-click interface is used to
build FL expressions incrementally. They avoid the habitability problem but the
presentation of the FL expression is generally based either on its syntax tree,
and hence very close to the FL, or on a graphical view that is more intuitive but
often limits expressivity. Grammatical Framework (GF) [16] improves structural
edition by distinguishing abstract syntax and concrete syntax, only showing the
later to users. In fact, the tools and linguistic resources of GF can be used to
implement the verbalization part of our N<A>F design pattern. However, the GF
equivalent of AST transformations are not customizable to the target task and
semantics; and ASTs are not guaranteed to have a fully-defined semantics at
every edition step. This is because GF is about syntax, not about task-specific
semantics.

7 Conclusion

The gap between formal languages and natural languages is deep, and we do
not pretend to fill it. However, we believe that our design pattern based on AST
zippers provides a powerful strategy to build bridges over the gap (see Fig. 3).
8 http://greententacle.techfak.uni-bielefeld.de/∼cunger/qald/.

http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
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For people on the natural language side, those bridges offer a safe and large
access to the benefits of formal languages. Once they engage on such a bridge,
they cannot fall in the gap (no habitability problem), and their access to the
formal language side is open to a large area (high expressivity). We think that it
provides an interesting alternative to question answering by avoiding the major
difficulties of NL understanding thanks to NL-based interaction. We have shown
the versatility of our design pattern with applications to three different formal
languages and tasks. The perspectives consists in creating new applications, and
improving them on three axes: formal language coverage (expressivity), quality of
the verbalization (readability), and intelligence of system suggestions (guidance).
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