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Abstract. In this work, we envision a publish/subscribe ontology sys-
tem that is able to index large numbers of expressive continuous queries
and filter them against RDF data that arrive in a streaming fashion. To
this end, we propose a SPARQL extension that supports the creation
of full-text continuous queries and propose a family of main-memory
query indexing algorithms which perform matching at low complexity
and minimal filtering time. We experimentally compare our approach
against a state-of-the-art competitor (extended to handle indexing of
full-text queries) both on structural and full-text tasks using real-world
data. Our approach proves two orders of magnitude faster than the com-
petitor in all types of filtering tasks.

1 Introduction

As the Web is growing continuously, a great amount of data is available to
users, making it more difficult for them to discover interesting information by
searching. For this reason, publish/subscribe (pub/sub) systems have emerged
as a promising paradigm that enables the user to cope with the high rate of
information production and avoid the cognitive overload of repeated searches.
In a pub/sub system, users (or services that act on users’ behalf) express their
interests by submitting a continuous query and wait to be notified whenever
a new event of interest occurs. The vast majority of modern pub/sub services
and systems are typically content-based (contrary to previous decades, where
they used to be topic/channel based); subscribers express their interest on the
content of the publication (be it structure or data/text values) by appropriately
specifying constraints in the submitted continuous queries.

In the early days of content-based pub/sub the structure of a publication
was nothing more than a (usually static) collection of named attributes with
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values of different types (e.g., text) [19,21]. As XML gained popularity and
started becoming the standard for data/information representation and exchange
on the web, various XML-based pub/sub systems have, naturally, arised [3,6–
8,14]. In those systems, publications were expressed in XML and extensions of
XPath/XQuery were used to express continuous queries. All research in the field
focused mainly on the structural/value matching between (indexed) continuous
queries and incoming publications, but has largely ignored semantics. This gave
rise to ontology-based pub/sub systems [12,15,16,20] that typically used RDF
[18] for representing publications and SPARQL [17] extensions/modifications for
expressing user interests through continuous queries.

Ontology-based pub/sub systems research [12,15,16,20] has naturally
focused more on semantics and has delivered interesting results. What it cur-
rently lacks, though, compared to the technological arsenal of the traditional
pub/sub research is the support of a complete full-text retrieval mechanism,
beyond existing regular expression and equality support, with sophisticated algo-
rithms and data structures to minimise processing and memory requirements.

In this work, we initially propose an extension of SPARQL with full-text
operators, aiming at more expressive continuous queries that are able to sup-
port versatile user needs in applications like digital libraries or news filtering. To
preserve the expressivity of SPARQL, we view the full-text operations as an addi-
tional filter of the query variables. In our setup, publications are ontology data
that contain RDF literals in their property elements. A full-text expression is
evaluated against a literal, and supported expressions involve the usual Boolean
operators (i.e., conjunction, disjunction, negation), as well as word proximity
and phrase matching. To efficiently filter the incoming publications against the
stored queries, we present RTF (acronym for RDF Text Filtering), a family
of trie-based, main-memory, (continuous) query indexing algorithms that sup-
port SPARQL queries with full-text constraints and are able to filter incoming
publications in a few milliseconds. We propose indexing methods that exploit
the commonalities between continuous queries at indexing time and leverage
on the natural properties of RDF during the filtering procedure. To the best
of our knowledge, our family of algorithms is the first in the literature that
is able to support SPARQL queries with full-text constraints. To demonstrate
the efficiency of our approach we extend iBroker [12], a state-of-the-art query
indexing and RDF publication filtering algorithm, with full-text capabilities and
compare it against our approach both on structural and full-text filtering tasks;
our approach proves more than two orders of magnitude faster for the structural
and more than one order of magnitude faster for the full-text filtering tasks.

In the light of the above, our contributions are:

• We extend SPARQL with full-text operators and support Boolean, word prox-
imity, and phrase matching operators.

• We develop a family of continuous query indexing algorithms that support full-
text SPARQL queries and are able to filter the incoming RDF publications
efficiently.
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• We extend iBroker [12], a third party algorithm for ontology pub/sub, to
offer full-text support and use it as a state-of-the-art competitor.

• We identify algorithmic alternatives for query indexing and assess their per-
formance with a real-word data set against the extended version of iBroker.

The rest of the work is organised as follows. Section 2 presents an overview
of our data and query model, while Sect. 3 introduces the RTF family of algo-
rithms and outlines the competitor extensions. Subsequently, Sect. 4 presents
the experimental evaluation of the developed algorithms with a real-world data
set. Finally, Sect. 5 presents related research in ontology pub/sub systems, and
Sect. 6 concludes the paper.

2 Query and Data Model

RDF constitutes a conceptual model and a formal language for representing
resources in the Semantic Web; it is the building block of a metadata layer on
top of the current structured information layer of the World Wide Web, which
enables interoperability between different systems and facilitates the exchange of
machine-understandable information. The SPARQL query language is currently
the W3C recommendation for querying the Semantic Web; the graph model, over
which it operates, naturally joins data together and supports several query forms
for querying RDF datasets. However, it still lacks the support of a complete full-
text mechanism for filtering purposes. Since we focus our attention on full-text
filtering of ontology data we are interested only in property elements with a
plain RDF literal as their content. In this context, the subject of an RDF triple
is always a node element and the predicate denotes the relation to the literal.
The object is the literal, which is expressed as a string.

In the spirit of [2], we propose an extension to the SPARQL syntax to
support full-text continuous queries in RDF datasets. To preserve SPARQL
expressibility we view the full-text operations as an additional filter of the
(continuous) query variables. In this context, we define a new binary operator
ftcontains (full-text contains), that takes as input a variable of the continu-
ous SPARQL query and a full-text expression that operates on the values of
this variable. The query signature of the operator is expressed as the function
xsd : boolean : ftcontains(var, ftexpression). A full-text expression is evaluated
only against a literal, so var is always the object of the SPARQL tuple pattern;
the subject and/or predicate of the tuple pattern may be constants. The expres-
sions supported involve the usual Boolean operators (denoted by ftAND, ftOR,
etc.), as well as proximity (denoted by ftNEAR) and phrase matching as in [4].
To this end, we carefully designed a new set of full-text queries which currently
can not be efficiently evaluated by existing pub/sub ontology systems.

The example SPARQL continuous query in Fig. 1 will match all publications
that are of type article and have an attribute title with a string literal. The title
of the publications must contain the terms “olympic” and “games”. Additionally,
the publications that match must have an attribute body that contains the terms
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Fig. 1. An example SPARQL query with the proposed extended syntax.

“olympic”, “games” and “rio”, and the term “rio” is at least 0 and at most 2
words after the term “games” (due to the word proximity constraint).

In addition to the full-text extension of SPARQL we also support the wildcard
(*) operator applied in RDF triples, i.e., queries where the subject, predicate
and/or object of a triple may match any value of the publication. Such a com-
bination of full-text and wildcard operations allows us to offer to users a rich
set of tools that allow them to specify expressive continuous queries that will
match their information needs. An example query of this type could be derived
by substituting line 2 of Fig. 1 with “WHERE {? publication type *.”.

A publication, in this context, is represented as a set of RDF triples contain-
ing additional fields, where needed, to store the text parts. Hence, the underlying
model is a directed graph which contains a set of nodes that may serve as the
subject or the object in a triple statement and are connected via properties that
are expressed as the predicate.

3 Query Indexing Algorithms

In this section, we present RTF, a family of query indexing algorithms that
utilise trie structures to exploit commonalities between continuous queries to
achieve faster filtering times. Initially, we elaborate on the indexing algorithm
RTFm1, discuss its variation RTFs, and provide details for the common filtering
procedure. Finally, we briefly discuss iBroker, a state-of-the-art competitor
that uses an inverted index to store submitted SPARQL queries.

3.1 Algorithm RTFM

Algorithm RTFm is indexing each continuous query by executing the following
three steps:

1. Transforming the continuous query to conjunctions of tuples (quadruples or
triples depending on the existence of a text constraint or not) and assigning
a unique identifier to each tuple.

2. Registering all the discrete tuples produced from the previous step in a table
that associates each continuous query with the tuple identifiers it contains.

3. Indexing of all the query tuples at the trie structure described below.

1 No connection to the infamous initialism – https://en.wikipedia.org/wiki/RTFM.

https://en.wikipedia.org/wiki/RTFM
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In the following, we analyse each step and provide details on the data struc-
tures and algorithms utilised.

Step 1: Tuple Representation. Algorithm RTFm operates on tuples; in this
section we define continuous queries as conjunctions of tuples, and, in the follow-
ing sections, we illustrate how we exploit commonalities between those tuples to
achieve better query indexing and thus faster filtering performance.

Definition 1. We define a continuous query q as a series of i, i ∈ 1 . . . , n,
tuple conjuncts. Each tuple has three mandatory attributes, namely subject (Si),
predicate (Pi) and object (Oi). There is an additional, non-mandatory, attribute
Fi that facilitates the representation of the full-text operators and their textual
constraints. Thus, a continuous query may be represented as:

q = t1(S1,P1,O1, {F1}) ∧ · · · ∧ tn(Sn,Pn,On, {Fn})

Example 1. By applying Definition 1 to the continuous query q in the example
of Fig. 1 we receive the following set of tuples:
(?publication , type , article) ∧
(?publication , title , ?title , ftcontains (" olympic" ftAND "games")) ∧
(?publication , body , ?body ,

ftcontains (" olympic" ftAND "games" ftNEAR [0,2] "rio"))

Moving from a SPARQL query to a tuple-based representation is achieved
by appropriate parsing of the continuous query with a tool like Sesame2.

Step 2: Associating Queries with Tuple Identifiers. Following Step 1,
RTFm receives a query q that consists of two fields, a unique query identifier
and a set of tuples also associated with their unique tuple ids. RTFm proceeds
by storing each continuous query along with the tuple identifiers into the Query
Table (QT ). QT is comprised of two fields: the unique identifier of each query q
and a linked list that stores the unique identifiers of the continuous query tuples.
For instance, for the continuous query of Fig. 1, RTFm will add three tuple
identifiers into QT (as they are shown in the previous step). RTFm proceeds in
a similar way to insert every new continuous query that is submitted in QT .

Step 3: Indexing Tuples in the Trie Forest. The trie forest is populated in
order to store the tuples compactly by exploiting their common elements. Thus,
every trie forest consists of a collection of tries, which in turn contain a number
of trie nodes; in each node N the following information is stored:

• The node content, denoted by content(N), that may represent either an RDF
attribute/variable or a word contained in a text constraint of a query.

• The list of children nodes of N , denoted children(N).
• The list of tuple identifiers, denoted by tIDs(N), that are indexed under N .

2 http://rdf4j.org.

http://rdf4j.org
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When a new query q arrives RTFm iterates through the set of all query
tuples and indexes every tuple in the trie forest. During the indexing phase
RTFm searches the trie forest for a suitable place to index each tuple as follows.

The first tuple of the first continuous query that is submitted will naturally
arrive in an empty trie forest and will create a number of nodes that depend
on the form of the tuple. Specifically, for the structural constraints of the tuple,
RTFm creates three new trie nodes one for each attribute specified. If the tuple
contains also a full-text constraint with k distinct words, RTFm will create k
more nodes (one for each distinct word). For illustration purposes, we use a
pseudo-node “FT” to separate the structural from the word constraints and
highlight the difference between the different RTF variants.

In general, when inserting a new tuple, RTFm considers storing it at an
existing trie or creating a new trie. To insert a new tuple t(S,P,O), RTFm
examines the subject S of the tuple and utilises the trie structure to find if there
is a candidate trie which has a root node R such that content(R) = S. If such a
trie is found, the indexing algorithm proceeds to examine children(R) in order
to determine if there is a child C such that content(C) = P. The same applies
for the object O of the tuple. Notice that variables (in subject/predicate/object)
and wildcards in tuples are mapped onto the corresponding variable/wildcard
nodes. If the new tuple contains full-text constraints, the trie is expanded with
the distinct words contained in these tuple constraints in a similar manner.

If, during the indexing phase, RTFm fails to locate an appropriate trie posi-
tion to store a new tuple, it proceeds in creating a new set of nodes that will
index the remaining tuple fields. After locating (or creating) the appropriate trie
that will store a tuple t, RTFm stores also the tuple id at tIDs(N) of node N
of this trie, so as to be able to identify the tuple at filtering time. Notice that
different query insertion order will, naturally, give different tries, since query
organisation is greedy, and depends on the already stored queries.

Indexing of proximity formulas and phrases in the trie forest of RTFm is per-
formed in the same way as described above, since proximity is a more constrained
case of conjunction. To accommodate the word distance in the proximity/phrase
expression, we use an extra data structure that stores the proximity constraints
in the spirit of [19]. Disjunctions are handled by creating separate queries (that
have the same user as the notification recipient) for the different word operands.

Figure 2 shows the resulting trie after inserting three continuous queries,
including the query q of Fig. 1. Additionally, the three tuples of q (shown in
Example 1 above) are assigned ids q.t1, q.t2, q.t3 respectively. From the indexing
performed by RTFm in these queries notice that:

• Query q shares the same tuple ((?publication, type, article)) with
query v, as two different tuple identifiers (namely q.t1 and v.t1) are stored in
the same leaf node. Moreover, this tuple contains only structural constraints.

• Query q contains tuple q.t3 that specifies both structural and full-text con-
straints.
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Fig. 2. Trie forest during the indexing phase of RTFm.

Fig. 3. Trie forest during the indexing phase of RTFs.

• Query q (with tuple q.t3) shares the same structural constraints and also has
the word "olympic" in common for the textual constraints part with query v
(with tuple v.t4).

Finally, note that Fig. 2 shows just one of the tries that would be created;
typically, because of different query structure the resulting indexing structure is
a forest of tries. Thus, a hash table (not shown in Fig. 2 to avoid cluttering) is
used to provide fast access to trie roots.

Algorithm RTFs. Indexing of word constraints in the context of RTF may
be performed in two different ways: (i) using multiple tries (hence the name
RTFm) for indexing the word constraints depending on the structural part of
the continuous queries as described in the previous section (and shown in Fig. 2),
and (ii) using a single trie forest (hence the name RTFs) that is dedicated to
all text components, regardless of the structural part of the continuous queries
(shown in Fig. 3 – not described in detail due to space considerations).

In the former case (algorithm RTFm), the textual constraints are considered
as a natural expansion of the structural ones, but there exist fewer clustering
opportunities for words. Contrary, in the latter case (algorithm RTFs), the word
constraints are considered as a different type of constraint and are clustered
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together regardless of the structural constraints of the query. Algorithm RTFs
is a variation that allows us to construct a more compact3 forest of tries since
this organisation creates more clustering opportunities for the words. As we will
demonstrate in Sect. 4, RTFs is better suited for cases where queries with text
constraints are relatively sparse, whereas RTFm is better suited for cases where
many queries contain text constraints.

3.2 Filtering Algorithm

The filtering algorithm is common for the two variants (RTFm and RTFs) of
RTF. In this section, we present the filtering algorithm that allows RTF to filter
incoming RDF publications and issue notifications to subscribed users.

The filtering process operates on triples; new RDF publications are parsed
and transformed to a set of triples that are subsequently used to guide the
traversal of the trie forest in search for matching continuous queries.

Definition 2. We define a publication p as a series of i, i ∈ 1 . . . , n conjuncts
of RDF triples. Each triple has three attributes, namely subject (Si), predicate
(Pi) and object (Oi) or text field (Ti) that represents the textual content of an
attribute. Thus, a publication may be represented as:

p = t1(S1,P1,O1|T1) ∧ · · · ∧ tn(Sn,Pn,On|Tn)

The filtering process proceeds as follows. For every triple t(S,P,O), in the
newly arrived publication p, the trie forest is examined and the root R for which
content(R) = S is visited. Thereafter, RTF begins traversing the trie in a depth
first manner and examines the nodes children(R) in order to determine if there
are matching tuples. In order to reach from the root node R to a leaf node, every
node N in the path must fulfil the following requirements: content(N) = P and
content(N) = O, or content(N) = $variable. If, at any point of the trie traversal
a node N with a wildcard field (content(N) = ∗) is visited the traversal continues
to children(N), as this is considered a match for N . The traversal of the trie
finishes when a leaf is reached.

For every triple t(S,P, T ), in the newly arrived publication p, the trie forest is
examined as above. When a node N that represents a word constraint is visited,
the traversal continues as follows. For every node C,C ∈ children(N), for which
content(C) is contained in T the sub-trie that has C as a root is examined in a
depth-first manner. The traversal of the trie continues recursively for as long as
common words between the children of a visited node and T exist.

Notice that, independently of the structural or full-text constraints, the
tIDs(N) list at each node N gives implicitly all query tuples that match the
incoming publication tuple. Thus, all tIDs(N) of all traversed trie nodes are
marked as matched in QT . Word distance constraints in phrase/proximity oper-
ations are checked for satisfaction after the trie traversal. In the end of the
3 Notice that the trie of Fig. 3 has less nodes compared to that of Fig. 2 for the same

queries and the same query insertion order.
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Fig. 4. Pseudocode for publication filtering.

processing of publication p (i.e., after processing all its tuples), a scan of QT
allows us to determine the queries that have matched the incoming publication.
The pseudocode of the filtering process for RTF variants is given in Fig. 4.

3.3 Algorithm IBROKER

To evaluate the efficiency of RTF we have also implemented iBroker [12] as
a baseline competitor. iBroker is a continuous query indexing algorithm that
supports SPARQL queries with structural and string matching constraints, and
is currently the only state-of-the-art algorithm that is able to handle RDF queries
with both structure and (some form of) text. In this section, we outline the basic
idea behind iBroker and the data structures upon which it operates and show
how we extended its functionality to support full-text constraints.

Algorithm iBroker utilises an inverted index to store the continuous queries.
Its indexing structure consists of a hash table that is used to index the unique
attributes of all triples that correspond to the submitted SPARQL queries.
iBroker uses the unique attribute names as hash keys to access the corresponding
hash buckets, and each hash bucket contains references to lists of stored queries.
These lists store: (i) the unique identifier of query q, (ii) a reference to a hash
bucket, named NextToMatch, that contains the next attribute in q, (iii) the string
that might be present in q named Value, and (iv) any possible variables in q.

This inverted index stores the queries in a chain-like manner. Every query
may be recomposed by following the NextToMatch references to hash buckets
until an empty NextToMatch field is visited. This procedure is applied by the
algorithm iBroker during the filtering of a publication event. As there is no
defined hierarchy that outlines the filtering sequence, an incoming publication
may need to examine many hash buckets looking for the beginning of a query.
The result is that iBroker must in this case examine all the continuous queries
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in the corresponding bucket list, and then proceed to examine their NextToMatch
entries until there is none left to match.

iBroker implements string matching, but has no support for full-text oper-
ators. To evaluate it against RTF we have extended iBroker with full-text
subscriptions by replacing the Value field with the list of words that appear
in a full-text constraint. This modification enables iBroker to support both
string and full-text constraints. Finally, for comparison purposes, we have also
extended the functionality of iBroker to index and filter SPARQL queries that
contain wildcard operators. For a more detailed description of iBroker and the
specifics of its algorithms the interested reader is referred to [12].

4 Experimental Evaluation

In this section, we present a series of experiments that compare RTF against
iBroker under a series of different scenarios.

Data and Query Set. For the experimental evaluation we utilised, the
DBpedia corpus (http://dbpedia.org/Downloads2015-04) extracted from the
Wikipedia domain that forms a structured knowledge database of more than 4
million items. A major part, namely 3.22 millions publications, of the DBpedia
corpus, has been classified into an ontology resulting in 529 different classes
which are described by 2.3 thousand properties. Additionally, publications bear
textual information that originates from human generated content published at
the Wikipedia domain. The vocabulary extracted from the DBpedia publica-
tions consists of 3.14 millions unique words. The maximum textual information
present in a publication is 14, 254 words, while, the average is 53 words. The
diversity in content of the DBpedia corpus accompanied with the information
on structural and textual level, renders it as the perfect candidate for evaluating
our algorithms indexing and filtering efficiency.

Query Set. The queries were constructed by utilising classes and properties
extracted from the DBpedia corpus. Each query, contains at most 4 tuples.
The query set, is formed by sets of tuples containing full-text operators with
probabilities of FTpr = 0%, 50% or 100%. The full-text operators contain con-
junctive terms that are selected equiprobably among the multi-set of words from
the DBpedia vocabulary. Additionally, the full-text operators contain at most 3
terms. Queries with FTpr = 0%, examine the performance of the algorithms for
structural matching only. For queries, with FTpr = 50%, we examine a mixed
filtering scenario where half of the queries contain also textual constraints apart
from the structural ones. Finally, queries with FTpr = 100% demonstrate the
scaling capabilities of the algorithms as they all contain full-text constraints.

Publication Set. In order to evaluate the query collections, described above, we
selected Ipub = 5 K publications from the DBpedia corpus. The set selected,
had structural and textual information as extracted and processed from the
Wikipedia domain. The publications contain human-generated, real-life data,
thus providing a realistic overview of the performance of the algorithm. We

http://dbpedia.org/Downloads2015-04
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Fig. 5. Comparing (a) filtering time when varying DB and (b) filtering throughput
when DB = 100 K, for queries of FTpr = 50 %.

maintain the same publication set through the evaluation process against dif-
ferent query collections. Thus, it is asserted that the algorithms are evaluated
based on their indexing capabilities and the nature of queries they index.

Metrics Employed. In our evaluation, we present and discuss the filtering time
and throughput of each algorithm, i.e., the amount of time needed to locate all
continuous queries satisfied by an incoming publication. We present and com-
pare the memory requirements of the algorithm. As all algorithms index the
same query databases, a lower memory requirement indicates a more compact
clustering of data while a higher memory footprint a less compact database.
Finally, we present the insertion time of each algorithm, i.e., the amount of time
needed to index a set of queries Ip = 20 K into the database.

Technical Configuration. All algorithms were implemented in C++, and an
off-the-shelf PC (Core i7 3.6 GHz, 8 GB RAM, Ubuntu Linux 14.04) was used.
The time shown in the graphs is wall-clock time and the results of each experi-
ment are averaged over 10 runs to eliminate fluctuations in time measurements.

4.1 Results When Varying the Query Database Size

In this section, we present the most significant findings for the proposed algo-
rithms, when, varying the query database size DB for queries of FTpr = 50%.

Comparing Filtering Time. Figure 5(a) presents the time in milliseconds
needed to filter an incoming publication for Ipub = 5 K publications, when the
DB size is increasing. Notice that the y-axis is split into two parts due to high dif-
ferences in the performance of RTF variants and iBroker. We observe that filter-
ing time increases for all algorithms as the DB size grows. Algorithms RTFs and
RTFm achieve the lowest filtering times, suggesting better performance. Algo-
rithm iBroker, is more sensitive to DB size changes compared to RTF due to
its query indexing structures, i.e., an inverted index that does not implement any
clustering techniques. More specifically, the results indicate that algorithmRTFm
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Fig. 6. Comparing (a) memory usage and (b) insertion time when varying DB for
FTpr = 50 %.

filters incoming publications 92 times faster compared to iBroker. Finally, algo-
rithm RTFs achieves the lowest filtering time (2.5% faster than RTFm and 94
times faster than iBroker), i.e., 36 ms/publication.

Comparing Filtering Throughput. We present the results concerning the
algorithms’ filtering throughput, when, indexing DB = 100 K queries for Ipub =
5 K incoming publications. Figure 5(b) presents the throughput all algorithms
achieve during the filtering of Ipub = 5 K incoming publications. We observe
that the throughput remains steady throughout the publication events. This is
attributed to the nature of the algorithms, as their filtering capability is not
affected by the publications size but from the indexing structures that store
the queries. Algorithms RTFs and RTFm achieve the highest throughput, thus
the best performance, compared to algorithm iBroker. More specifically algo-
rithms RTFs and RTFm achieve a throughput of more than 17 KB/s that
corresponds to more than 27 publications/s. Contrary, iBroker accomplishes a
throughput of 0.18 KB/s that corresponds to 0.28 publications/s.

Comparing Memory Usage. In Fig. 6(a), we present the results for the mem-
ory requirements of each algorithm when increasing the query database DB by
Ip = 20 K new continuous queries in each iteration. Algorithm RTFs has the
lowest memory requirements using 183 MB for storing the whole query data-
base DB = 100 K. Algorithm’s RTFm memory usage is 190 MB for the same
DB = 100 K, as it maintains multiple forests of tries for the indexing of tex-
tual constraints. We observe that RTF’s variations reserve the majority of their
memory when indexing the first Ip = 20 K to an empty database. This is due to
the creation of many new tries at index structure initialisation. Namely, RTFs
reserves 73 MB when indexing the first Ip = 20 K queries and RTFm reserves
75 MB. For every new Ip = 20 K inserted into the database RTFs and RTFm do
not require more than 28 MB to facilitate the indexing of new queries due to the
accommodation of new queries mostly in existing tries. Finally, algorithm iBro-
ker occupies 313 MB of memory to index a database of DB = 100 K queries.
iBroker reserves 84 MB for the first Ip = 20 K queries, while it requires more
than 60 MB of memory to index every set of Ip = 20 K new queries.
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Fig. 7. Comparing RTF’s (a) filtering and (b) insertion time when varying DB size
and FTpr.

Comparing Insertion Time. In this section, we discuss the query index-
ing time of all algorithms. Figure 6(b) shows the insertion time in milliseconds
required to insert Ip = 20 K queries when the DB size increases. We observe
that the algorithms require more time to index new queries as the database
size increases. Algorithms RTFs and RTFm need more time to index the same
number of queries Ip = 20 K compared to iBroker. This can be explained as
follows. The variations of RTF utilise trie-based data structures to capture and
index the common structural and textual constraints of the queries. Trie tra-
versal results to high insertion time during the indexing phase. On the other
hand, insertion in an inverted index (as done by iBroker) is faster. Notice that
insertion time is not critical in a pub/sub scenario; the most important dimension
is filtering time/throughput that defines the processing rate of publications.

4.2 Results When Varying the Full-Text Percentage

This section presents the most interesting results concerning the RTF variants
when varying the percentage of full-text constraints in the tuples. Notice that we
do not show iBroker (that has a significantly worse performance than the RTF
variants as demonstrated in the previous sections) to avoid cluttering the graphs.
We evaluate the structural matching performance of RTFm and RTFs when
FTpr = 0%, and stress-test the algorithms when the query database contains
the highest number of full-text constraints possible, i.e., when FTpr = 100%.

Comparing Filtering Time. Figure 7(a) shows the time needed to filter an
incoming publication against full-text constraints with FTpr = 0%, 50% and
100%, when increasing the DB size. As expected, RTFs and RTFm achieve
the lowest filtering times when FTpr = 0%, and exhibit the same performance
as they utilise the same indexing structure for the structural constraints of the
queries. Finally, RTFs and RTFm increase their filtering times when FTpr =
100% with RTFm achieving better performance.

Comparing Insertion Time. Figure 7(b) shows the time required to insert
Ip = 20 K queries when DB size is increasing and varying FTpr = 0%, 50%
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and 100%. As expected, algorithms RTFs and RTFm increase their time needs,
when more textual constraints (FTpr = 100%) are included in the continues
queries, and reduce them when no textual constraints (FTpr = 0%) are present.

Comparing Memory Usage. We give an outline of RTFs’s and RTFm’s
memory requirements, when DB = 100 K, for queries of FTpr = 0% and 100%.
Both, RTFs and RTFm have the lowest memory requirements when FTpr = 0%,
namely 168 MB. Finally, for FTpr = 100%, 196 MB and 203 MB are required for
RTFs and RTFm respectively.

4.3 Summary of Results

Our experimental evaluation demonstrated the filtering effectiveness of algo-
rithm RTFs for cases where queries with text constraints are not very often,
whereas algorithm RTFm is better suited for cases where a high percentage or
queries contain text constraints. Both algorithms RTFs and RTFm are over two
orders of magnitude faster than iBroker on average.

5 Related Work

In this section we discuss pub/sub approaches in centralised and distributed
environments and contrast them to our approach.

Centralised Ontology Pub/Sub Systems. The S-ToPSS [15] system was
among the first designs that supported pub/sub functionality in an ontologi-
cal context. S-ToPSS was designed to enhance the matching process aiming at
semantically similar but syntactically different information present in publica-
tions and user subscriptions. This was achieved by identifying synonyms and util-
ising concept taxonomies and hierarchies. Its successor, G-ToPSS [16], focused
on information dissemination of RDF data on ontologies, emphasising on scal-
ability and fast filtering of RDF data. G-ToPSS represented publications as
directed labelled graphs, while a two-level hash table was used for the subscrip-
tions; the matching algorithm traversed the publication and subscription graphs.
In the same spirit, the Ontology-based Pub/Sub (OPS) system [20] supported
events with complex data structures and aimed for a uniform representation.
Subsequently, user subscriptions and publication events were processed into RDF
graphs and thereafter indexed or filtered respectively by utilising graph match-
ing algorithms. Finally, OPS examined the matching trees that emerged from
the graph traversal to determine the matching subscriptions. The Sparkwave [10]
system was built to perform continuous pattern matching over RDF streams by
supporting expressive pattern definitions, sliding windows and schema-entailed
knowledge. The C-SPARQL [1] extension enabled the registration of continuous
SPARQL queries over RDF streams, thus, bridging data streams with knowledge
bases and enabling stream reasoning.

Although all the aforementioned works focus on supporting pub/sub func-
tionality in ontology systems, none has considered supporting any form of text
extension. The work closest to ours is iBroker [12], an OWL-based pub/sub
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mediator focused in filtering publications from OWL ontologies against a set
of stored SPARQL queries. iBroker matched incoming events generated from
an ontology against user queries by resorting on an inverted index to represent
the graph that indexed user subscriptions. Although there is no text support,
iBroker is able to perform string matching using the inverted index mentioned
above. In this work, we extended iBroker with full-text support and used it as
a baseline competitor for our algorithms to showcase the performance gains.

Distributed Ontology Pub/Sub Systems. With the advent of distributed
and P2P computing, decentralised ontology pub/sub systems naturally emerged.
The first P2P pub/sub system based on RDF data was build by Chirita et al. [5];
the system utilised a super-peer architecture where super-peers were responsible
for the routing of the content determined by the RDF schema, property or value,
while peers were responsible for specific schemas and properties. At publication
time, super peers routed the data to the responsible peers for the filtering process;
the performance gain was achieved by utilising the content similarities present
in subscriptions. Similarly, Liarou et al. [11] studied the problem of evaluating
multi-predicate conjunctive queries in pub/sub systems; the aim of the system
was to distribute the load of the matching process into a P2P network. In the
same spirit, an RDF-based pub/sub P2P network was build by Pelegrino et
al. [13] to study the messaging paradigm. The system supported the creation
of queries by making use of SPARQL and publications by using RDF data.
Users’ subscriptions were indexed into a peer, determined by the CAN protocol.
Data from a publication event that concerned a peer was stored while the event
was forwarded to other peers. Finally, Kaoudi et al. [9] presented a study for
distributed RDF reasoning and query answering. The work in [9] focused on
implementing, optimising, and evaluating forward and backward chaining over
a distributed hash-table for a subset of SPARQL.

None of the works mentioned above supports full-text in their data/query
model. Finally notice that our solution can be extended in a decentralised envi-
ronment by distributing the triple forest to different nodes and modifying the
filtering process to visit only nodes that may contain matching queries.

Connection to Other Technologies. The vast majority of RDF stores
(Apache Jena4 Text module, Virtuoso5, Allegrograph6, OntoText GraphDB7)
offers text indexing and full-text retrieval combined with SPARQL. Our solution
shares ideas with these technologies, but pub/sub copes with different problems
and challenges compared to traditional retrieval. Finally, pub/sub functional-
ity on ontologies may complement many applications including LOD platforms
such as Lotus8 by enabling users to get notified for information of interest, or
by providing a useful moderation/monitoring tool for curators/editors of such
systems.
4 http://jena.apache.org/.
5 http://virtuoso.openlinksw.com/.
6 http://franz.com/agraph/allegrograph/.
7 http://ontotext.com/products/graphdb/.
8 http://lotus.lodlaundromat.org/.

http://jena.apache.org/
http://virtuoso.openlinksw.com/
http://franz.com/agraph/allegrograph/
http://ontotext.com/products/graphdb/
http://lotus.lodlaundromat.org/
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6 Conclusions and Outlook

In this work, we studied the problem of full-text support on ontology-based
pub/sub systems. In this context, we proposed a full-text extension for SPARQL
continuous queries and a family of query indexing algorithms that are two orders
of magnitude faster at filtering tasks than a state-of-the-art competitor.

Currently, we are working on supporting VSM queries/text representation in
SPARQL, and adapting our algorithms to multi-processor environments.
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