
Embedding Mapping Approaches for Tensor
Factorization and Knowledge Graph Modelling

Yinchong Yang2(B), Cristóbal Esteban1,2, and Volker Tresp1,2

1 Siemens AG, Corporate Technology, Munich, Germany
2 Ludwig-Maximilians-Universität München, Munich, Germany

yinchong.yang@hotmail.com

Abstract. Latent embedding models are the basis of state-of-the art
statistical solutions for modelling Knowledge Graphs and Recommender
Systems. However, to be able to perform predictions for new entities and
relation types, such models have to be retrained completely to derive the
new latent embeddings. This could be a potential limitation when fast
predictions for new entities and relation types are required. In this paper
we propose approaches that can map new entities and new relation types
into the existing latent embedding space without the need for retraining.
Our proposed models are based on the observable —even incomplete—
features of a new entity, e.g. a subset of observed links to other known
entities. We show that these mapping approaches are efficient and are
applicable to a wide variety of existing factorization models, including
nonlinear models. We report performance results on multiple real-world
datasets and evaluate the performances from different aspects.

1 Introduction

Latent embedding models, aka factorization models, have proven to be power-
ful approaches for modelling Knowledge Graphs (KG) as described in [17,18].
A special case is Collaborative Filtering (CF) where latent embedding models
have shown state-of-the-art performance [16]. The common key aspect of these
models is that an observed link between multiple entities can be modelled as the
interaction between their latent embedding vectors. Multi-linear models such as
CP/PARAFAC [14] and Tucker [22] as well as RESCAL [19] are typical examples
of models that use latent embeddings. Nonlinear Neural Network-based embed-
ding models are derived in [8,20]. For a more detailed review of these works
please see [18].

The latent embedding vectors can be used in several ways. For example, it
has been shown that distances between entities in the latent space are more
compact and meaningful than in the original observable feature space. Also, in
entity resolution, entities close to each other in the latent space can sometimes
be interpreted as duplicates [7]. Finally, it has been shown that unknown links
between known entities can be predicted based on interactions of their latent
embeddings [18].

c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 199–213, 2016.
DOI: 10.1007/978-3-319-34129-3 13



200 Y. Yang et al.

A drawback of latent embedding models is that they need to be retrained
when new entities are appended to the database. For large-scale databases
and/or situations where the system is expected to perform immediate opera-
tions, such as entity resolution or link prediction on the new entities, this would
be very costly and factorization models would find only limited applications.

In this paper, we propose a new class of approaches to handle new entities
and new relation types by mapping them into the latent space learned by the
factorization model. We emphasize that such mapping models can be learned in
conjunction with the training of the factorization model. To map a new entity
into the latent space we only require the observable features of the entity. In
a KG, for instance, such observable features form a binary vector or matrix,
representing the existence of links between this a entity and a subset of known
entities in the database.

The rest of the paper is organized as follows: In Sect. 2 we give a brief review
of selected embedding-based factorization models and illustrate the concept of
an embedding mapping. We show that for certain specific factorization models
there exist embedding mappings in closed form. In Sect. 3, we propose a general
framework that describes a variety of factorization models on a more abstract
level and derive a framework defining the mapping models and elaborate three
options for training. In Sect. 4 we present experimental results on real-world
datasets. Section 5 discusses related work and Sect. 6 contains conclusions and
an outlook for further works.

Notations: A matrix A is represented as a bold capital letter and a multidi-
mensional tensor X by a calligraphic bold capital letter. By default we assume a
3-dimensional tensor. In some applications the dimensions correspond to entities
and relation types, which we sometimes treat as generalized entities. A matrix
with indexing superscript as A(l) denotes the latent embedding matrix for enti-
ties of the l-th dimension of a matrix or tensor. The matrix derived by unfolding
a tensor w.r.t. dimension l is noted using subscripts as X(l). Note that unfolding
a matrix w.r.t. first and second dimension is equivalent to the matrix itself and
its transpose, respectively. X† stands for the Moore-Penrose pseudoinverse. A
vector is denoted with bold small letters such as xi,• and refers to the i-th row
in a corresponding matrix X. We refer to a set using either a simple capital
Greek letter such as Θ or —if we focus on the elements— using curly brack-
ets as {A(l)}Ll=1. The concatenation operation is noted with squared brackets
[•, ..., •]+.

2 Factorization Models with Closed-Form Mappings

In this section we review a few well-studied factorization models that are based
on latent embeddings and motivate our problem setting of mapping new entities
into the latent embedding space.

Matrix Cases: First we review the Singular Value Decomposition (SVD) as
a latent embedding model: For an SVD in form of X = UDV T we interpret



Embedding Mapping Approaches 201

the matrix U to consist of latent embedding vectors in rows, for each entity
represented in the first dimension of X. The matrix X is constructed by a linear
combination of the embeddings U with weights defined as rows of (DV T )T .

Then we consider U = X(DV T )†, which is an inverse-relation, to be a
mapping function from X to the latent embedding in U . It is generally assumed
that this mapping relation also holds for a new observation which is not present
in X, i.e.

uT
new = xT

new(DV T )† (1)

given that D and V are regarded as constant. We can generalize these rela-
tionships to Matrix Factorization(MF) X = ABT as used in [16]. The latent
embeddings are now rows of A and the weights as rows of B. The mapping
function now is

aT
new = xT

new(BT )†. (2)

In both cases (SVD and MF), instead of a complete recalculation of the factor-
ization to derive the corresponding latent embedding vector, we simply need to
apply a linear map to xnew, where the map is derived from the pseudo-inverse
operation.

Tensor Cases: Following the notation in [15], we describe the CP/PARAFAC
model [14] as well as its more general form, the Tucker decomposition [22], as
X ≈ G ×1 A×2 B ×3 C. A row in each of the three matrices, i.e., ai,•, bj,•, ck,•,
stores the latent embedding of the i-, j- and k-th entity, respectively, in the
corresponding dimensions of X ; and the core tensor G specifies the linear inter-
action between each triple of embedding vectors to derive the entry xi,j,k. In the
special case of CP, G takes the form of a hyper-diagonal tensor. By rewriting
the model as X(1) = AG(1)(C ⊗ B)T we could also interpret A as a latent
embedding matrix and G(1)(C ⊗B)T as the linear weights. Inverting this linear
relation we can obtain a mapping of the form

aT
new = xT

new(G(1)(C ⊗ B)T )†. (3)

Such closed-form mappings cannot be derived in at least two cases: Firstly,
for non-linear factorization models such as Multiway Neural Network (mwNN)
[8], Neural Tensor Networks [20] and TransE [3]; secondly for models with shared
embeddings such as RESCAL [19]. We derive solutions for those two cases in
the next section. In the experimental part of this paper, we implement and test
(logistic) MF to model data in matrix form and CP, RESCAL and mwNN for
tensor data. A brief summary of the model architectures can be found in Table 1.
To obtain proper probabilistic models, we introduce a natural parameter η for
each entry x in the matrix or tensor.

3 General Models and Training Algorithms

In this section we introduce a generic framework describing factorization and
Embedding Mapping (abbreviately termed ‘Emma’). We also propose three



202 Y. Yang et al.

Table 1. A summary of selected factorization models within the scope of this paper. sig
denotes the sigmoid or logistic function sig(x) = 1

1+exp(−x)
; N and B denote Gaussian

and Bernoulli distributions, respectively. We denote with MLP a standard three layered
perceptron.

Model Distr. assumption Natural parameter

MF xi,j ∼ N (ηi,j , σ) η̂i,j =
∑R

r=1 a
(1)
i,r · a

(2)
j,r

Logistic MF xi,j ∼ B(sig(ηi,j))

CP xi,j,k ∼ N (ηi,j,k, σ) η̂i,j,k =
∑R

r=1 a
(1)
i,r · a

(2)
j,r · a

(3)
k,r

RESCAL xi,j,k ∼ N (ηi,j,k, σ) η̂i,j,k =
∑P

p

∑P
p′ wp,p′,k · a

(1)
i,p · a

(1)

j,p′

mwNN xi,j,k ∼ B(sig(ηi,j)) η̂i,j,k = MLP ([a
(1)
i,• ,a

(2)
j,• ,a

(3)
k,•]+)

novel approaches to train the mapping models. For the sake of generality we
shall refer to matrices also as tensors.

3.1 General Models

The Factorization Model defines the interaction between latent embeddings
to construct the tensor as

̂H = f
(

{A(l)}Ll=1; Θ
)

with

̂H ∈ R
n1×...×nL ,A(l) ∈ R

nl×pl .
(4)

Here, the L-dimensional tensor H contains the natural parameters η. The matri-
ces in set {A(l)}Ll=1 store the latent embeddings in their rows. The tensor is
reconstructed with operations defined by a parameterized function f(•; Θ).

For instance, in case of CP factorization, the function f specifies the linear
combination of rows in each embedding matrix without additional parameters
(Θ = ∅); and for mwNN, Θ consists of the weights in an NN model whose
architecture is defined as part of f .

The Factorization Cost Function: We define the factorization cost function
cF and its regularized version cpF as

cF = dF (X , ̂H) = dF (X , f({A(l)}Ll=1; Θ)) (5)

cpF = cF +
L

∑

l=1

γ(A(l)) + ρ(Θ). (6)

During training the cost function is optimized w.r.t. the parameters in Θ and
embeddings in the A(l)’s. An example for the differentiable distance measure dF
is the Frobenius Norm. For binary tensors, the cross-entropy loss is more suitable.
In Eq. (6) we included a regularization function γ(•) for the latent embeddings
and a second one ρ(•) for the model parameters.



Embedding Mapping Approaches 203

The Mapping Model defines a function g(•; Ψl) that maps each row in the
tensor unfolding X(l) to the corresponding row in the learned embedding matrix
A(l) as

̂A(l) = g
(

X(l); Ψl

) ∀l ∈ [1, ..., L] with

X(l) ∈ R
nl×

∏
l′ �=l nl′ .

(7)

Note that in the input of the mapping function, each arbitrary row i in X(l),
is identical to the vectorized i-th hyper-slice of the tensor and consists of all
available information about the i-th entity. For a KG, for instance, this could
be the vector indicating the existence of relations between entity i and all other
entities for all relation types. The function g(•) defines the architecture of the
mapping model and Ψl consists of all parameters.

The Mapping Cost Function: We define the mapping cost function as

cM =
L

∑

l=1

dM (A(l), ̂A(l)) =
L

∑

l=1

dM (A(l), g(X(l); Ψl)) (8)

cpM = cM +
L

∑

l=1

ρ(Ψl). (9)

Optimizing the mapping cost function involves adjusting Ψl for each l with a
given g(•) so that the distance between the learned embedding A(l) from factor-
ization and mapped embedding ̂A(l) from the corresponding tensor unfoldings
is minimized.

The Compact Model: Since the latent embeddings, e.g., the A(l)’s, are also
adjustable parameters, we could write a more compact model by plugging Eq. (7)
into Eq. (4) and obtain

̂H = f
(

{

g
(

X(l); Ψl

)}L

l=1
; Θ

)

. (10)

Analogously, combining cost functions of the factorization model —Eqs. (5) and
(6)— and those of the mapping model —Eqs. (8) and (9)— we obtain:

The Compact Cost Function as:

c = dF (X , ̂H) = dF

(

X , f
(

{

g
(

X(l); Ψl

)}L

l=1
; Θ

))

(11)

cp = c + ρ(Θ) +
L

∑

l=1

ρ(Ψl), (12)

where A(l)’s are not explicitly defined but could be derived from g(X(l); Ψl).
It should be noted that the tensor X occurs both at the output and the input

(as unfoldings) of the cost function. More specifically, for a tensor X of three
dimensions, the factorization and mapping models as a whole actually model



204 Y. Yang et al.

Fig. 1. Illustration of the Compact Model in case of a tensor: We model the each entry
xi,j,k over the natural parameter ηi,j,k based on the three slices of the tensor indexed
by i, j and k, respectively.

each entry xi,j,k based on the i-th, j-th and k-th slices of 1st, 2nd and the 3rd
dimension of the tensor, respectively, whereby the xi,j,k is the intersection of all
these three slices. This aspect is illustrated in Fig. 1.

The factorization problem defined in Eq. (4) could be solved using a variety
of well studied factorization models that optimize Eq. (5). In the following we
focus on solving the mapping problem in Eq. (7) and the compact modelling
problem in Eq. (10). Within the scope of this paper we specifically assume that
the function g(•; Ψl) represents a linear relation between A(l) and X(l) that can
be modelled by a matrix Ψl = {M l}, i.e.

̂A(l) = X(l)M l ∀l ∈ [1, ..., L]. (13)

3.2 Training Approaches

Post Embedding Mapping: The most intuitive way to perform an Emma is
to solve Eqs. (4) and (7) sequentially: Given that a certain factorization model
has already derived the latent embeddings A(l), we could consider the mapping
from X(l) to the embedding to be a linear system of nl equations as suggested in
Eq. (7). Since one is interested in small dimensions for the latent embeddings, i.e.
pl <

∏

l′ �=l nl′ , the system is overdetermined and can be approximately solved

using Least-Square (LS) methods. Specifically: ̂M l = (XT
(l)X(l))†XT

(l)A
(l).

It is easy to see that the inverting methods of Eqs. (1), (2) and (3) intro-
duced in Sect. 2 are special cases of this LS estimation. For instance, with MF
model X = ABT , the general LS estimation could be described as ̂A = XMA

with MA = (XTX)†XTA. Plugging in the information of the model defini-
tion, we obtain MA = (BATABT )†ABTA = (BT )†, which is the same as
the inverting operation in Eq. (2). An apparently desirable feature of this Post
Mapping approach is its simplicity. It is applicable for any known factorization
model and does not affect the factorizing process, since this approach assumes
the learned embeddings as fixed. In the following we shall refer to this approach
as Emma-Post.

Embedding Mapping Learning with Hatting Algorithm: Alternatively,
one could also integrate the Emma learning into the factorization learning



Embedding Mapping Approaches 205

Algorithm 1. Hatting Algorithm Framework
for all l ∈ [1, ..., L] do:

U (l) ← (XT
(l)X (l) − λI)†XT

(l)

H (l) ← X (l)U
(l)

end for
for each epoch t in learning factorization do:

{A(l)}L
l=1, Θ ← update w.r.t. cpF

Absolute Updating: or Stochastic Updating with Late-Starting:

for l ∈ [1, ..., L] do:

A(l) ← H (l)A(l)

end for

if t > τ then:
for l ∈ [1, ..., L] do:

π(l) = 1 − max(0, R2(A(l),H (l)A(l)))
A(l) ← H (l)A(l) with probability π(l)

end for
end if

end for
return:

{A(l)}L
l=1 as latent embeddings;

{M (l) = U (l)A(l)}L
l=1 as Emma matrices.

process: Instead of solving the LS problem after the factorization learning is
completed, we suggest to fit the LS solution against the current latent embed-
ding after each epoch of the factorization learning. Specifically, after each epoch
of the factorization learning, we solve the LS problem based on the current
embeddings and replace these with their LS estimates to satisfy the criterion of
Eq. (8). In terms of notation, we replace A(l) with ̂A(l) = H(l)A(l) i.e. we ‘hat’
the embedding matrix with the Hat-Matrix as in linear regression [13]. In the
next epoch, the factorization algorithm proceeds from the LS estimates of the
embeddings. In addition, to avoid collinearity and overfitting, it is also advisable
to add a ridge regularization term to the Hat Matrix. We formulate this inte-
grated Emma as an algorithmic framework in Algorithm 1 with the left-sided
option termed Absolute Updating.

There are two major advantages of this algorithmic framework: Firstly, the
LS updates are efficient to calculate since the Hat Matrix is only calculated
once prior to the iterative factorization learning, during which one only needs to
perform in each epoch one matrix multiplication for each dimension for the sake
of LS-updating. Secondly, any factorization algorithm can be easily extended
with this LS update as long as it is performed in a iterated manner, such as
when using ALS or gradient based approaches.

Based on our experiments we also propose following practical adjustments of
the algorithm:

i. Late Starting Strategy: Since the embeddings are usually initialized ran-
domly by many algorithms, it is not necessary in such cases to perform LS
updates during early epochs. It is advisable to start LS updates, for instance,
when the embeddings are updated in smaller magnitudes i.e. where the cost



206 Y. Yang et al.

function is locally flat. One could measure the gradient changes in each epoch or
simply define a τ > 1 to be the first iteration where the LS update commences.

ii. Stochastic Update: We suggest monitoring the quality of the linear map-
ping in terms of R2, the Coefficient of Determination. As long as R2 is small,
it is always assumed to be necessary to further perform LS update. But as the
training proceeds, R2 often tends to get larger and converges to 1. In such cases
it may again be unnecessary to perform an LS update in each iteration and one
could save some runtime. Since the R2 typically lies within (0, 1) but could also
be negative based on our definition, we define a coefficient π = 1 − max(0, R2)
to be interpreted as the probability or necessity to perform an LS update. Both
improvements are taken into account in the right-sided option Stochastic Updat-
ing with Late-Starting of Algorithm 1. In the following we shall refer to this
approach as Emma-Hatting.

Embedding Mapping Learning with Back-Propagation: It is easy to
see that, in combination with Multi-way Neural Networks, the linear mapping
between tensor unfoldings and the latent embeddings could also be considered
as one more linear activated layer of the network. To this end the Hatting Algo-
rithm could be replaced with the usual Error Back-Propagation. This aspect
also applies to other factorization models as long as such a model can be for-
mulated as an NN. In such cases the latent embeddings become the first hidden
layer and the tensor unfoldings become the input layer. For such models the
latent embeddings are not explicitly learned but are derived from the product
of the input vector and the mapping matrices. This aspect corresponds to the
compact model described in Eq. (10) and is illustrated in Fig. 2. Similar illus-
trations could also be found in [18] for RESCAL and the mwNN. Note that for
MF and RESCAL there are no parameters other than the mapping matrices to
be learned; while the mwNN also learns the weights following the embedding
vectors. In the following we shall refer to this approach as Emma-BP.

In summary, the Emma-Post approach optimizes the cost functions in
Eqs. (5) and (8) consecutively and separately. Therefore the two error terms
of dF (X , ̂H) and dM (A(l), ̂A(l)) are —though minimized to a certain extent—
always present. The Emma-Hatting approach also considers these two cost func-
tions. But the LS estimates are calculated more than once and the LS error
term —in the long run— is expected to be smaller than that derived from
Emma-Post. However, because of this LS update within the factorization algo-
rithm, the gradient approach may become unpredictable with respect to whether
the optima identified with LS correction are better than those without the LS
update. The stochastic Hatting Algorithm, from this point of view, could be
considered as a compromise between the post mapping and the absolute hat-
ting approach. On the one hand it still regulates the factorization algorithm to
satisfy the cost function Eq. (8); on the other hand it allows the factorization
algorithm to minimize the cost function of Eq. (5) continuously as long as the
error of Eq. (8) is relatively small. In other words, this approach enables better
factorization quality by tolerating some acceptable mapping error. By omitting



Embedding Mapping Approaches 207

Fig. 2. Illustrating the Compact Model as NNs in 3-D case. Here the rows indexed
by i, j and k in the tensor unfoldings X (1), X (2) and X (3) correspond to the three
coloured slices in Fig. 1, respectively. Note that for RESCAL there are only two map-
ping matrices instead of three since the entity embeddings are shared between subject
and object. (Color figure online)

the explicit mapping error, the Emma-BP approach models the factorization and
mapping as a whole only in terms of the factorization error of Eq. (11).

4 Experiments

In this section we present experiments on three real-world datasets and evaluate
the results from two different aspects. First we evaluate our models on a user-
item matrix and a KG dataset (both binary) in terms of prediction quality. Then,
with another tensor dataset of real values, we focus on the interpretability of the
mapped embeddings. The models were implemented in Keras [6] and its backend
Theano [1].

4.1 Movielens Data

Data: The Movielens-100K [12] dataset is a user-item matrix containing 100000
ratings from 943 users on 1682 movies. The fact that a rating was performed on
an item is encoded as a 1, otherwise we use a 0. Such binary-item matrix could
be considered as a special case of a KG with two types of entities and one type
of relation.

Task: The major task of a conventional recommender system is to predict the
probability of a known user being interested in an known item, as long as event
has not been observed in the past. (In terms of a KG this is equivalent to link
prediction for one relation between two entities.) In contrast, we intend to predict
the probabilities for a new user being interested in known items; or vice versa:
for a new item to be of interest for known users.

Settings: First, we sample 20% of users to hold out for test and train our models
using the remaining 80% with embedding sizes of 20 and 50. In the test phase,



208 Y. Yang et al.

we mask a sequence of proportions [0, 0.1, 0.2, 0.3, 0.4, 0.5] of all watched movies
of each test user and predict a distribution over all known movies, especially the
masked ones. We measure the quality of each prediction in terms of NDCG@k [5].
Further we transpose the user-movie matrix and conduct the same experiment,
i.e., we add new movies to the database and try to recommend each movie
to the most likely user. Other than [11], we test a logistic MF combined with
Emma-Post, Emma-Hatting and Emma-BP. As baseline model we perform a
most-popular prediction: we calculate the frequencies of each movie for all users
in the training set and interpret these as constant recommendation scores for
a new user and a new movie, respectively. We repeat this process 5 times with
different and mutually exclusive training and test samples in order to derive
prediction stability in terms of mean and standard deviations.

Results: The results of the experiments are presented in Fig. 3. The mean and
standard deviation of the NDCG@k scores of the three mapping techniques are
visualized in corresponding colors. The horizontal axis represents the proportion
of masked entries in the test set; the mean and standard deviation of baseline
predictions are demonstrated as the horizontal line and the gray bars.

The performances of the models suggest different trends for new-user and
new-movie cases. For new users, the predictions made by logistic MF with Emma-
Hatting are suboptimal and may even drop below the baseline for larger masking
proportions. Emma-Post and Emma-BP offer better and comparable prediction
qualities, though the latter remains advantageous even as the masking proportion
becomes quite large. Emma-Post, however, cannot even beat the baseline for
new appended movies, while Emma-BP perform noticeably well for all possible
masking proportions.

4.2 Knowledge Graph Data

Data: In following experiments we test our models on the Freebase dataset [2]
as prepared in [17]. We sample entities that contain at least 500 known relations
forming a binary tensor of shape 39 × 115 × 115.

Task: Similar to recommender systems, the conventional link prediction in KGs
is performed for each triple of known entities and relations [21]. With our Emma
models we intend to predict the existence of links between known and new
entities, given some observed but incomplete information about this new entity.
More specifically, for an existing KG modelled with a binary tensor X ∈ R

I×I×K

we assume a further binary tensor Z ∈ R
I′×I×K storing a subset of true links

between I ′ new entities and the I known ones. Our task here shall be to predict
the unobserved links in Z based on factorization and mapping models trained
only on X .

Settings: In order to also estimate the model’s stability we perform a 20%−80%
Cross-Validation on the data by splitting the entity set into 5 mutually exclusive
groups. In each test set we mask and try to recover 20% of known links for each
entity with two approaches: (1) We map the entities with masked links into



Embedding Mapping Approaches 209

Fig. 3. Evaluation of prediction for new users and movies. The horizontal line and grey
bar represent the baseline recommendation and its standard deviation. (Color figure
online)

the latent space obtained by the Emma-Post, Emma-Hatting and Emma-BP
models that have been trained with the corresponding training set and predict
the masked links with the same models; (2) we train a RESCAL and a mwNN
model on training and test sets, simulating a retraining scenario, and predict the
masked links in the conventional way such as in [17]. In both cases we generate
negative samples according to the Local-Closed-World-Assumption [17].

Results: In Table 2 we report the prediction quality of AUROC and AUPRC
using models of RESCAL and mwNN in combination with all three Emma
approaches as well as from retraining. In general, mwNN outperforms RESCAL
in terms of larger means and smaller standard deviations in almost all cases,
which could also be supported by the results reported in [17]. In predicting
for new entities, mwNN combined with Emma-BP yields the best mean values.
Especially in terms of AUPRC the advantage could be as large as 33% com-
pared to second best result produced by RESCAL+Emma-Hatting for R = 10
and 44% compared with RESCAL+Emma-BP for R = 30. The minimal stan-
dard deviations are achieved in 5/8 cases by Emma-Post, though it almost always
produces worst mean values in combination with any factorization models. As



210 Y. Yang et al.

Table 2. Prediction Qualities of RESCAL and mwNN in combination with all three
mapping approaches on a FreeBase dataset.

expected, retraining always offers better predictions than Emma approaches.
But do note that a prediction with an Emma model does not cost any run
time; while a retraining process for one or multiple entities would demand a
comparable amount of time as training an Emma model from scratch. Interpret-
ing the retraining predictions as upper bound, it should also be noted that the
combination of mwNN and Emma-BP achieves in most cases results relatively
close to those of retraining. We speculate that such canonical model-algorithm
combination might enjoy numerical advantage.

4.3 Amino Acid Data

With previous experiments we have shown that Emma models are able to pre-
dict links between every known entity and a newly appended entity based on
incomplete information. With the following experiment we also show that Emma
models can map a new entity into the latent space with high interpretability —
here in terms of correlation coefficients.

Data: The Amino Acid Dataset [4] contains a three-way tensor X ∈ R
5×51×201

and a matrix Y ∈ R
5×3. The latter one describes the proportion of 3 types of

amino acid mixed according to 5 different recipes. The corresponding 5 samples
are then measured by fluorescence with excitation 250–300 nm, emission 250–
450 nm on a spectrofluorometer and the measurements are recorded in the tensor
X . With a CP factorization producing matrices of dimensions A(1) ∈ R

5×3,
A(2) ∈ R

201×3 and A(3) ∈ R
61×3 it is expected that each column in A(1) would

strongly correlate with one column in the recipe matrix Y . Note that the order
of the columns in A(1) is arbitrary and may not correspond to the column in Y
at the same position. For more details please refer to [4].

Task: The latent embeddings learned from this data set are expected to be
interpretable in terms of correlations with known recipes. If a new entity is
correctly mapped into the latent space, its mapped embedding(s) along with
other learned embeddings would also correlate with the corresponding column



Embedding Mapping Approaches 211

in the recipe matrix. Here we assume the information observed on the new entity
to be complete and do not perform any masking.

Settings: We remove each slice Xi,•,•, i ∈ [1, 5] (corresponding to a certain
recipe) from the tensor and calculate CP factorizations with Emma-Post and
Emma-Hatting based on the rest of the data. The slice held out is then mapped
to the 3-D latent space with mapping matrix and appended to the learned embed-
dings of the other slices. We then calculate the mean of its column-wise Pearson
correlation coefficients with Y . Further we conducted the same experiment with
two slices removed at a time.

Results: With the first leaving-one-out experiment setting we derive accordingly
5 averaged correlations and for the second leaving-two-out setting we have 5!

3!·2! =
10 values. We report that the means and standard deviations of the correlation
coefficients derived from Emma-Post and Emma-Hatting to be both 0.999 ±
0.001. As for leaving-two-out experiments, Emma-Post achieves 0.991 ± 0.007
and Emma-Hatting yields the same mean value but a larger standard deviation
of 0.015. To this end we conclude that both mapping approaches can map one
or two new slices into the latent space in a way that its embedding(s) —along
with other embeddings learned from factorization— correlates column-wise with
the recipe matrix Y with a high correlation score. As expected, in leaving-two-
out experiments the correlation coefficients decrease slightly due to the smaller
training set. Note that once again Emma-Post seems to produce smaller standard
deviations just as the KG experiments.

5 Related Works

[10] introduced a method to map user attributes (referred to as ‘content informa-
tion’ in the context of content filtering) into the latent embedding space to solve
cold-start problem for new entities. Despite the fact that we are not considering
the cold-start problem and do not require content information, this model still
shares a few aspects with ours: (1) In both approaches, the codomain of the
mapping function is the latent space learned by factorization models with the
purpose of finding latent embeddings for new entities; (2) both approaches use
modular learning that can be combined with a variety of existing factorization
models. An important difference is the domain of the mapping function. In our
case it is the observable feature space of an entity, while in [10], it is the user
attribute space. It would be interesting, though, to combine our models with
such content information: In the first step, one could perform content filtering
to produce some first recommendations. Secondly, one could interpret these rec-
ommendations as incomplete and enrich them using Emma models by mapping
them into the latent space and perform link predictions.

Our proposed Emma-BP model shares the idea of learning the factorization
jointly with an implicit latent embeddings with the Temporal Latent Embedding
(TLEM) Model [9], where a concatenated NN is trained with observable features
as inputs, which are mapped to some implicit latent features. In TLEM one



212 Y. Yang et al.

intends to model the consecutive effect of a sequence of events on the next one;
while we are interested in the collaborative effect among entities.

6 Conclusions

The major contribution of this paper is to propose three approaches for map-
ping new entities into the latent embedding space learned by a wide variety of
factorization models.

Our approaches are not based on retraining while obtaining comparable
quality to model retraining. Our framework describes factorization and map-
ping problems on an abstract level, which could inspire the development of fur-
ther mapping approaches. During our experiments we also realized the model’s
restrictions in practice: Due to the unfolding operations in the mapping model,
the dimensions of the model inputs increase quadratically with the dimensions of
the tensor. For instance, in our KG experiment in Sect. 4 with a tensor of shape
39×115×115, the mapping model requires inputs of dimensions 4485, 4485 and
13225, respectively. As part of future work, we will explore different approaches
for dimensionality reduction. In addition, we plan to study non-linear extensions
to Emma as well as the application to recurrent NNs.

References

1. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression
compiler. In: Proceedings of the SciPy (2010)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database. In: ACM SIGMOD (2008)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS (2013)

4. Bro, R.: Multi-way analysis in the food industry: models, algorithms, and applica-
tions. Ph.D. thesis, Københavns Universitet (1998)

5. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the
22nd International Conference on Machine Learning, pp. 89–96. ACM (2005)

6. Chollet, F.: Keras: deep learning library for theano and tensorflow (2015). https://
github.com/fchollet/keras

7. Culotta, A., McCallum, A.: Joint deduplication of multiple record types in rela-
tional data. In: ACM Information and Knowledge Management (2005)

8. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: ACM SIGKDD (2014)

9. Esteban, C., Schmidt, D., Krompaß, D., Tresp, V.: Predicting sequences of clinical
events by using a personalized temporal latent embedding model. In: ICHI (2015)

10. Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.:
Learning attribute-to-feature mappings for cold-start recommendations. In: ICDM
(2010)

https://github.com/fchollet/keras
https://github.com/fchollet/keras


Embedding Mapping Approaches 213

11. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Mymedialite: a
free recommender system library. In: ACM Conference on Recommender Systems
(2011)

12. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework
for performing collaborative filtering. In: ACM SIGIR (1999)

13. Hoaglin, D.C., Welsch, R.E.: The hat matrix in regression and anova. Am. Stat.
32(1), 17–22 (1978)

14. Kiers, H.A.: Towards a standardized notation and terminology in multiway analy-
sis. J. Chemometr. 14(3), 105–122 (2000)

15. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51, 455–500 (2009)

16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

17. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in
knowledge graphs. In: ISWC (2015)

18. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

19. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML (2011)

20. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: NIPS (2013)

21. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data.
In: NIPS (2003)

22. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)


	Embedding Mapping Approaches for Tensor Factorization and Knowledge Graph Modelling
	1 Introduction
	2 Factorization Models with Closed-Form Mappings
	3 General Models and Training Algorithms
	3.1 General Models
	3.2 Training Approaches

	4 Experiments
	4.1 Movielens Data
	4.2 Knowledge Graph Data
	4.3 Amino Acid Data

	5 Related Works
	6 Conclusions
	References


