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Abstract. In this paper, we propose a fast solution for the problem
of illuminant color estimation. We present a physics-based algorithm
that uses the mean projections maximization assumption. We investi-
gated this hypothesis on a large images dataset and used it afterwords
to estimate the illuminant color. The proposed algorithm reduces the
illuminant estimation problem to an uncentred PCA problem. The eval-
uation of the algorithm on two well-known image datasets results in lower
angular errors.
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1 Introduction

The appearance of objects is the result of light, surface, and camera sensor
interactions. Hence, the human visual system is able to preserve the appearance
of objects by adjusting the gain in the different cones. This ability is called the
human vision color constancy. In the case of an imaging device, the sensed image
depends on surface reflectances, light color and camera spectral sensitivity. When
light color changes, the sensed image colors change even if the surface reflectances
and the camera spectral sensitivity remain the same. Chromatic adaptation [21]
or computer vision color constancy allows to adjust image colors according to an
estimate of the light color. This estimate is the camera sensed light originating
from one or several sources that illuminate a scene. It is generally the output
of a color constancy algorithm [14,16] used to correct image colors and enhance
image contents [30]. For these algorithms, surface reflectances and scene illumi-
nant are unknown. To estimate the scene illuminant, color constancy algorithms
use some assumptions and prior knowledge. Dichromatic model [25], lambertian
model [22], Grey world assumption [3] or other independent assumptions [2,8§]
can be used to estimate the scene illuminant since it is considered as an under-
constrained problem. Based on assumptions and prior knowledge used, existing
algorithms can be divided into two major categories: dichromatic model based
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methods [5,26] and lambertian model based methods. Depending on the strat-
egy used, the lambertian algorithms can be subdivided into two categories: static
methods [3,10,19,29] and learning methods [11].

This work is based on the dichromatic model to formulate an additional
hypothesis based on the fact that the scene illuminant is within bright colors.
This hypothesis is close to the hypothesis used in [8]. From this assumption we
found that the scene illuminant is the eigenvector of the inner product matrix
of image chromaticities. The paper is organized as follows: Sect. 2 presented the
new hypothesis and its use for illuminant color estimation. The evaluation of the
proposed algorithm on large datasets is presented in Sect. 3.

2 Problem Formulation

2.1 Maximal Square Projections’ Mean Assumption

Objects in nature are composed of different surface types. Dielectric objects are
widely present in natural scenes. For dielectric surfaces the reflectance is a linear
composition of two parts: the specular reflectance and the diffuse one. When
imaged under a given light source, the resulting image is also a linear combi-
nation of specular and diffuse components. The diffuse part encodes the color
of the surface as it is a function of the surface reflectance properties. However,
the specular part is independent of surface reflectance properties and hence is
considered as the image of the scene light called the illuminant. Based on these
observations, pixels of dielectric surface image can be represented in a 2D sub-
space known as dichromatic space [25], spanned by the specular vector and the
diffuse vector.

Considering real scenes, where more than one surface may exist, and several
2D sub-spaces corresponding to the existing surfaces can be defined. Now, if
the scene is illuminated by a single light source, just one specular component
(i.e. illuminant) is present while several diffuse components, each of which rep-
resents a surface, exist (see Fig.1). It follows that the estimation of the illumi-
nant is equivalent to subspaces intersection estimation [20,24,27]. However, this
requires the prior knowledge of the existing surfaces in the scene and hence an
image segmentation. Another way to proceed is to consider just one surface plane
and impose some constraints on sub-spaces [9,28]. The prior segmentation can
be avoided by investigating the relationship that may exist between the specular
vector and sub-spaces vectors. Let us assume that there exist several chromatici-
ties close to specular axis more than any other diffuse axis. These chromaticities
belong to one or more surfaces, but their identification is not a trivial task. In
fact, there are several works that try to identify them like in [5]. We argue that
it is not required to identify exactly all the chromaticities close to the specular
axis, but a vague subset of them is enough to estimate the illuminant. The subset
cardinality must not be large to reduce the computational complexity, but suffi-
cient for carrying statistical estimation, with acceptable bias. The specification
of the subset will be explained in Sect. 2.3.
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Fig. 1. Representation of dichromatic Fig. 2. The refined gamut calculated
sub-spaces points and their distances to from three datasets ([1,4,12]) (Color
the specular component for dielectric figure online).

surfaces.

As it is shown in Fig. 1, all the chromaticities have the (0, 0) origin. Moreover,
being interested in the illuminant color, the chromaticity vectors are normalized
such that their magnitude is one. In this case, the proximity between the chro-
maticity vector ¢ and any other vector x;, where ¢ € [1,n] can be measured using
the dot product between them. Since the chromaticity components are all posi-
tive, it follows that the angles between them and c is less or equal to 90 degrees.
In this configuration, the dot product and the Euclidean distance between ¢ and
a given chromaticity are equivalent. Note that, other proximity measures can be
used. In other words, given a set of normalized near specular chromaticities £ =
{z;} and an estimator ¢ of the real illuminant, we search for the vector ¢ that is
the most close, in terms of dot product, to all elements of £. However, one could
use the dot product square as objective function. The resulting function mr
can be interpreted in terms of dispersion of the chromaticities on the axis ¢. For
the n chromaticities which will be chosen, the objective function is the sum of
the squares of dot products. More formally,

n
My = argmat, Z(fj?)z subject to the constraint c'c = 1 (1)
i=1

It can be rewritten in matrix form as follows:
mr r = argmaz, c¢' e subject to the constraint c'c = 1 (2)

With ¥ = X'X is the inner product matrix of selected chromaticities £. One
can think that the illuminant estimation problem is equivalent to PCA problem.
However, the chromaticities are not centred and therefore, the problem in 2 is
not a classical PCA problem. It is, as stated by [17], another PCA variant called
uncentred PCA.



Computer Vision Color Constancy 151

2.2 Assumption Validation

In order to validate our assumption, we carried out the following experimen-
tation. We started using the SFU Lab dataset [1] which contains 321 images
with corresponding true illuminants. We selected the set £ of chromaticities
closest to the true illuminant [. Several chromatic spaces could be used to calcu-
late chromaticities. We made the same observation with [6], the rg-chromaticity
space is the most familiar space for calculating image chromaticities. Then, for
each image I all the selected chromaticities £ including the illuminant | were
projected on each other and the vector ¢ which maximises the square projec-
tions’ mean was recorded. To compare recorded vectors and real illuminants, we
use the dot product. We validated our assumption by using 1% of chromatici-
ties closest to real illuminants. This percentage contains a sufficient amount of
points for doing statistical analysis. Numerically, we used 2981 chromaticities
closest to the real illuminant /. Real illuminants and chromaticities yielding the
maximal square projections’ mean were depicted in Fig.3. We noted that the
majority of these chromaticities were close to real illuminants of the dataset.
Indeed, We found that in 98.75% of the dataset images, the maximal square
projections’ mean was obtained by projecting the chromaticities on chromatici-
ties having less then 3 degrees from the real illuminants. The binned histogram
of angular errors between these chromaticities and true illuminants, in Fig. 4,
had an obvious maximum image count near the origin, which means several of
chromaticities producing the maximal square projections’ mean were true illumi-
nants. This experimentation showed that the maximal mean square projections’
assumption is realistic.
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Fig.3. The set of true illuminants
and estimated illuminants (i.e. vec-
tors yielding the maximal projections
mean).

Fig. 4. The binned histogram of angu-
lar errors between true illuminants and
chromaticities maximising the mean
projection.
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2.3 Chromaticities Selection

The accuracy of the estimated illuminant depends on the chromaticities £
involved in the estimation of the inner product matrix Y. The cardinality of
L must be small in order to reduce the computational time but large enough to
produce lower estimation errors. The closest chromaticities to the true illumi-
nant ! are always the bright pixels of the image [18]. So a representative sample
set from all chromaticities can be selected according to an adequate thresh-
old. This leads us to ask the following question: is there a useful way to avoid
the use of an arbitrary or inadequate threshold? In this section, we propose to
take the bright pixels in a gamut of suited chromaticities that we called the
refined gamut. Hence, we take first a percentage T% of bright pixels and we
kept from this set, chromaticities that are inside the refined gamut. If the num-
ber of resulting chromaticities is not enough to do statistical analysis, we take
a greater percentage and search for chromaticities inside the refined gamut. To
construct the refined gamut, we run our algorithm using different percentages
(1%, 3%, 5%, 7%, 10%) on three well-known datasets ([1,4,12]) and gather
chromaticities allowing the best illuminant estimator. The construction of the
refined gamut is done separately in the training step. The refined gamut and
the gamut of real illuminants of the three datasets are plotted in Fig.2. One
can observe that, the gamut of real illuminants is inside the refined gamut. This
means that the selected chromaticities involved in the illuminant estimation are
always inside the gamut of real illuminants i.e. the selected chromaticities are
physically feasible.

2.4 Maximal Square Projections’ Mean Algorithm

Based on experimentation described in Sect. 2.2, for a given image the illuminant
¢ is the vector maximizing the square projections’ mean of its projected data.
Let us recall that, the space of chromaticities is normalized (i.e., r + g+ b =
1) and therefore the illuminant intensity cannot be estimated. This is not a
limitation because only the illuminant direction is used to correct image colors.
The solution of this convex optimization problem is straightforward. Indeed, the
illuminant ¢ is the eigenvector of the matrix X' corresponding to the largest
eigenvalue. However, even if the mathematical solution is possible, it might not
be physically feasible. In order to overcome this problem, additional constraints
are needed: The illuminant ¢ must be close to physically feasible illuminants. One
can add a new constraint for the physical feasibility of the estimated illuminant
like the fact that it belongs to the real illuminants’ gamut. This constraint is
unnecessary because it is already fulfilled in the selection phase described in
Sect. 2.3. Moreover, none of the components of the illuminant vector ¢ can be
negative. We propose then to impose the constraint c—e > 0. Taking into account
all constraints, we propose to minimize their linear combination. The illuminant
estimation problem with constraints can be written as:

mrc = argmin. —c'Xc+ Ai(e —c) + Az(cfe — 1) (3)
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Another important issue concerns the chromaticities which can be centred
or not, the X’ matrix can then take positive or negative values. When the chro-
maticities are centred this matrix is simply the covariance matrix. In the case
of uncentred chromaticities, the matrix X is the inner product of chromaticities.
In this case the dimensionality reduction method is called the mean vector com-
ponent analysis [17] which preserves the Euclidean length and the direction of
the mean vector. For our case (i.e. illuminant estimation) the mean vector direc-
tion m is a good implicit constraint on the estimated illuminant c. That means,
the mean m of bright chromaticities is generally a color close to the physically
feasible illuminants’ colors. Moreover, Y is a strictly positive matrix which is
irreducible and then the Perron-Frobenuis theorem [23] can be applied on it.
According to this theorem, there exists a largest eigenvalue A to which corre-
sponds an eigenvector v which is composed only of positive elements. Therefore,
using the diagonalization method of Perron-Frobenuis the problem can be re-
written without the explicit vector positivity constraint as in 4. Consequently,
we propose the use of Perron-Frobenuis theorem to calculate the eigenvector of
inner product matrix X' as an illuminant estimator.

mrp = argmaz,. c' e+ A(cle — 1) (4)

3 Experimental Results

The performance evaluation of the proposed algorithm is carried out in two
experimentations. In the first experimentation, we used the SFU lab dataset,
a collection of 321 laboratory images of size 637 x 468 consisting of 31 objects
imaging under 11 lights. We used also the SFU Grey Ball collection [4] which
consists of 11346 images (874 x 583) dataset taken through a video registration of
indoor and outdoor scenes. The data collection includes a wide variety of scenes
and illumination conditions. For both collections the ground truth is available.

For the sake of comparison, we reported the accuracy of some well-known
algorithms that are: Grey world (GW) [3], White patch (Max-RGB) [19], Shades
of grey (SHGR) [10], the Grey edge (GRED) [29]. From the learning category
the Natural image statistics (NIS) [15] algorithm is selected. The Zeta image
(Zeta) [5] represents the dichromatic based category. For the implementation
of algorithms GW, Max-RGB, SHGR, GRED, we used the software platform
[29], while for Zeta and NIS we compared with scores reported in [5,15]. For
comparison purposes algorithm which gives the best scores is considered as the
best algorithm. In which follows, we refer to the proposed algorithm by maximum
projection algorithm (MPA).

The performance measures are the mean and the median of angular errors.
They are widely used in the state-of-the-art methods, we used them to allow fair
comparison. The angular error (Eq. 5) is the dot product of the normalized esti-
mated illuminant vector ¢ and the normalized ground truth vector e. Because it
is illumination intensity free, Hordley [16] claimed that this measure can be
used to evaluate algorithms that estimate only the illuminant chromaticity.
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Let us recall that MPA operates in 2D chromatic space whereas other tested
algorithms operate in RGB space. Finlayson et al.in [7] argued that the per-
formance of an algorithm designed for RGB color space like the Grey world
deteriorates when it was tested in the 2D chromaticity space.

cte
Ang_Error = arccos(m) (5)

The second experimentation is devoted to evaluate the MPA computational
accuracy compared to GW, Max-RGB, SHGR, GRED algorithms. The datasets
used are the SFU Lab dataset [1], and the SFU Grey Ball dataset [4].

3.1 Algorithm Performance

Scores of selected algorithms including the MPA algorithm on three datasets SFU
Lab, Color Checker, and SFU Grey Ball are reported in Table 1. The obtained
scores confirm that MPA algorithm outperforms the other algorithms in terms
of mean and median angular errors on the three datasets. For the SFU Lab
dataset, MPA algorithm reduces the mean and median errors given by best
algorithm Zeta by 43 % and 57 % respectively. Scores obtained with the SFU
Grey ball dataset show that MPA algorithm enhances by roughly 21 % and 12 %,
respectively, the mean and median errors achieved by the best algorithm NIS.
These improvements might be considered as important since an enhancement
over 5-6% is considered as perceptually significant [13].

Table 1. Mean and median angular errors estimated on two datasets (SFU Lab [1],
and Gray Ball [4]) with computational times in seconds.

Method Data sets

SFU lab Grey ball

Mean | Median | Time | Mean | Median | Time
GW [3] 9.8° |7.0° 22.4 | 7.9° |7.0° 481.6

Max-RGB [19] | 9.1° |6.5° 21.3 |6.8° |5.3° 475.1
SHGR [10] 6.4° |3.7° 30.8 |6.1° |5.3° 548.1
GRED [29] 5.6° |3.2° 454 |5.9° 4.7° 567.6

Zeta [5) 43° 11.9° |- 6.8° |4.7° |-
NIS [15] - - - 52° 13.9° |-
MPA 2.3° (0.8° 284 4.1° 3.4° 453.5

We investigate also the computational accuracy of MPA algorithm as func-
tion of the content and the size of images compared to four algorithms. We run
the different algorithms on Alienware machine with Intel Core i7-3820 Proces-
sor and 16 GB of RAM memory. One can note that, MPA algorithm achieves
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least computational time compared to the tested algorithms on two over three
datasets. The Max-RGB, the fast algorithm among the first four tested algo-
rithms treats 23 images per second, while, MPA estimates illuminants of 25
images per second from the SFU Grey Ball dataset. However, MPA takes more
time for SFU Lab dataset (i.e. over 11 images per second) compared to GW
(over 14 images per second) and Max-RGB (over 15 images per second). This is
due to iterations made by MPA algorithm to reach an acceptable set cardinality
of selected chromaticities.

4 Conclusion

In this paper, we presented the maximum projection algorithm for illuminant
color estimation. We observed that the projection of selected chromaticities on
illuminant vector allows to derive an efficient and fast algorithm for the illumi-
nant estimation. This algorithm is no other than uncentred PCA problem since
we search for the sub-space which maximises the dispersion of chromaticities
projected on it. Instead of using all chromaticities of an image, only a subset of
them is used which makes the algorithm faster. The method is tested on three
images collections and the angular errors obtained are lower compared to previ-
ous works. In further work, we will investigate other performance measures and
refine the chormaticities selection criterion.
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