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Abstract Correlation plays an essential role in many problems of finance and eco-
nomics, such as pricing financial products and hedging strategies, since it models
the degree of relationship between, e.g., financial products and financial institutions.
However, usually for simplicity the correlation coefficient is assumed to be a constant
in many models, although financial quantities are correlated in a strongly nonlinear
way in the real market. This work provides a new time-dependent correlation func-
tion, which can be easily used to construct dynamically (time-dependent) correlated
Brownian motions and flexibly incorporated in many financial models. The aim of
using our time-dependent correlation function is to reasonably choose additional
parameters to increase the fitting quality on the one hand, but also add an economic
concept on the other hand. As examples, we illustrate the applications of dynamic
correlation in the Heston model. From our numerical results we conclude that the
Heston model extended by incorporating time-dependent correlations can provide a
better volatility smile than the pure Heston model.

Keywords Time-dependent correlations ·Heston model · Implied volatility ·Non-
linear dependence

1 Introduction

Correlation is a well-established concept for quantifying interdependence. It plays an
essential role in several problems of finance and economics, such as pricing financial
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products and hedging strategies. For example, in [3] the arbitrage pricing model is
based on that correlation as a measure for the dependence among the assets, and
in portfolio credit models the default correlation is one fundamental factor of risk
evaluation, see [1, 2, 12].

In most of the financial models, the correlation has been considered as a constant.
However, this is not a realistic assumption due to the well-known fact that the cor-
relation is hardly a fixed constant, see e.g. [7, 13]. For example, in many situations
the pure Heston model [9] cannot provide enough skews or smiles in the implied
volatility surface as market requires, especially for a short maturity. A reason for
this might be that deterministically correlated Brownian motions (BMs) of the price
process and the variance process are used, as the correlation mainly affects the slope
of implied volatility smile. If the correlation is modeled as a time-dependent dynamic
function, better skews or smiles will be provided in the implied volatility surface by
reasonably choosing additional parameters. Furthermore, compared with the way
to extend a model by using time-dependent parameter, e.g., [6, 10] for the Heston
model, a time-dependent correlation function adds an economic concept (nonlinear
relationship) and its application will be considerably simpler.

The key of modeling correlation as a time-dependent function is being able to
ensure that the boundaries −1 and 1 of the correlation function are not attractive and
unattainable for any time. In this work, we build up a appropriate time-dependent
correlation function, so that one can reasonably choose additional parameters to
increase the fitting quality on the one hand but also add an economic concept on the
other hand.

The outline of the remaining part is as follows. Section2 is devoted to a specific
dynamic correlation function and its (analytical) computation. In Sect. 3, we present
the concept of dynamically (time-dependent) correlated Brownian motions and the
corresponding construction. The incorporation of our newdynamic correlationmodel
in the Heston model is illustrated in Sect. 4. Finally, in Sect. 5 we conclude.

2 The Dynamic Correlation Function

In this section we introduce a dynamic correlation function. Actually, it is in high
demand to find such a correlation function which must satisfy the correlation prop-
erties: it provides only the values in the interval (−1, 1) for any time; it converges
for increasing time. We find the following simple idea: we denote the dynamic cor-
relation by ρ̄ and propose simply using

ρ̄t := E [tanh(Xt)] , t > 0 (1)

for the dynamic correlation function, where Xt is any mean-reverting process with
positive and negative values. For the known parameters ofXt , the correlation function
ρ̄t : [0, t] → (−1, 1) depends only on t. We observe that the dynamic correlation
model (1) satisfies the desired properties: first, it is obvious that ρ̄t takes values only
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in (−1, 1) for all t. Besides, it converges for increasing time due to themean reversion
of the used process Xt .

Although we could intuitively observe that the function tanh is eminently suit-
able for transforming value to the interval (−1, 1), one might still ask whether
other functions can also be applied for this purpose, like trigonometric functions
or 2

π
arctan( π

2 x). In theory, such functions could be used for this purpose. However,
the problem is whether one can obtain the expectation of the transformed mean-
reverting process by such functions in a closed-form expression. Furthermore, our
experiments show that the tendency of the function tanh ismore suitable formodeling
correlations, see [13].

Xt in (1) could be any mean-reverting process which allows positive and negative
outcomes. As an example, let Xt be the Ornstein–Uhlenbeck process [14]

dXt = κ(μ − Xt)dt + σdWt, t ≥ 0. (2)

We are interested in computing E[ρ̄t] as a function of the given parameters in (2).
We compute ρ̄t = E[tanh(Xt)] as

ρ̄t = E[tanh(Xt)] = E

[
1 − e−Xt · 2

e−Xt + eXt

]
= 1 − E

[
e−Xt · 1

cosh(Xt)

]
. (3)

We set g(Xt) = 1/ cosh(Xt). Applying the results by Chen and Joslin [4], the expec-
tation in (3) can be found in closed-form expression (up to an integral) as

1

2π

∫ ∞

−∞
ĝ(u) · E[e−XteiuXt ] du, (4)

where i = √−1 denotes the imaginary unit and ĝ is the Fourier transform of g, in this
case is known analytically by ĝ(u) = π/ cosh( πu

2 ).DenotingCF(t, u|X0, κ, μ, σ ) as
the characteristic function of Xt , the expectation in (4) can be presented by CF(t, i+
u|X0, κ, μ, σ ). Thus, we obtain the closed-form expression for ρ̄t :

ρ̄t = 1 − 1

2

∫ ∞

−∞
1

cosh( πu
2 )

· CF(t, i + u|X0, κ, μ, σ )du. (5)

The next step is to calculate CF(t, i + u|X0, κ, μ, σ ). The process Xt is an
Ornstein–Uhlenbeck process and its characteristic function CF(t, u|X0, κ, μ, σ ) can
be obtained analytically, e.g. using the framework of the affine process, see [5]. Then,
we only need to substitute u+ i for u in the characteristic function of Xt to calculate
CF(t, i + u|X0, κ, μ, σ ) which is given by

CF(t, i + u|X0, κ, μ, σ ) = e−A(t)− B(t)
2 +iu(A(t)+B(t))+u2 B(t)

2 , (6)
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with

A(t) = e−κtX0 + μ(1 − e−κt), B(t) = −σ 2

2κ
(1 − e−2κt) (7)

Finally, the dynamic correlation function ρ̄t can be computed by

ρ̄t = 1 − e−A(t)− B(t)
2

2

∫ ∞

−∞
1

cosh( πu
2 )

· eiu(A(t)+B(t))+u2 B(t)
2 du, (8)

where A(t) and B(t) are defined in (7). In fact, X0 in A(t) is equal to artanh(ρ̄0).
To illustrate the role of each parameter in (8), we plot ρ̄t for several values of

the parameters. First in Fig. 1, we let κ = 2 and σ = 0.5 and display ρ̄t with
different values of μ, which is set to be 0.5, 0, and −0.5, respectively. Obviously,
μ determines the long term mean of ρ̄t . However, μ is not the exact limiting value.
Considering Fig. 1a where the initial value of the correlation function is 0, we see
that ρ̄t is increasing to a value around μ = 0.5 and decreasing to a value around
μ = −0.5 as t become larger, when μ = 0.5 and −0.5, respectively. Besides, for
μ = ρ̄0 = 0 we observe that the correlation function ρ̄t yields always 0 which is the
same as constant correlation ρ = 0. Now, we set ρ̄0 = 0.3 and keep the value of all
other parameters unchanged, then display the curves of ρ̄t in Fig. 1b.

Next, we fix κ = 2 and μ = 0.5 and then display ρ̄t for the varying σ = 0.5, 1
and 2 in Fig. 2. Obviously, σ shows the magnitude of variation from the transformed
mean value ofXt (μ = 0.5). In Fig. 2a we see, the larger the value of σ is, the stronger
the deviations of ρ̄t is from the transformed mean value of Xt . More interesting is
that ρ̄t first decreases until t ≈ 0.25, then increases and converges to a value, see
Fig. 2b where ρ̄0 = 0.3 and σ = 2.

Again, in order to illustrate the role of κ , we set μ = 0.5, σ = 2 and vary the
value of κ , see Fig. 3. From Fig. 3a it is easy to observe that κ represents the speed
of ρ̄t tending to its limit. Especially, as we have seen in Fig. 2b, the curve is more
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Fig. 1 Dynamic correlation ρ̄t for varying μ (κ = 2 and σ = 0.5). a ρ̄0 = 0. b ρ̄0 = 0.3
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Fig. 2 Dynamic correlation ρ̄t for varying σ (κ = 2 and μ = 0.5). a ρ̄0 = 0. b ρ̄0 = 0.3
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Fig. 3 Dynamic correlation ρ̄t for varying κ (μ = 0.5 and σ = 2). a ρ̄0 = 0. b ρ̄0 = 0.3

unstable for κ = 2 and σ = 2 in Fig. 3b. However, if σ remains constant while the
value of κ is increased, we can see that curves of ρ̄t become more stable and tend
straightly to its limit. If one incorporates the dynamic correlation function (8) to a
financial model, the parameter ρ̄0, κ, μ, and σ could be estimated by fitting the
model to market data.

3 Dynamically Correlated BMs and Their Construction

We fix a probability space (Ω,F ,P) and an information filtration (Ft)t∈R+ , satis-
fying the usual conditions, see e.g. [11]. At a time t > 0, the correlation coefficient
of two Brownian motions (BMs) W 1

t and W 2
t is defined as
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ρ1,2
t = E

[
W 1

t W
2
t

]
t

. (9)

If we assume that ρ
1,2
t is constant, ρ

1,2
t = ρ1,2 for all t > 0, say W 1

t and W 2
t are

correlated with the constant ρ1,2.
Therefore, we give the definition of dynamically correlated BMs.

Definition 1 Two Brownian motionsW 1
t andW 2

t are called dynamically correlated
with correlation function ρt , if they satisfy

E
[
W 1

t W
2
t

] =
∫ t

0
ρsds, (10)

where ρt : [0, t] → [−1, 1]. The average correlation of W 1
t and W 2

t , ρAv , is given
by ρAv := 1

t

∫ t
0 ρsds.

We consider first the two-dimensional case and let ρt be a correlation function.
For two independent BMs W 1

t and W 3
t we define

W 2
t =

∫ t

0
ρsdW

1
s +

∫ t

0

√
1 − ρ2

s dW
3
s , (11)

with the symbolic expression

dW 2
t = ρtdW

1
t +

√
1 − ρ2

t dW
3
t . (12)

It can be easily verified that W 2
t is a BM and correlated with W 1

t dynamically by ρt .
Besides, the covariancematrix and the average correlationmatrix ofWt = (W 1

t ,W 2
t )

can be determined, given by

(
t

∫ t
0 ρsds∫ t

0 ρsds t

)
and

(
1 1

t

∫ t
0 ρsds

1
t

∫ t
0 ρsds 1

)
,

respectively.
The construction above could be also generalized to n-dimensions. We denote

a standard n-dimensional BM by Zt = (Z1,t, . . . ,Zn,t) and the matrix of dynamic
correlationsRt = (ρ

i,j
t )1<i,j<n which has the Cholesky decomposition for each time

t, Rt = AtA
�
t with At = (ai,jt )1<i,j<n. We define a new n-dimensional process

Wt = (W1,t, . . . ,Wn,t) by

Wi,t =
n∑

j=1

aijt dZj,t, i = 1, . . . , n. (13)
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We can easily verify that Wt satisfies the following properties:

• W0 = 0 and the paths are continuous with probability 1.
• The incrementsWt1 −Wt0 andWt2 −Wt1 are independent for 0 ≤ t0 < t1 < t2 < t.
• For 0 ≤ s < t, the increment Wt − Ws is multivariate normally distributed with
mean zero and covariance matrix � : Wt − Ws ∼ N(0, �) with

� =

⎛
⎜⎜⎜⎝

t − s
∫ t
s ρ1,2

u du . . .
∫ t
s ρ1,n

u du∫ t
s ρ2,1

u du t − s . . .
∫ t
s ρ2,n

u du
...

...
. . .

...∫ t
s ρn,1

u du
∫ t
s ρn,2

u du . . . t − s

⎞
⎟⎟⎟⎠ .

We call the process (Wt)t≥0 an n-dimensional dynamically correlated Brownian
motion, with the correlation matrixRt .

4 Dynamic Correlation in the Heston Model

As mentioned before, in many situations the pure Heston model has a limitation on
reproducing properly a volatility smile. For this problem, several time-dependent
Heston models have been proposed for good fitting to implied volatilities, e.g. [6]
and [10]. In this section, we show how to incorporate our time-dependent correlation
function into the Heston model.

4.1 Incorporating Dynamic Correlations

Heston’s stochastic volatility model is specified as

dSt = μSStdt + √
νt St dW

S
t , (14)

dνt = κν(μν − νt)dt + σν

√
νt dW

ν
t , (15)

where (14) is the price of the spot asset, (15) is the volatility (variance) andWS
t andW

ν
t

are correlated with a constant correlation ρSν . To incorporate the time-dependent cor-
relations, we assume that dSt and dνt are correlated by a time-dependent correlation
function ρ̄t instead of the constant correlation ρSν . The extended Heston model with
dynamic correlation ρ̄ is specified as

dSt = μSStdt + √
νt St dW

1
t , (16)

dνt = κν(μν − νt)dt + σν

√
νt

(
ρ̄t dW

1
t +

√
1 − ρ̄2

t dW
2
t

)
, (17)
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where W 1
t and W 2

t are independent. Applying Itô’s lemma and no-arbitrage argu-
ments yields [9]

1

2
νS2

∂2U

∂S2
+ ρ̄tσννS

∂2U

∂S∂ν
+ 1

2
σ 2

ν ν
∂2U

∂ν2
+ rS

∂U

∂S

+ [κν(μν − ν) − λ̃(S, ν, ρ̄, t)ν]∂U
∂ν

− rU + ∂U

∂t
= 0, (18)

where ρ̄t is defined in (8) but with the parameter ρ̄0, κρ, μρ, and νρ . It is worth
mentioning that the market price of volatility risk depends also on the dynamic cor-
relation, which could be written as λ̃(S, ν, ρ̄t, t). This means, the price of correlation
risk embedding in the price of volatility risk has been considered.

We consider, e.g. a European call option with strike price K and maturity T in the
Heston model

C(S, ν, t, ρ̄t) = SP1 − KP(t,T)P2, τ = T − t, (19)

where P(t,T) is the discount factor and both in-the-money probabilities P1,P2 must
satisfy the PDE (18) as well as their characteristic functions, f1(St, νt, ρ̄t, φ, t) and
f2(St, νt, ρ̄t, φ, t)

fj(St, νt, ρ̄t, φ, t) = E[eiφ ln ST |St, νt, ρ̄t] = eCj(τ,φ)+Dj(τ,φ)ν+iφ ln St , j = 1, 2, (20)

where Cj(0, φ) = 0 and Dj(0, φ) = 0. By substituting this functional form (20) into
the PDE (18) we can obtain the following ordinary differential equations (ODEs) for
the unknown functions C and D:

−1

2
φ2 + ρ̄tσνφiDj + 1

2
σ 2

ν D
2
j + ujφi − bjDj + ∂Dj

∂t
= 0, (21)

rφi + κνμνDj + ∂Cj

∂t
= 0, (22)

with the initial conditions Cj(0, φ) = Dj(0, φ) = 0

u1 = 0.5, u2 = −0.5, b1 = κν + λ − ρ̄tσν and b2 = κν + λ, (23)

where

ρ̄t = 1 − e−A(t)− B(t)
2

2

∫ ∞

−∞
1

cosh( πu
2 )

· eiu(A(t)+B(t))+u2 B(t)
2

︸ ︷︷ ︸
:=g(u)

du, (24)

with A(t) = e−κρ tartanh(ρ̄0) + μρ(1 − e−κρ t), B(t) = − σ 2
ρ

2κρ
(1 − e−2κρ t).

Obviously, (21) and (22) cannot be solved analytically. Therefore, we need to
find an efficient way to compute the option price numerically. We firstly generate the
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Fig. 4 g(u) under ρ0 = 0.3, κρ = 2, μρ = −0.8, σρ = 0.1. a t = 0.1. b t = 10

dynamic correlations using (24). We observe that g(u) is a symmetric function about
u = 0 and vanishes (approaches zero) for a sufficiently large absolute value of u, see
Fig. 4. For these two reasons, the numerical integration in (24) is computationally
fast. Next we use an explicit Runge–Kutta method, the matlab routine ode45, to
obtain C and D in (21) and (22) and thus also the characteristic functions (20).
Finally, we employ the COS method [8] to obtain the option price C(S, ν, t, ρ̄) in
(19). Thanks to the COS method, although we solved that ODE system numerically,
the time for obtaining European option prices is less than 0.1 s so that a calibration
can be performed. Obviously, the error consists of the error using ode45 for (21)
and (22) and the error using COS method. The detailed analysis of error using COS
method has been provided in [8].

4.2 Calibration of the Heston Model Under
Dynamic Correlation

In this section we calibrate the Heston model extended by our time-dependent corre-
lation function to the real market data (Nikk300 index call options on July 16, 2012)
and compare these to the pure Heston model [9] and the time-dependent Heston
model [10].

We consider a set of N maturities Ti, i = 1, . . . ,N and a set ofM strikes Kj, j =
1, . . . ,M. Then for each combination of maturity and strike we have a market price
VM(Ti,Kj) = VM

ij and a corresponding model price V (Ti,Kj;Θ) = VΘ
ij generated

by using (19). We choose the relative mean error sum of squares (RMSE) for the

loss function 1
M×N

∑
i,j

(VM
ij −VΘ

ij )2

VM
ij

, which can be minimized to obtain the parameter

estimates

Θ̂ = argmin
1

M × N

∑
i,j

(VM
ij − VΘ

ij )2

VM
ij

. (25)
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For the optimization we restrict ρ̄0 to the interval (−1, 1) but not the value of μρ .
Since it is not the direct limit of the correlation function but the mean reversion of
the Ornstein–Uhlenbeck process, thus, it could take any value inR. Our experiments
showed, that it is sufficient and appropriate to restrict μρ to the interval [−4, 4].

We state our estimated parameters and the estimation error for the pure Heston
model (abbr. PH), the Hestonmodel under our time-dependent correlations (CH), the
time-dependent Heston model by Mikhailov and Ngel [10] (MN) in Tables1, 2 and
3, respectively. We see that the estimation error using the CH model is significantly
less than the error using the PHmodel and almost the same to the error (sum of errors
for each maturity) under the MNmodel. To illustrate more clearly, for each maturity
we compare the implied volatilities for all the models to the market volatilities in
Fig. 5. We can observe that the implied volatilities for the CHmodel are much closer
to the market volatilities than the implied volatilities for the PHmodel, especially the
CH model has better volatility smile for the short maturity T = 1/12. Compared to
the MN model, the implied volatilities for our model are almost the same. However,
our CH model has an economic interpretation, namely the correlation is nonlinear

Table 1 The estimated parameters for the pure Heston model using call options on the Nikk300
index on July 16, 2012 for the maturities 1/12, 1/4, 1/2, 1

The pure heston model

ν̂0 κ̂ν μ̂ν σ̂ν ρ̂ Estimation
error

0.029 4.746 0.053 1.108 −0.355 1.10 × 10−3

Table 2 The estimated parameters for the Heston model under time-dependent correlations using
call options on the Nikk300 index on July 16, 2012 for the maturities 1/12, 1/4, 1/2, 1

The extended Heston model by using our time-dependent correlation function

ν̂0 κ̂ν μ̂ν σ̂ν
ˆ̄ρ0 κ̂ρ μ̂ρ σ̂ρ Estimation

error

0.027 5.542 0.055 1.224 −0.165 5.333 −0.752 0.434 2.38 ×
10−4

Table 3 The estimated parameters for the time-dependent Heston model by Mikhailov and Ngel
using call options on the Nikk300 index on July 16, 2012

The time-dependent Heston model by Mikhailov and Ngel

Maturity ν̂0 κ̂ν μ̂ν σ̂ν ρ̂ Estimation
error

1/12 0.025 2.749 0.095 1.172 −0.201 1.78× 10−4

1/4 0.012 2.936 0.076 0.524 −0.411 2.45× 10−5

1/2 0.011 2.890 0.058 0.592 −0.430 1.14× 10−5

1 0.001 2.911 0.051 0.558 −0.389 4.28× 10−6
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Fig. 5 The comparison of implied volatilities for all the models to the market volatilities of the
call options on the Nikk300 index on July 16, 2012, where the spot price is 150.9

and time-dependent as market requires.We conclude that the Hestonmodel extended
by incorporating our time-dependent correlations can provide better volatility smiles
compared to the pure Heston model. The time-dependent correlation function can
be easily and directly introduced into the financial models.

5 Conclusion

In this work, we first investigated the dynamically (time-dependent) correlated
Brownian motions and their construction. Furthermore, we proposed a new dynamic
correlation function which can be easily incorporated into another financial model.
The aim of using our dynamic correlation function is to reasonably choose addi-
tional parameters to increase the fitting quality on the one-hand side, but also add an
economically meaningful perspective.

As an application, we incorporated our time-dependent correlation function into
the Heston model. An experiment on estimation of the models using real market data
has been provided. The numerical calibration results show that the Heston model
extended by using our time-dependent correlation function provides better volatility
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smiles compared to the pure Heston model. Besides, this time-dependent correlation
function could be easily and directly imposed to the financial models and thus it is
preferred to use instead of a constant correlation.
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reproduce the material.
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