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Abstract In this work we explore the implications of cointegration in a system of
commodity prices on the premiums of options written on various spreads on the
futures prices of these commodities. We employ a parsimonious, yet comprehen-
sive model for cointegration in a system of commodity prices. The model has an
exponential affine structure and is flexible enough to allow for an arbitrary number
of cointegration relationships. We conduct an extensive simulation study on pricing
spread options. We argue that cointegration creates an upward sloping term structure
of correlation, that in turn lowers the volatility of spreads and consequently the price
of options on them.

Keywords Cointegration + Futures prices - Commodities + Spread options * Simu-
lation

1 Introduction

A distinctive feature of commodity markets is the existence of long-run equilibrium
relationships that exist between the levels of various commodity prices, such as
the one between the price of crude oil and the price of heating oil. These long-run
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equilibrium relations can be captured in economic models by so-called cointegration
relations.

In this work we employ the continuous time model of cointegrated commodity
prices developed by the authors in Farkas et al. [6] in order to conduct a simulation
study for assessing the impact of cointegration on spread options. In our model,
commodity prices are non-stationary and several cointegration relations are allowed
amongst them, capturing long-run equilibrium relationships. Cointegration (Engle
and Granger [5]) is the property of two or more non-stationary time series of having
at least one linear combination that is stationary.

There is a vast literature on modeling the price of a single commodity as a non-
stationary process (see Back and Prokopczuk [ 1] for a comprehensive recent review).
For example, Schwartz and Smith [13] assume the log price of a commodity to be the
sum of two latent factors: the long-term equilibrium level, modeled as a geometric
Brownian motion, and a short-term deviation from the equilibrium, modeled as a zero
mean Ornstein—Uhlenbeck (OU) process. More recently, Paschke and Prokopczuk
[11] propose to model these deviations as a more general CARMA process and
Cortazar and Naranjo [3] generalize the Schwartz and Smith [13] model in a multi-
factor framework.

However, the literature on modeling a system of commodity prices is still quite
scarce. Two fairly recent models are proposed in Cortazar et al. [4] and Paschke and
Prokopczuk [10], both of which account for cointegration by incorporating common
and commodity-specific factors into their modeling framework. Amongst the com-
mon factors, only one is assumed non-stationary. Although they explicitly take into
account cointegration between prices, the cointegrated systems generated by these
two models are not covering the whole range of possible number of cointegration
relations, but allow for none or for exactly n — 1 relations to exist between the n
prices. In Farkas et al. [6] we propose an easy-to-use, yet comprehensive, model for
a system of cointegrated commodity prices that retains the exponential affine struc-
ture of previous approaches and allows, in the same time, for an arbitrary number of
cointegration relationships.

The rest of the work is organized as follows. In Sect.2 we briefly describe the
model proposed in Farkas et al. [6] and point out some qualitative aspects regarding
the dynamics of the system. Section3 is devoted to an extensive simulation study
focused on computing spread options prices and on assessing the impact of cointe-
gration on pricing spread options. Section4 is reserved for concluding remarks.

2 Outline of the Model

Before proceeding to the simulation study, in this section we present for the sake of
completeness, a short description of the model developed in Farkas et al. [6].
Consider n commodities with spot prices S(t) = (S1(), ..., S,()) .
First it is assumed that the spot log-prices X(#) = log S(¢) can be decomposed
into three components:
X(@) =Y() + &) + ¢(1), 1
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where Y (t) signifies the long-run levels, €(¢) is an n-dimensional stationary process
capturing short-term deviations, and ¢ () = yx; cos(2wt) + x» sin(27¢) controls for
seasonal effects with x, and x, being rn-dimensional vectors of constants.

The notion of cointegration (Engle and Granger [5], Johansen [7], Phillips [12])
refers to the property of two or more non-stationary time series of having a linear
combination that is stationary. For example, if X (¢) and X, (¢) are two non-stationary
processes, one says that they are cointegrated if there is a linear combination of them,
X1 () — a X, (1), that is stationary for some positive real «. Intuitively, cointegration
occurs when two or more non-stationary variables are linked in a long-run equilibrium
relationship from which they might depart only temporarily.

Regarding cointegration in the model, we stress that n cointegration relationships
are implicitly assumed by (1): the n seasonally adjusted spot log-prices X(t) —
¢ (t) are cointegrated with their corresponding long-run levels, Y (¢), since the linear
combination X(¢) — ¢(t) — Y(¢) is stationary.

Secondly, cointegration is allowed to exist between the variables in Y(z) as well.
We denote the number of cointegration relationships between them by /i, where
h > 0 and h < n. The corresponding cointegration matrix is symbolized by ©, an
n x n matrix with the last n — h rows equal to zero vectors. Each of the 4 non-zero
rows of ® encodes a stationary (i.e., cointegrating) combination of the variables
in Y(¢), normalized such that ®&;; = 1, i < h. The total n + h cointegration rela-
tionships between the variables in the vector Z(t) := (X(¢) — ¢(¢), Y(¢)) " can be

characterized by the (2n x 2n)-matrix |: 31 _(;" where O,, denotes the zero-matrix
with dimension n X n.
The dynamics of X(¢) and Y(¢#) under the real-world probability measure is

assumed to be given by:
X(t)_d)(t) _ On _Kx On In _In X(t)_d)(t)
o B A S (el | e e
20, ] W)
SRR

where 0, is an n-dimensional vector of zeros, and W := (W,, Wy)T is a 2n-
X n
0, —K, mea-
sures the speed by which Z(t) reverts to its long-run (cointegration) equilibrium level.
More specifically, K, quantifies the speed of mean reversion of the elements in X
around the long term levels in Y. The matrix K, isann x n matrix with the lastn — A
columns equal to zero vector, such that K,® is an n x n matrix of rank h. Each of
the & non-zero columns in K, quantifies the speed of adjustment of each element
in Y to the corresponding cointegration relation. The dynamics given by Eq.(2) is
“error-correcting” in that a deviation from a given cointegration relation induces an
appropriate change in variables in the direction of correcting the deviation.

dimensional standard Brownian motion. Furthermore, the matrix |:
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Fig.1 Simulated price paths for various choices of the ® matrix. Top panel prices are non-stationary
and there is one cointegration relation. Middle panel prices are non-stationary and there is no
cointegration. Bottom panel prices are stationary

In order to assess qualitatively the role of the cointegration matrix ® on the
properties of the dynamics of the system, Fig. 1 depicts the results of a simulation of
a system of three variables for various choices of the & matrix.

In the top panel of Fig. 1 we assume that there is a cointegration relation and the
first line of the @ matrix is [1 1 —1] and, therefore, the residual of the cointegration
relation, Y, (¢) + Y»(¢) — Y3(¢), is stationary. On the other hand, in the middle panel,
depicts the case when @ is the null matrix and, therefore, the prices are non-stationary
and not cointegrated. For example, the residual of the cointegration relation from
the previous case, Y;(t) + Y2(z) — Y3(¢), is no longer stationary. In fact, there is no
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stationary linear combination of the long run levels in this case. Moreover, as depicted
in the bottom panel, the model also allows for stationary prices, if the ® matrix is of
full rank.

The characteristic functions of X and Y can be readily computed analytically given
they are normally distributed since the dynamics of Z(t) = (X(t) — ¢(¢), Y(1)) " is
in fact given by a multivariate Ornstein—Uhlenbeck (OU) process:

dZ(t) = [p — KZ1)]dt + $2:dW(t), 3)

10,7 . [k K] o [z o, W, (1)
R AR e

At the same time, the vector of spot prices S(7') can be written as an exponential
function of X(¢) and Y (¢):

S(T) = exp {e_K"(T_t)X(t) + (T —DY(@) + [¢(T) - e_KX(T_t)gb(t)]
T T 1 1
+ [/ W(T — u)du:| Iy +/ [e*KNT*WE; + (T — u)zxzy] dW, ()
t t

T 1
+/ W(T—u)Eydey(u)}. 4)
t

V(r) =K, [/ e_K-‘(f_”)e_K»“(")”du:| .
0

Given the affine structure of the model, futures prices can also be obtained in

closed form. Under the simplifying assumption of constant market prices of risk, one
%

has that d [g% Eg] =d [x Eg] |: :| dt where Wi (t) and W (z) are standard
Brownian motions under the risk-neutral measure, and A,, A, are the market prices
of W, (t) and W, (¢) risks, respectively.

Under these circumstances it can be shown that at time ¢ the vector of futures
prices for the contracts with maturity 7 is given by

where

F@,T)=expl{at,T)+ B(T —)X@) + ¥ (T — )Y (@)}, 5)

with (1) := e~ %" and with a(z, T) defined by

alt, 1 +1) = [¢(r to)— e*Kﬂ¢(t)] - (In e vf) Kot + (/Or Wit — u)du) W

+ diag[% (I, 04] [e—’” (/0r eK”EeK”du) e—Kf] [(I)’;] } (6)



426 W. Farkas et al.

X component
Y component

Components of log futures prices (%)

0 1 1 1 1 1 1 t !
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time to maturity (Years)

Fig. 2 The relative contribution of various components to log futures prices

where diag(A) returns the vector with diagonal elements of A, and where

" 1| Ay
my Ay

To better assess qualitatively the impact of the two factors, X(¢) and Y (¢), on the
term structure of futures prices, we depict in Fig.2 the relative contribution of the
corresponding two terms in Eq. (5) to the logarithm of the futures prices on one of
the commodities in a cointegrated system.

The contribution of the X(¢) component decreases exponentially as a function of
time to maturity. On the other hand, the Y () component contributes significantly for
higher maturities. Therefore, the two factors capture the short-end and, respectively,
the long-end of the term-structure of futures prices.

By It6’s lemma, the risk-neutral dynamics of F(¢, T') is given by

dF(t,T)

DTN | KT 3 _ 3 * B % .
F(i, T) L ZE YT = DEL AW + v (T = DZFdW;0),

(7

and it follows immediately that the variance—covariance matrix of returns on futures
prices is given by:

E() = e M D KTy ELE) N p e K Rl (2 Ty ()
+ YO Z ¥ () + (@) 29 (1) (8)

wheret =T —t.
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Since the term structure of correlation of futures prices returns plays an impor-
tant role in the results of the simulations performed in the following section, it is
worthwhile to point out some qualitative results about this term structure.

First, Eq. (8) shows that unless K, = O,, the variance—covariance matrix = (7)
depends on t.

Second, let us consider the case that there is no instantaneous correlation between
the shocks driving the dynamics, meaning that X, and X, are diagonal matrices and
Xy is the null matrix. Moreover, let us assume that K is diagonal, meaning that the
spot price of a commodity reacts only to its deviation from the long run level and
not to deviations of the other commodities. It follows that the first term in Eq.(8) is a
diagonal matrix and the next three terms are null matrices. If, in addition, there is no
cointegration in the system, meaning that @ is the null matrix, then the last term in
Eq. (8) is a diagonal matrix since ¥ (7) is also a diagonal matrix. So, in this case, the
variance—covariance matrix & (t) is diagonal and, therefore, there is no correlation
at any maturity. However, if there is at least one cointegration relation in the system,
then the last term in Eq. (8) is no longer a diagonal matrix since ¥ (7) is not diagonal.
Therefore, cointegration induces correlation at various maturities although it was
assumed there is no instantaneous correlation between the Brownian motions in the
model.

3 Spread Option Prices

In this section, we focus on futures prices and prices of European-style options written
on the spread between two or more commodities, such as the difference between the
price of electric power and the cost of the natural gas needed to produce it, or the price
difference between crude oil and a basket of various refined products, known as the
crack spread. The crack spread is in fact related to the profit margin that an oil refiner
realizes when “cracking” crude oil while simultaneously selling the refined products
in the wholesale market. The oil refiner can hedge the risk of losing profits by buying
an appropriate number of futures contract on the crack spread or, alternatively, by
buying call options of the crack spread. Since spread options have become regularly
and widely used instruments in financial markets for hedging purposes, there is a
growing need for a better understanding of the effects of cointegration on their prices.

There is extensive literature on approximation methods for spread and basket
options on two (e.g. Kirk [8]) or more than two commodities, with recent contribu-
tions from Li et al. [9] and Caldana and Fusai [2]. However, mostly for simplicity,
we relay in this chapter on the Monte-Carlo simulation method for pricing spread
options written on two or more than two commodities.

From Eq. (7), it follows that F(¢, T') (conditional on information available up to
time s <t < T) is distributed as follows:
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F@, T) ~log (logF(s, T)— %/ diag(& (T — u))du,/ E(T — u)du) ,
S s (9)

where diag(X) denotes the vector containing the diagonal elements of the matrix X.
Note that F(s, T') can be either computed from (5) or observed from data.

The fact that the distribution function of F(¢, T') is known in an easy-to-use and
analytic form is one of the key features of the model we employ. It allows us to
simulate futures price curves at any time ¢ in the future based on today’s curves
(time s) almost effortlessly. Hence, the price of a call option on the time-7" value of
a certain spread can be simply obtained by carrying out the following steps:

(i) compute or observe today’s futures price curves F(s, T);
(ii) compute M realizations F™ (m =1, ..., M) of F(T, T) by sampling from
(9) as follows:
F — F(s, T)exp {e(’”)} ,

where €™ is generated from a multivariate normal distribution with mean
—% ff diag(E (T — u))du and variance—covariance matrix fST E(T —u)du';
(ii1) compute the Monte-Carlo estimate of a call with strike k on the spread

N N
D w0 Su(T) (= > w0 Fu(T, T)),
n=1

n=1

withw,,n =1, ..., N the weights of each component in the spread, as follows:

1 M N
MZmaX‘{anF,f"’)} —k,O]. (10)
n=1

m=1

For the sake of clarity we have set the risk-free rate curve equal to zero. We note
that the random variables & can be simply re-used for pricing spread options with
different maturity dates.

In the following we consider a system of three commodities characterized by one

1-0.4-0.6
cointegrationrelationwith® = | 0 0 0 |.Therestof the parameters describ-
00 O
150 0 0.0625 0.0562 0.0437
ing the dynamics are K, = | 0 1 0 |, X, = | 0.0562 0.0900 0.0262 |, p, =
0 005 0.0437 0.0262 0.1225

Here the technique of antithetic variables is used to reduce the number of random samples needed
for a given level of accuracy.

2The structure of the parameters is chosen, in a parsimonious manner, taking into consideration the
key facts of the empirical study conducted in Farkas et al. [6], where the results provide compelling
evidence of cointegration between various commodities.
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0.025 1500 0025 0 0
0025|,K,=| 0 00|, Z,=| 0 0025 0 |, %, =0s.SinceK,
0.025 000 0 0 00225

is diagonal, each spot price is error-corrected only with respect to deviations from its
own long-run level. Moreover, given the specific form of the K, matrix, deviations
from the cointegration relationships between the long-run levels influence only the
dynamics of the first spot price. In this respect, the second and third commodities are
“exogenous” in that their dynamics is not influenced by the variables characterizing
the other commodities. Regarding instantaneous dependence, the shocks driving the
dynamics of the long-run factors are not correlated, whereas we imposed positive
correlations between the shocks driving the dynamics of the X(#). More specifically,
the instantaneous variance—covariance matrix X, for long-run shocks corresponds to
an annual volatility of 0.15 for all three commodities. At the same time, the instanta-
neous variance—covariance matrix X, for short-run shocks corresponds to an annual
volatility of 0.25 for the first commodity, of 0.30 for the second and of 0.35 for the
third and to a correlation coefficient of 0.75 between the first and the second com-
modities, of 0.50 between the first and the last and of 0.25 between the second and
the third. For simplicity, we also assume there is no correlation between the two cat-
egories of shocks. Since we focus on the impact of cointegration on spread options,
in the following simulations we have set, for illustration purposes, the vector of risk
premiums A, and A, and the risk-free rate curve equal to zero.?

Figure 3 depicts the term structure of correlation, over a period of 5 years, between
the returns of futures prices of the three commodities in the system in two cases: the
one when the cointegration relation is taken into account and, respectively, the one
where the cointegration relation is abstracted from (i.e. ® = O3).

One can observe that, regarding the correlation term structure between commodi-
ties 2 and 3, the two curves are identical (Fig. 3, bottom panel). This is not surprising
since these two commodities are “exogenous” as explained above and their dynam-
ics is not influenced by the cointegration relation. However, cointegration induces
additional correlation when it comes to the commodities 1 and 2 and commodities 1
and 3, as also pointed out at the end of the previous section. In the absence of coin-
tegration, the correlation vanishes after 2-3 years, whereas when the cointegration
relation is taken into account the correlation exists also in the long run.

Next, we consider three spreads on two commodities, respectively S (1) — S»(%),
S1(t) — S3(t), S>(t) — S3(¢), and one spread on all the three commodities in the
system Sy (f) — 0.5(S2(#) + S3(¢)). We assume that at time 0, the two factors are such

2
that X(0) = Y(0) = | 2 | and, therefore, the current spot prices of all four spreads
2

equal 0. We focus on studying the prices of the at-the-money (ATM) European-style
call spread options with up to 5 years to maturity. Figure 4 shows the term structure of

3In a real-world application the parameters of the model can be estimated using futures prices
data for the corresponding commodities. Given the features of the model one can implement an
estimation procedure based on the Kalman filter.
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Fig. 3 Term structure of correlation, over a period of 5 years, between the futures log-returns of
three commodities (from fop to bottom: between 1 and 2, between 1 and 3, between 2 and 3)
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Fig. 4 Relative ATM call spread option prices with up to 5 years to maturity, and relative standard
deviations of the spread distribution at maturities up to 5 years. Top panel for the spread S;(t) —
S>(t). Bottom panel for the spread S;(t) — 0.5(S2(¢) + S3(2))
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Fig. 5 The distribution of the spread at maturity (5 years). Top panel for the spread S (t) — S (7).
Bottom panel for the spread S () — 0.5(S2(¢) + S3(1))

prices in the case with cointegration relative to the prices in the case the cointegration
is not accounted for.*

Cointegration has a significant impact on spread option prices, with the price for
the call with 5 years to maturity on the S| () — S»(¢) spread being almost 30 % lower
in the case with cointegration and for the call on the S; (r) — 0.5(S2(¢) + S3(¢)) spread
being almost 60 % lower. This can be explained by the fact that cointegration induces
additional correlation that acts to lower the standard deviation of the distribution of
the spread at maturity. To give a better grasp of this fact, Fig. 5 depicts the distribution
of the spread at maturity in the two cases. We omitted from the figures the other two
spreads, because the results for the S;(#) — S3(¢) spread are similar to those for the
S1(t) — S2(¢) spread, and for the S>(¢) — S3(¢) spread there is, as expected given the
“exogenous” nature of these two prices, no difference between the cases with and
without cointegration.

If one were to add another cointegration relation to the system, linking the second
and the third commodities in a long-run relationship, then the new cointegration
relation would affect the prices of the options written on the S>(¢) — S3(¢) spread.
Moreover, the new cointegration relation might also affect the option prices written on
the other three spreads, the magnitude of this influence depending on the structure
of the K, matrix that captures the strength of responses in various spot prices to
deviations in the new long-run relationship.

To have a better grasp of the influence of cointegration, next we run a series of
sensitivity analyses concerning the existence of a second cointegration relationship in
the system. To account for the new cointegration relation, we assume a new structure

“Relative quantities in Fig.4 are determined as the ratio between the quantity computed with the
model accounting for cointegration and the corresponding quantity computed with the model without
cointegration.
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Fig. 6 The impact of k> and k3 on the distribution of the spread S>(#) — S3(¢) at maturity (5 years).
Top left panel correlation between the futures log-returns of the two commodities in the basket.
Top right panel relative standard deviations of the spread distribution (the values are normalized by
division with the standard deviation in the case k, = k3 = 0). Bottom panel the distribution for the
two extreme cases in the analysis

1 —-0.4 -0.6 1.5 k& O
for®@=|-60 1 —-08|and K,=| 0O ko O, where 0, ky, k», k3 > 0. The
0 O 0 0 —k3 0

other parameters have the same values as before. We first focus on the impact of
the parameters k; and k3 on the S, (¢) — S3(¢) spread. These two parameters quantify
the strength that the second and, respectively, the third commodity reacts to deviations
in the newly added cointegration relation. In the extreme case when both &, and k3 are
zero, we are in the same situation as before since the two commodities do not react
to deviations. However, with the increase of these parameters the new cointegration
relation will start to matter for the dynamics of the two commodities, and will have
an impact on the distribution of the spread at maturity. Figure 6 presents the results
of the sensitivity analysis when k, and k3 are varied between 0 and 0.5, with the other
parameters kept fixed at alevel § = 0.2 and k; = 0.

A higher value for the two reaction parameters produces a higher extra correlation
induced by the second cointegration relation, which, in turn, is reflected in a lower
standard deviation of the distribution of the spread at maturity. Over a 5-years horizon,
the standard deviation for the case k, = k3 = 0.5 is 32 % lower than in the case the
two parameters are equal to zero, and the ATM call price is 35 % lower.
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Fig. 7 The impact of k; and 6 on the distribution of the spread S;(¢) — 0.5(S2(¢) + S3(¢)) at
maturity (5 years). Top left panel correlation between the futures log-returns of the first commodity
and the sum of the other two. Top right panel relative standard deviations of the spread distribution
(the values are normalized by division with the standard deviation in the case k; = 0,60 = 0.2).
Bottom panel the distribution for two specific cases in the analysis

Next, we focus on the impact of 6 and k; on the S;(¢) — 0.5(S2(¢) + S3(¢)) spread.
The parameter 6 is a free variable that determines the second cointegration rela-
tionship and the parameter k; measures the magnitude of the response of the first
commodity to deviations from the second cointegration relation. Figure 7 presents
the results of the sensitivity analysis when k| and 6 are varied between 0 and 1 and,
respectively, between 0.1 and 0.3, with the other parameters kept fixed at a level
ko = 0.25 and k3 = 0.25. An increase of k; generates a reduction in the correlation
between the components of the spread, showing that the second cointegration rela-
tionship has the effect of pulling the components of the spread away from each other.
This effect is marginally stronger for the smaller 6. The result of the reduction in
correlation is a higher standard deviation of the distribution of the spread at maturity.

For a maturity of 5 years, the standard deviation for the case k| = 1 is around 33 %
higher than in the case the parameter equals zero, and the ATM call price is about
40 % higher. Therefore, the two cointegration relations influence the distribution of
the S1(¢) — 0.5(S2(¢) + S5(¢)) spread in different directions, the first one generating
a reduction, and the second one an increase in the standard deviation. The overall
impact depends on the magnitude of the parameters quantifying the responses of the
commodities to deviations in the two cointegration relations.
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4 Concluding Remarks

In this work, we explored the implications of cointegration between commodity
prices on the premiums of options written on various spreads between these com-
modities. We employed the continuous time model of cointegrated commodity prices
developed in Farkas et al. [6] and conducted a simulation study for a cointegrated
system of three commodities. We calculated the prices of several spread options
and found that cointegration significantly influences these prices. Furthermore, we
pointed out that cointegration leads to an upward sloping correlation term-structure
which lowers the volatility of spreads and therefore it also lowers the value of options
on spreads. Although we restricted in this chapter to a simulation study, it is worth-
while to mention that the model can also be estimated using futures prices on various
commodities, as shown in Farkas et al. [6].
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