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Abstract We study conditions for existence, uniqueness, and invariance of the
comprehensive nonlinear valuation equations first introduced in Pallavicini et al.
(Funding valuation adjustment: a consistent framework including CVA, DVA, col-
lateral, netting rules and re-hypothecation, 2011, [11]). These equations take the
form of semi-linear PDEs and Forward—Backward Stochastic Differential Equations
(FBSDEs). After summarizing the cash flows definitions allowing us to extend valu-
ation to credit risk and default closeout, including collateral margining with possible
re-hypothecation, and treasury funding costs, we show how such cash flows, when
present-valued in an arbitrage-free setting, lead to semi-linear PDEs or more gener-
ally to FBSDEs. We provide conditions for existence and uniqueness of such solutions
in a classical sense, discussing the role of the hedging strategy. We show an invari-
ance theorem stating that even though we start from a risk-neutral valuation approach
based on a locally risk-free bank account growing at a risk-free rate, our final valua-
tion equations do not depend on the risk-free rate. Indeed, our final semi-linear PDE
or FBSDEs and their classical solutions depend only on contractual, market or trea-
sury rates and we do not need to proxy the risk-free rate with a real market rate, since
it acts as an instrumental variable. The equations’ derivations, their numerical solu-
tions, the related XVA valuation adjustments with their overlap, and the invariance
result had been analyzed numerically and extended to central clearing and multi-
ple discount curves in a number of previous works, including Brigo and Pallavicini
(J. Financ. Eng. 1(1):1-60 (2014), [3]), Pallavicini and Brigo (Interest-rate modelling
in collateralized markets: multiple curves, credit-liquidity effects, CCPs, 2011, [10]),
Pallavicini et al. (Funding valuation adjustment: a consistent framework including
cva, dva, collateral, netting rules and re-hypothecation, 2011, [11]), Pallavicini et al.
(Funding, collateral and hedging: uncovering the mechanics and the subtleties of
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funding valuation adjustments, 2012, [12]), and Brigo et al. (Nonlinear valuation
under collateral, credit risk and funding costs: a numerical case study extending
Black-Scholes, [5]).
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1 Introduction

This is a technical paper where we analyze in detail invariance, existence, and unique-
ness of solutions for nonlinear valuation equations inclusive of credit risk, collateral
margining with possible re-hypothecation, and funding costs. In particular, we study
conditions for existence, uniqueness, and invariance of the comprehensive nonlinear
valuation equations first introduced in Pallavicini et al. (2011) [11]. After briefly
summarizing the cash flows definitions allowing us to extend valuation to default
closeout, collateral margining with possible re-hypothecation and treasury funding
costs, we show how such cash flows, when present-valued in an arbitrage-free set-
ting, lead straightforwardly to semi-linear PDEs or more generally to FBSDEs. We
study conditions for existence and uniqueness of such solutions.

We formalize an invariance theorem showing that even though we start from a
risk-neutral valuation approach based on a locally risk-free bank account growing
at a risk-free rate, our final valuation equations do not depend on the risk-free rate
at all. In other words, we do not need to proxy the risk-free rate with any actual
market rate, since it acts as an instrumental variable that does not manifest itself in
our final valuation equations. Indeed, our final semi-linear PDEs or FBSDEs and
their classical solutions depend only on contractual, market or treasury rates and
contractual closeout specifications once we use a hedging strategy that is defined as
a straightforward generalization of the natural delta hedging in the classical setting.

The equations’ derivations, their numerical solutions, and the invariance result had
been analyzed numerically and extended to central clearing and multiple discount
curves in a number of previous works, including [3, 5, 10-12], and the monograph
[6], which further summarizes earlier credit and debit valuation adjustment (CVA
and DVA) results. We refer to such works and references therein for a general intro-
duction to comprehensive nonlinear valuation and to the related issues with valuation
adjustments related to credit (CVA), collateral (LVA), and funding costs (FVA). In
this paper, given the technical nature of our investigation and the emphasis on non-
linear valuation, we refrain from decomposing the nonlinear value into valuation
adjustments or XVAs. Moreover, in practice such separation is possible only under
very specific assumptions, while in general all terms depend on all risks due to nonlin-
earity. Forcing separation may lead to double counting, as initially analyzed through
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the Nonlinearity Valuation Adjustment (NVA) in [5]. Separation is discussed in the
CCP setting in [3].

The paper is structured as follows.

Section 2 introduces the probabilistic setting, the cash flows analysis, and derives
a first valuation equation based on conditional expectations. Section3 derives an
FBSDE under the default-free filtration from the initial valuation equation under
assumptions of conditional independence of default times and of default-free initial
portfolio cash flows. Section4 specifies the FBSDE obtained earlier to a Markovian
setting and studies conditions for existence and uniqueness of solutions for the non-
linear valuation FBSDE and classical solutions to the associated PDE. Finally, we
present the invariance theorem: when adopting delta-hedging, the solution does not
depend on the risk-free rate.

2 Cash Flows Analysis and First Valuation Equation

We fix a filtered probability space (£2, <7, Q), with a filtration (¥,,),>( representing
the evolution of all the available information on the market. With an abuse of notation,
we will refer to (¢,) >0 by ¢. The object of our investigation is a portfolio of contracts,
or “contract” for brevity, typically a netting set, with final maturity 7', between two
financial entities, the investor I and the counterparty C. Both I and C are supposed
to be subject to default risk. In particular we model their default times with two
¢-stopping times 17, 7c. We assume that the stopping times are generated by Cox
processes of positive, stochastic intensities Al and A€. Furthermore, we describe the
default-free information by means of a filtration (%,),>0 generated by the price of
the underlying S; of our contract. This process has the following dynamic under the
measure Q:
dS; = rSdt + o (¢, S;)dW,;

where r, is an . -adapted process, called the risk-free rate. We then suppose the
existence of a risk-free account B, following the dynamics

dB; = rB.dt.
We denote D(s, t,x) = e~ I8 %wdn the discount factor associated to the rate x,,. In the

case of the risk-free rate, we define D(s, 1) := D(s, t, r).
We further assume that for all 7 we have &4, = %, v ! v #° where

A =0y, s 1),
%C = U(l{rcis}’ s <1t).

Again we indicate (.Z,),>0 by % and we will write E?[-] := E[-|¢4/] and similarly
for .%. As in the classic framework of Duffie and Huang [8], we postulate the default
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times to be conditionally independent with respect to %, i.e. for any ¢ > 0 and
ti, 1 € [0,1], we assume Q{t; > 11, 7c > 1| F} = Q{y > 11|.%)Q{tc > 6|F}.
Moreover, we indicate T = 7; A T¢ and with these assumptions we have that t has
intensity A, = Al + A. For convenience of notation we use the symbol 7 to indicate
the minimum between 7 and 7.

Remark 1 We suppose that the measure Q is the so-called risk-neutral measure, i.e. a
measure under which the prices of the traded non-dividend-paying assets discounted
at the risk-free rate are martingales or, in equivalent terms, the measure associated
with the numeraire B;.

2.1 The Cash Flows

To price this portfolio we take the conditional expectation of all the cash flows of the
portfolio and discount them at the risk-free rate. An alternative to the explicit cash
flows approach adopted here is discussed in [4].

To begin with, we consider a collateralized hedged contract, so the cash flows
generated by the contract are:

e The payments due to the contract itself: modeled by an .% -predictable process 7,
and a final cash flow @ (S7) payed at maturity modeled by a Lipschitz function @.
At time ¢ the cumulated discounted flows due to these components amount to

T
liz=1yD(0, T) P (S7) +/ D(t, u)m,du.
t

e The payments due to default: in particular we suppose that at time T we have a
cash flow due to the default event (if it happened) modeled by a ¢, -measurable
random variable ;. So the flows due to this component are

T
l{t<1’<T}D(ta T)et = 1{1<1:<T}/ D(t’ u)eudl{rfu}~
t

e The payments due to the collateral account: more precisely we model this account
by an .%-predictable process C,. We postulate that C, > 0 if the investor is the
collateral taker, and C, < 0 if the investor is the collateral provider. Moreover, we
assume that the collateral taker remunerates the account at a certain interest rate
(written on the CSA); in particular we may have different rates depending on who
the collateral taker is, so we introduce the rate

cr = lic=0¢ + lic<0ic; s (D

where ¢/, ¢, are two .% -predictable processes. We also suppose that the collateral
can be re-hypothecated, i.e. the collateral taker can use the collateral for funding
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purposes. Since the collateral taker has to remunerate the account at the rate ¢,
the discounted flows due to the collateral can be expressed as a cost of carry and
sum up to

/ D(t, u)(r, — c,)Cydu.
t

e We suppose that the deal we are considering is to be hedged by a position in cash
and risky assets, represented respectively by the ¢-adapted processes F; and H;,
with the convention that ;, > 0 means that the investor is borrowing money (from
the bank’s treasury for example), while F < 0 means that / is investing money.
Also in this case to take into account different rates in the borrowing or lending
case we introduce the rate

fo =Ny —coff;” + ly—c<olf 2

The flows due to the funding part are

/T D(t, u)(r, — f,)F,du.

For the flows related to the risky assets account H, we assume that we are hedging
by means of repo contracts. We have that H, > 0 means that we need some risky
asset, so we borrow it, while if H < 0 we lend. So, for example, if we need to
borrow the risky asset we need cash from the treasury, hence we borrow cash at a
rate f; and as soon as we have the asset we can repo lend it at a rate /,. In general
h; is defined as

he = Vo + <ohy . 3)

Thus we have that the total discounted cash flows for the risky part of the hedge
are equal to

/f D(t, u)(h, — fu)H,du.

The last expression could also be seen as resulting from (r — f) — (r — h), in line
with the previous definitions. If we add all the cash flows mentioned above we obtain
that the value of the contract V, must satisfy

Vt =E[g [/ D(t’ u)(n:u + (ru - Cu)Cu + (ru _fu)Fu - (fu - hu)Hu)du:|
f 4)
+ E?[l{DT}D(l» @ (Sr) + D(t, T)l{t<r<T}0rj|~

If we further suppose that we are able to replicate the value of our contract using
the funding, the collateral (assuming re-hypothecation, otherwise C is to be omitted
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from the following equation) and the risky asset accounts, i.e.
VuzFu+Hu+Cm (5)

we have, substituting for F:

Vt :Etg |:/T D(t’ u)(nu + (fu - Cu)Cu + (ru _fu)vu - (ru - hu)Hu)du:|
(6)

t

+ E?[I{DT}D(L I)®(Sr) + D(t, T)l{t<r<T}91:|~

Remark 2 Inthe classic no-arbitrage theory and in a complete market setting, without
credit risk, the hedging process H would correspond to a delta hedging strategy
account. Here we do not enforce this interpretation yet. However, we will see that
a delta-hedging interpretation emerges from the combined effect of working under
the default-free filtration .% (valuation under partial information) and of identifying
part of the solution of the resulting BSDE, under reasonable regularity assumptions,
as a sensitivity of the value to the underlying asset price S.

2.2 Adjusted Cash Flows Under a Simple Trading Model

We now show how the adjusted cash flows originate assuming we buy a call option
on an equity asset Sy with strike K. We analyze the operations a trader would enact
with the treasury and the repo market in order to fund the trade, and we map these
operations to the related cash flows. We go through the following steps in each small
interval [z, t 4 dt], seen from the point of view of the trader/investor buying the
option. This is written in first person for clarity and is based on conversations with
traders working with their bank treasuries.

Time ¢:

1. T wish to buy a call option with maturity 7 whose current price is V; = V (¢, S;).
I need V; cash to do that. So I borrow V; cash from my bank treasury and buy
the call.

2. Ireceive the collateral amount C; for the call, that I give to the treasury.

3. Now I wish to hedge the call option I bought. To do this, I plan to repo-borrow
A; stock on the repo-market.

4. To do this, I borrow H; = A,S; cash at time ¢ from the treasury.

5. T repo-borrow an amount A, of stock, posting cash H, as a guarantee.

6. Isell the stock I just obtained from the repo to the market, getting back the price
H, in cash.

7. 1 give H, back to treasury.

8. My outstanding debt to the treasury is V; — C;.
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Time t + dt:

9. I need to close the repo. To do that I need to give back A, stock. I need to buy
this stock from the market. To do that I need A,S,, 4 cash.
10. I thus borrow A,S;;4 cash from the bank treasury.
11. Tbuy A, stock and I give it back to close the repo and I get back the cash H;
deposited at time 7 plus interest h;H;.
12. I give back to the treasury the cash H, I just obtained, so that the net value of the
repo operation has been

H(1 4+ hydt) — ASivar = — A, dS, + h,H, dt

Notice that this — A,dS; is the right amount I needed to hedge V in a classic delta
hedging setting.

13. Iclose the derivative position, the call option, and get V4 cash.

14. T have to pay back the collateral plus interest, so I ask the treasury the amount
C;(1 + ¢, dr) that I give back to the counterparty.

15. My outstanding debt plus interest (at rate f) to the treasury is
Vi— G+ CG(1 + ¢ dt) + (V; = Cfydt = Vi(1 + fr dt) + Ci(c; — fi db).
I then give to the treasury the cash V4 I just obtained, the net effect being

Vivar = Vil + frdt) — Ci(e; — f) dt = dV, — fiVidt — Ci(c, — fi) dt
16. I now have that the total amount of flows is:
—AdS; + hH dt +dV, — f;V,dt — Ci(c, — fp) dt
17. Now I present-value the above flows in 7 in a risk-neutral setting.

E,[—A,dS; + hH, dt +dV, — f,V, dt — C,(c, — f;) dt]
= —A(ry — h)S dt + (re — f) Vi dt — Ci(c, — fr) di — do(2)
= —H,(rr —h)dt + (ro —f))(H, + F, + C) dt — C (¢, — f1) dt — do(1)
= (h —foH, dt + (r, — f)F dt + (ri — ¢,)Cr dt — d(1)

This derivation holds assuming that E,[dS;] = r:S; dt and E,[dV;] = r;V, dt —
do(t), where dg is a dividend of V in [z, t 4+ dt) expressing the funding costs.
Setting the above expression to zero we obtain

do(t) = (h —f)H dt + (r; — f)F;dt + (r; — ¢,)Cr dt

which coincides with the definition given earlier in (6).
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3 An FBSDE Under %

We aim to switch to the default free filtration .# = (.%;),>¢, and the following lemma
(taken from Bielecki and Rutkowski [1] Sect.5.1) is the key in understanding how
the information expressed by ¥ relates to the one expressed by 7.

Lemma 1 For any o/ -measurable random variable X and any t € R, we have:

E7 [1jr<r<yX]

Ef [1jcrenX] = Lie=
;<< X1 {t>1) E7 [1rn]

(N

In particular we have that for any ,-measurable random variable Y there exists an
F,-measurable random variable Z such that

LanY = 1z Z.

What follows is an application of the previous lemma exploiting the fact that
we have to deal with a stochastic process structure and not only a simple random
variable. Similar results are illustrated in [2].

Lemma 2 Suppose that ¢, is a 9-adapted process. We consider a default time t
with intensity A,. If we denote T = © A T we have:

T T
E? [ / ¢>udu}=1{f>,}E?‘ [ / D(z,u,)\)&udu}
t t

where q?u is an %, measurable variable such that 1{I>u}$u = lr>u)Pu-

Proof

T T T
E? |:/ ¢udu] - E,‘g [/ l{r>t}1{r>u}¢udu] - / E? [1{r>t}1{r>u}¢u] du
t t t

then by using Lemma | we have

’ E7 [Liesnrsu®u] !
= | Qg ——— T g = 1y EZ [1(p20¢.] DO, t, 1) "'d
/f Qe sz ’}/, ¢ [ead] DO. 1 1)

now we choose an .%, measurable variable such that 1{T>u}<2;u = l{r>u¢, and obtain

T o~
- I{D”/z EZ [Ef[l{wu}]%]mo, 1.2 \du

rer ~ | 7| " =
= 1{r>t} / E; [D(07 u, )\)¢u] D(0,t,A)" 'du = 1{r>t}Et / D(t, u, \)¢ydu
t t



Analysis of Nonlinear Valuation Equations Under Credit and Funding Effects 45

where the penultimate equality comes from the fact that the default times are condi-
tionally independent and if we define Ay (1) = f()" AXds with X € {I, C} we have that
Ty = A;l (&x) with & mutually independent exponential random variables indepen-
dent from A*.! A similar result will enable us to deal with the default cash flow term.
In fact we have the following (Lemma3.8.1 in [2])

Lemma 3 Suppose that ¢, is an F -predictable process. We consider two condition-
ally independent default times t;, Tc generated by Cox processes with .7 -intensity
rates M, .C. If we denote T = ¢ A T we have:

T
E;j [1{t<r<T}1{t,<1:C}¢r] = 1{r>t}]E[g |:/ D(tv u, )\’1 + )\C))"{t(pudu] .
t

Now we postulate a particular form for the default cash flow, more precisely if
we indicate V, the .% -adapted process such that

1[r>l}‘7t = 1{r>t}vt
then we define
0 = € — l{ro <) LGDc (€, — Ct)+ + i <ee)LGDy (¢, — C))™.

Where LGD indicates the loss given default, typically defined as 1 — REC, where
REC is the corresponding recovery rate and (x) " indicates the positive part of x and
(x)7 = —(—x)*. The meaning of these flows is the following, consider 0,:

e at first to default time T we compute the close-out value €,;

e if the counterparty defaults and we are net debtor, i.e. €, — C; < 0 then we have
to pay the whole close-out value ¢; to the counterparty;

e if the counterparty defaults and we are net creditor, i.e. €, — C; > 0 then we
are able to recover just a fraction of our credits, namely C; + RECc(e; —
C.) =RECce; + LGDcC; = &, — LGD¢(g; — C;) where LGD¢ indicates the
loss given default and is equal to one minus the recovery rate RECc.

A similar reasoning applies to the case when the Investor defaults.
If we now change filtration, we obtain the following expression for V, (where we
omitted the tilde sign over the rates, see Remark 3):

ISee for example Sect.8.2.1 and Lemma 9.1.1 of [1].
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7| [T S =
Vi =lgenEy / D(t,u, v+ 2)((fu — cw)Cu + (ru — fu) Vi — (ru — hu)Hy)du
t
z T
+ s BY | D, T, r + 1) P(ST) +/ D(t,u, r + AN mydu (8)
t
g T ~
+ lranEY / D(t,u, 7+ 1)8ydu | ,
t

where, if we suppose ¢, to be .% -predictable, we have (using Lemma 3):

0, = €,ry — LGD¢ (€, — C,)TAS + LGD; (e, — C,) ™AL, )

Remark 3 From now on we will omit the tilde sign over the rates f,,, h,. Moreover,
we note that if a rate is of the form

Xt = X" g, ,.c)>0) + X Lig(v,.,.¢)<0)

then on the set {t > t} it coincides with the rate

~ PO v -~
Xt = X"V f,.cp-00 T X Lig(@ i,.c)<o)

because 1(r-nx g, u,.¢)>00 = X L=y ligv,.m,.c,)>0, and_on {r >} we have
V. =V, and H, = H,, and hence g(V;, H;, C;) > 0 <— g(V;, H;, C;) > 0.

We note that this expression is of the form V; = 1{;>4 Y meaning that V; is zero
on {t <t} and that on the set {t > r} it coincides with the .% -measurable random
variable Y. But we already know a variable that coincides with V; on {7 > 1}, i.e.
V:. Hence we can write the following:

T
V, =E7 [ / D(t, u, 1+ )ty + (fu — cw)Cu + (ru — i) Vi — (ru—huﬁu)du}
: ) (10)
+E7 |:D(t, T,r+k)¢(ST)+/ D(z,u,r+}»)§udu:|.
t

We now show a way to obtain a BSDE from Eq.(10), another possible approach
(without default risk) is shown for example in [9]. We introduce the process

t t
X, = / DO, u, r + M) m.du + / DO, u, r + )0,du
0 0
t (11
+/ DO, u, r+ 1) [(fu — c)Cu + (ru — fu) Vi — (ry — h)H, ] du.
0
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Now we can construct a martingale summing up X; and the discounted value of
the deal as in the following:

DO, t,r + MV, + X, = E7 [Xr + DO, T, r + 1)®(S7)).
So differentiating both sides we obtain:

— (Fy 4+ 2D, u, ¥ + M) V,du + D(O, u, r + 2)dV, + dX,,
= dE7 [X; 4+ D, T, r + 1)@ (Sr)].

If we substitute for X; we have that the expression:
dvu + [7[14 - (ru + )‘u)vu + gu + (fu - cu)Cu + (ru _fu)vu - (ru - hu)ﬁLl] dl/t
is equal to;

dEZ [Xr + D, T, r + 1)@ (S7)]
DO, u,r+ A1) '

The process (E;g (X7 + D, T, r+ 2D (Sr)])i0 is clearly a closed .Z -martingale,
and hence

/ DO, u, 7+ 1)\ dEZ Xy + DO, T, r + 1) (S)]
0

is a local .# -martingale. Then, being
! >
/ DO, u, r+ 1) "'dEZ [X; + D0, T, r + M) ®(S7)]
0

adapted to the Brownian-driven filtration .7, by the martingale representation theo-
rem we have

t

t
/ DO, u, r + 1) ""dEZ [X; + DO, T, r + 1) ®(Sp)] = / Z,dW,
0 0

for some .% -predictable process Z,. Hence we can write:

qu + [7Tu - (fu + )"M)VM + 5” + (ﬁl - cu)Cu - (ru - hu)ﬁu] du = Zuqu~ (12)
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4 Markovian FBSDE and PDE for 17t and the Invariance
Theorem

Asitis, Eq. (12) is way too general, thus we will make some simplifying assumptions
in order to guarantee existence and uniqueness of a solution. First we assume a
Markovian setting, and hence we suppose that all the processes appearing in (12) are
deterministic functions of S,,, ‘7:4 or Z, and time. More precisely we assume that:

e the dividend process 7, is a deterministic function 7 (u, S,,) of u and §,,, Lipschitz
continuous in S,,;

e the rates r, f*, ¢*, A/, A€ are deterministic bounded functions of time;

e the rate /, is a deterministic function of time, and does not depend on the sign of
H, namely h* = h~, hence there is only one rate relative to the repo market of
assets; B B

e the collateral process is a fraction of the process V,, namely C, = «,V,, where
0 < «, < 1is a function of time;

e the close-out value ¢, is equal to V, (this adds a source of nonlinearity with respect
to choosing a risk-free closeout, see for example [6] and [5]);

e thediffusion coefficient o (, S;) of the underlying dynamic is Lipschitz continuous,
uniformly in time, in S;;

e we consider a delta-hedging strategy, and to this extent we choose H, =58~

1t (.5’
this reasoning derives from the fact that if we suppose V; = V (¢, ;) with V (-, -) €
C"2 applying Ito’s formula and comparing it with Eq. (12), we have that o (¢, S,)
85V(t, St) = Zt'2

Under our assumptions, Eq. (12) becomes the following FBSDE:
de :rlSldt +o(t, S;)th
So =s

~ ~ ~ ~ ~ Z
dVy =— |:7Tt + 60 — M Ve +fiVilar — 1) — ¢ (o Vi) — (rp — ht)stcr(titS)] dt + Z;dW;
» St

B(1,S:, Vi Zs)

Vr =2(S1)
13)

We want to obtain existence and uniqueness of the solution to the above-mentioned
FBSDE and a related PDE. A possible choice is the following (see J. Zhang [15]
Theorem?2.4.1 on page 41):

2 At this stage the assumption we made on V is not properly justified, see Theorem 3 and Remark 4
for details.
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Theorem 1 Consider the following FBSDE on [0, T]:

dX! = (e, Xdt + o (¢, X)dW, g <t <T
X, =x 0<t<gq
avyt = —f@, X, v, zMde + Z7 aw,
Y = )

(14)

If we assume that there exists a positive constant K such that

o o(t,x)? > %,
o [f(t,x,y, ) —f(t,x,y, N+ gx) —g&)| <K(Ix —x'|+ |y =Y+
lz—2']);

e |[f(z,0,0,0)[ + [g(0)] = K;

and moreover the functions u(t,x) and o(t,x) are C? with bounded derivatives,
then Eq. (14) has a unique solution (X", Y, Z""") and u(t, x) = Y is the unique
classical (i.e. C'?) solution to the following semilinear PDE

du(t, x) + %a(r, 0)282u(t, x) + e, X)deult, x) + £ (1, x, u(t, x), o (1, X)dxu(t, x)) = 0

u(T, x) = g(x)

(15)

We cannot directly apply Theorem 1 to our FBSDE because B(t, s, v, z) is not
Lipschitz continuous in s because of the hedging term. But, since the hedging term
is linear in Z, we can move it from the drift of the backward equation to the drift of
the forward one. More precisely consider the following:

dst* = nSHdt +ot,SIdW, q<t<T
Sq=5, 0<t=<g

AV = = [ + 6, = V" + [V (e = 1) — e V") dr + ZdW, - (16)

B (1,57, V")
Vit =@ (ST).

Indeed, one can check that the assumptions of Theorem 1 are satisfied for this
equation:

Theorem 2 If the rates A;, f;, ¢, h,, 1, are bounded, then |B'(t,s,v) — B’
t, s, V) <K(s—s|+|v—V])and|B'(t,0,0)| + ®(0) < K. Henceifo(t,s)isa
positive C? function with bounded derivatives, then the assumptions of Theorem 1 are
satisfied and so Eq.(16) has a unique solution, and moreover V"* = u(t, s) € C"?
and satisfies the following semilinear PDE:
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1
du(t, ) + 50 (t,9)*97u(t, $) + hisdsu(t, s) + B'(t, 5, u(t, 5)) = 0 an

u(T,s) = d(s)
Proof We start by rewriting the term
B'(t,s,v) = m(s) + 0,(v) + (fi(ety — 1) — A — cra)v.

Since the sum of two Lipschitz functions is itself a Lipschitz function we can restrict
ourselves to analyzing the summands that appear in the previous formula. The term
7; is Lipschitz continuous in s by assumption. The 6 term and the (f;(o; — 1) — A, —
c0;)v term are continuous and piece-wise linear, hence Lipschitz continuous and
this concludes the proof.

Note that the S-dynamics in (16) has the repo rate 4 as drift. Since in general &
will depend on the future values of the deal, this is a source of nonlinearity and is at
times represented informally with an expected value E" or a pricing measure Q" see
for example [5] and the related discussion on operational implications for the case
h=f.

We now show that a solution to Eq. (13) can be obtained by means of the classical
solution to the PDE (17). We start considering the following forward equation which
is known to have a unique solution under our assumptions about o (¢, ).

dS{ = r[S[dt + G(t, S[)dW[ S() = S. (18)

We define V; = u(t, S;) and Z, = o (¢, S;)o,u(t, S;). By Theorem2 we know that
u(t, s) € C"2 and by applying Ito’s formula and (17) we obtain:

th = du(t, St)
1
= (3,u(t, Sp) + reS;dsu(t, Sp) + Ea(r, S)%02u(t, s,)) dr + o (t, S)dsu(t, Sp)dW;
= ((r, — h[)S}BSM([, S[) — B/(t, S[, M(t, S[))) df + U(t, S,)asu(t, St)dW[

= ((Vt - ht)Sti = (S) — 0, (V) — (filar — 1) — &y — Ctaz)Vt)) dt + Z;dW;
o(t,Sy)

Hence we found the following:

Theorem 3 (Solution to the Valuation Equation) Let S; be the solution to Eq.(18)
and u(t, s) the classical solution to Eq.(17). Then the process (S;, u(t, S;), o (t, S;)
osu(t, S;)) is the unique solution to Eq.(13).

Proof From the reasoning above we found that (S;, u(t, S;), o (¢, S;)dsu(t, Sy)) solves
Eq. (13). Finally from the seminal result of [14] we know that if there exist K > 0
and p > % such that:

o |u(t,x) —p(t, X))+ ot x)—o(t,x)] <Klx—x|
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o [, x)|+lo(t,x)| <K+ |x|)
o [f(t,x,y,2) —f(t,x, ¥, ) <K(y—Y|+z—21
o g+ |f(2,x,0,0)| < K+ |x|?)

then the FBSDE (14) has a unique solution. Since we have to check the Lipschitz
continuity just for y and z we can verify that Eq. (13) satisfies the above-mentioned
assumptions and hence has a unique solution.

Remark 4 Since we proved that V, = u(t, S;) with u(t, s) € C"2, the reasoning we
used, when saying thatH, = S,a 5 represented choosing a delta- hedge itisactually
more than a heuristic argument.

Moreover, since (17) does not depend on the risk-free rate r; so we can state the
following:

Theorem 4 (Invariance Theorem) If we are under the assumptions at the beginning
of Sect. 4 and we assume that we are backing our deal with a delta hedging strategy,
then the price V, can be calculated via the semilinear PDE (17) and does not depend
on the risk-free rate r(t).

This invariance result shows that even when starting from a risk-neutral valuation
theory, the risk-free rate disappears from the nonlinear valuation equations. A discus-
sion on consequences of nonlinearity and invariance on valuation in general, on the
operational procedures of a bank, on the legitimacy of fully charging the nonlinear
value to a client, and on the related dangers of overlapping valuation adjustments is
presented elsewhere, see for example [3, 5] and references therein.
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