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Abstract The intensity of a default time is obtainedby assuming that the default indi-
cator process has an absolutely continuous compensator. Here we drop the assump-
tion of absolute continuity with respect to the Lebesgue measure and only assume
that the compensator is absolutely continuous with respect to a general σ-finite mea-
sure. This allows for example to incorporate the Merton-model in the generalized
intensity-based framework. We propose a class of generalized Merton models and
study absence of arbitrage by a suitable modification of the forward rate approach of
Heath–Jarrow–Morton (1992). Finally, we study affine term structure models which
fit in this class. They exhibit stochastic discontinuities in contrast to the affinemodels
previously studied in the literature.

Keywords Credit risk · HJM · Forward-rate · Structural approach · Reduced-form
approach · Stochastic discontinuities

1 Introduction

The two most common approaches to credit risk modeling are the structural
approach, pioneered in the seminal work of Merton [23], and the reduced-form
approach which can be traced back to early works of Jarrow, Lando, and Turnbull
[18, 22] and to [1].

Default of a company happens when the company is not able to meet its oblig-
ations. In many cases the debt structure of a company is known to the public, such
that default happens with positive probability at times which are known a priori.
This, however, is excluded in the intensity-based framework and it is the purpose of
this article to put forward a generalization which allows to incorporate such effects.
Examples in the literature are, e.g., structural models like [13, 14, 23]. The recently
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missed coupon payment by Argentina is an example for such a credit event as well
as the default of Greece on the 1st of July 2015.1

It is a remarkable observation of [2] that it is possible to extend the reduced-form
approach beyond the class of intensity-based models. The authors study a class of
first-passage timemodels under a filtration generated by aBrownianmotion and show
its use for pricing and modeling credit risky bonds. Our goal is to start with even
weaker assumptions on the default time and to allow for jumps in the compensator
of the default time at deterministic times. From this general viewpoint it turns out,
surprisingly, that previously used HJM approaches lead to arbitrage: the whole term
structure is absolutely continuous and cannot compensate for points in time bearing a
positive default probability. We propose a suitable extension with an additional term
allowing for discontinuities in the term structure at certain random times and derive
precise drift conditions for an appropriate no-arbitrage condition. The related article
[12] only allows for the special case of finitely many risky times, an assumption
which is dropped in this article.

The structure of this article is as follows: in Sect. 2, we introduce the general
setting and study drift conditions in an extended HJM-framework which guarantee
absence of arbitrage in the bond market. In Sect. 3 we study a class of affine models
which are stochastically discontinuous. Section4 concludes.

2 A General Account on Credit Risky Bond Markets

Consider a filtered probability space (Ω,A ,G, P)with a filtrationG = (Gt )t≥0 (the
general filtration) satisfying the usual conditions, i.e. it is right-continuous and G0

contains the P-null sets N0 ofA . Throughout, the probability measure P denotes the
objective measure. As we use tools from stochastic analysis, all appearing filtrations
shall satisfy the usual conditions. We follow the notation from [17] and refer to this
work for details on stochastic processes which are not laid out here.

The filtration G contains all available information in the market. The default of a
company is public information and we therefore assume that the default time τ is a
G-stopping time. We denote the default indicator process H by

Ht = 1{t≥τ }, t ≥ 0,

such that Ht = 1�τ ,∞�(t) is a right-continuous, increasing process. We will also
make use of the survival process 1 − H = 1�0,τ�. The following remark recalls the
essentials of the well-known intensity-based approach.

1Argentina’smissed couponpayment on$29billion debtwas voted a credit event by the International
Swaps and Derivatives Association, see the announcements in [16, 24]. Regarding the failure of
1.5 Billion EUR of Greece on a scheduled debt repayment to the International Monetary fund, see
e.g. [9].
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Remark 1 (The intensity-based approach) The intensity-based approach consists
of two steps: first, denote by H = (Ht )t≥0 the filtration generated by the default
indicator,Ht = σ(Hs : 0 ≤ s ≤ t) ∨ N0, and assume that there exists a sub-filtration
F of G, i.e. Ft ⊂ Gt holds for all t ≥ 0 such that

Gt = Ft ∨ Ht , t ≥ 0. (1)

Viewed from this perspective, G is obtained from the default information H by a
progressive enlargement2 with the filtration F. This assumption opens the area for
the largely developed field of enlargements of filtration with a lot of powerful and
quite general results.

Second, the following key assumption specifies the default intensity: assume that
there is an F-progressive process λ, such that

P(τ > t |Ft ) = exp
(

−
∫ t

0
λsds

)
, t ≥ 0. (2)

It is immediate that the inclusionFt ⊂ Gt is strict under existenceof an intensity, i.e. τ
is not an F-stopping time. Arbitrage-free pricing can be achieved via the following
result: Let Y be a non-negative random variable. Then, for all t ≥ 0,

E[1{τ>t}Y |Gt ] = 1{τ>t}e
∫ t
0 λs ds E[1{τ>t}Y |Ft ].

Of course, this result holds also when a pricing measure Q is used instead of P . For
further literature and details we refer for example to [11], Chap. 12, and to [3].

2.1 The Generalized Intensity-Based Framework

The default indicator process H is a bounded, cádlág, and increasing process, hence
a submartingale of class (D), that is, the family (XT ) over all stopping times T is
uniformly integrable. By the Doob–Meyer decomposition,3 the process

Mt = Ht − Λt , t ≥ 0 (3)

is a true martingale where Λ denotes the dual F-predictable projection, also called
compensator, of H . As 1 is an absorbing state, Λt = Λt∧τ . To keep the arising
technical difficulties at a minimum, we assume that there is an increasing process A
such that

2Note that hereG is right-continuous and P-complete by assumptionwhich is a priori not guaranteed
by (1). One can, however, use the right-continuous extension and we refer to [15] for a precise
treatment and for a guide to the related literature.
3See [20], Theorem 1.4.10.
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Λt =
∫ t∧τ

0
λsd A(s), t ≥ 0, (4)

with a non-negative and predictable process λ. The process λ is called generalized
intensity and we refer to Chap.VIII.4 of [5] for a more detailed treatment of general-
ized intensities (or, equivalently, dual predictable projections) in the context of point
processes.

Note thatwithΔM ≤ 1wehave thatΔΛ = λsΔA(s) ≤ 1.WheneverλsΔA(s) >

0, there is a positive probability that the company defaults at time s. We call such
times risky times, i.e. predictable times having a positive probability of a default
occurring right at that time. Note that under our assumption (4), all risky times are
deterministic. The relationship between ΔΛ(s) and the default probability at time s
will be clarified in Example 3.

2.2 An Extension of the HJM Approach

A credit risky bond with maturity T is a contingent claim promising to pay one unit
of currency at T . The price of the bond with maturity T at time t ≤ T is denoted
by P(t, T ). If no default occurred prior to or at T we have that P(T, T ) = 1. We
will consider zero recovery, i.e. the bond loses its total value at default, such that
P(t, T ) = 0 on {t ≥ τ }. The family of stochastic processes {(P(t, T )0≤t≤T ), T ≥ 0}
describes the evolution of the term structure T �→ P(., T ) over time.

Besides the bonds there is a numéraire X0, which is a strictly positive, adapted
process. We make the weak assumption that log X0 is absolutely continuous,
i.e. X0

t = exp(
∫ t
0 rsds) with a progressively measurable process r , called the short

rate. For practical applications one would use the overnight index swap (OIS) rate
for constructing such a numéraire.

The aim of the following is to extend the HJM approach in an appropriate way
to the generalized intensity-based framework in order to obtain arbitrage-free bond
prices. First approaches in this direction were [7, 25] and a rich source of literature
is again [3]. Absence of arbitrage in such an infinite dimensional market can be
described in terms of no asymptotic free lunch (NAFL) or the more economically
meaningful no asymptotic free lunch with vanishing risk, see [6, 21].

Consider a pricing measure Q∗ ∼ P . Our intention is to find conditions which
render Q∗ an equivalent local martingale measure. In the following, only occasion-
ally the measure P will be used, such that from now on, all appearing terms (like
martingales, almost sure properties, etc.) are to be considered with respect to Q∗.

To ensure that the subsequent analysis is meaningful, we make the following
technical assumption.

Assumption 2.1 The generalized default intensity λ is non-negative, predictable,
and A-integrable on [0, T ∗]:
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∫ T ∗

0
λsd A(s) < ∞, Q∗-a.s.

Moreover, A has vanishing singular part, i.e.

A(t) = t +
∑
0<s≤t

ΔA(s). (5)

The representation (5) of A is without loss of generality: indeed, if the continuous
part Ac is absolutely continuous, i.e. Ac(t) = ∫ t

0 a(s)ds, replacingλs byλsa(s) gives
the compensator of H with respect to Ã whose continuous part is t .

Next, we aim at building an arbitrage-free framework for bond prices. In the
generalized intensity-based framework, the (HJM) approach does allow for arbitrage
opportunities at risky times. We therefore consider the following generalization:
consider a σ-finite (deterministic) measure ν. We could be general on ν, allowing
for an absolutely continuous, a singular continuous, and a pure-jump part. However,
for simplicity, we leave the singular continuous part aside and assume that

ν = νac + νd

where νac(ds) = ds and νd distributes mass only to points, i.e. νd(A) = ∑
i≥1 wi

δui (A), for 0 < u1 < u2 < · · · and positive weights wi > 0, i ≥ 1; here δu denotes
the Dirac measure at u. Moreover, we assume that defaultable bond prices are given
by

P(t, T ) = 1{τ>t} exp
(

−
∫ T

t
f (t, u)ν(du)

)

= 1{τ>t} exp
(

−
∫ T

t
f (t, u)du −

∑
i≥1

1{ui ∈(t,T ]}wi f (t, ui )

)
, 0 ≤ t ≤ T ≤ T ∗.

(6)

The sum in the last line gives the extension over the (HJM) approach which allows
us to deal with risky times in an arbitrage-free way.

The family of processes ( f (t, T ))0≤t≤T for T ∈ [0, T ∗] are assumed to be Itô
processes satisfying

f (t, T ) = f (0, T ) +
∫ t

0
a(s, T )ds +

∫ t

0
b(s, T ) · dWs (7)

with an n-dimensional Q∗-Brownian motion W .
Denote byB the Borel σ-field over R.
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Assumption 2.2 We require the following technical assumptions:

(i) the initial forward curve is measurable, and integrable on [0, T ∗]:
∫ T ∗

0
| f (0, u)| < ∞, Q∗-a.s.,

(ii) the drift parameter a(ω, s, t) is R-valued O ⊗ B-measurable and integrable
on [0, T ∗]: ∫ T ∗

0

∫ T ∗

0
|a(s, u)|ds ν(du) < ∞, Q∗-a.s.,

(iii) the volatility parameter b(ω, s, t) is Rn-valued, O ⊗ B-measurable, and

sup
s,t≤T ∗

‖ b(s, t) ‖< ∞, Q∗-a.s.

(iv) it holds that
0 ≤ λ(ui )ΔA(ui ) < wi , i ≥ 1.

Set

ā(t, T ) =
∫ T

t
a(t, u)ν(du),

b̄(t, T ) =
∫ T

t
b(t, u)ν(du),

H ′(t) =
∫ t

0
λsds −

∑
ui ≤t

log
(wi − λui ΔA(ui )

wi

)
.

(8)

The following proposition gives the desired drift condition in the generalizedMerton
models.

Theorem 1 Assume that Assumptions 2.1 and 2.2 hold. Then Q∗ is an ELMM if and
only if the following conditions hold: {s : ΔA(s) �= 0} ⊂ {u1, u2, . . . }, and

∫ t

0
f (s, s)ν(ds) =

∫ t

0
rsds + H ′(t), (9)

ā(t, T ) = 1

2
‖ b̄(t, T ) ‖2, (10)

for 0 ≤ t ≤ T ≤ T ∗ d Q∗ ⊗ dt-almost surely on {t < τ }.
The first condition, (9), can be split in the continuous and pure-jump part, such

that (9) is equivalent to
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f (t, t) = rs + λs

f (t, ui ) = log
wi

wi − λ(ui )ΔA(ui )
≥ 0.

The second relation states explicitly the connection of the forward rate at a risky time
ui to the probability Q∗(τ = ui |Fui −), given that τ ≥ ui , of course. It simplifies
moreover, if ΔA(ui ) = wi to

f (t, ui ) = − log(1 − λ(ui )). (11)

For the proof we first provide the canonical decomposition of

J (t, T ) :=
∫ T

t
f (t, u)ν(du), 0 ≤ t ≤ T .

Lemma 1 Assume that Assumption 2.2 holds. Then, for each T ∈ [0, T ∗] the process
(J (t, T ))0≤t≤T is a special semimartingale and

J (t, T ) =
∫ T

0
f (0, u)ν(du) +

∫ t

0
ā(u, T )du +

∫ t

0
b̄(u, T )dWu −

∫ t

0
f (u, u)ν(du).

Proof Using the stochastic Fubini Theorem (as in [26]), we obtain

J (t, T ) =
∫ T

t

(
f (0, u) +

∫ t

0
a(s, u)ds +

∫ t

0
b(s, u)dWs

)
ν(du)

=
∫ T

0
f (0, u)ν(du) +

∫ t

0

∫ T

s
a(s, u)ν(du)ds +

∫ t

0

∫ T

s
b(s, u)ν(du)dWs

−
∫ t

0
f (0, u)ν(du) −

∫ t

0

∫ t

s
a(s, u)ν(du)ds −

∫ t

0

∫ t

s
b(s, u)ν(du)dWs

=
∫ T

0
f (0, u)ν(du) +

∫ t

0
ā(s, T )ds +

∫ t

0
b̄(s, T )dWs

−
∫ t

0

(
f (0, u) −

∫ u

0
a(s, u)ds −

∫ u

0
b(s, u)dWs

)
ν(du),

and the claim follows.

Proof (Proof of Theorem 1) Set, E(t) = 1{τ>t}, and F(t, T ) = exp
(
− ∫ T

t f (t, u)

ν(du)
)
, such that P(t, T ) = E(t)F(t, T ). Integration by parts yields that

d P(t, T ) = F(t−, T )d E(t) + E(t−)d F(t, T ) + d[E, F(., T )]t =: (1′) + (2′) + (3′).
(12)
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In view of (1′), we obtain from (4), that

E(t) +
∫ t∧τ

0
λsd A(s) =: M1

t (13)

is a martingale. Regarding (2′), note that from Lemma 1 we obtain by Itô’s formula
that

d F(t, T )

F(t−, T )
=

(
f (t, t) − ā(t, T ) + 1

2
‖ b̄(t, T ) ‖2

)
dt

+
∑
i≥0

(
e f (t,t) − 1

)
wiδui (dt) + d M2

t , (14)

with a local martingale M2. For the remaining term (3′), note that

∑
0<s≤t

ΔE(s)ΔF(s, T ) =
∫ t

0
F(s−, T )(e f (s,s) − 1)ν({s})d E(s)

=
∫ t

0
F(s−, T )(e f (s,s) − 1)ν({s})d M1

s

−
∫ t∧τ

0
F(s−, T )(e f (s,s) − 1)ν({s})λsd A(s). (15)

Inserting (14) and (15) into (12) we obtain

d P(t, T )

P(t−, T )
= −λt d A(t)

+
(

f (t, t) − ā(t, T ) + 1

2
‖ b̄(t, T ) ‖2

)
dt

+
∑
i≥0

(
e f (t,t) − 1

)
wiδui (dt)

−
∫

R

ν({t})(e f (t,t) − 1)λt d A(t) + d M3
t

with a local martingale M3. We obtain a Q∗-local martingale if and only if the drift
vanishes. Next, we can separate between absolutely continuous and discrete part.
The absolutely continuous part yields (10) and f (t, t) = rt + λt d Q∗ ⊗ dt-almost
surely. It remains to compute the discontinuous part, which is given by

∑
i :ui ≤t

P(ui−, T )(e f (ui ,ui ) − 1)wi −
∑
0<s≤t

P(s−, T )e f (s,s)λsΔA(s),
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for 0 ≤ t ≤ T ≤ T ∗. This yields {s : ΔA(s) �= 0} ⊂ {u1, u2, . . . }. The discontinu-
ous part vanishes if and only if

1{ui ≤T ∗∧τ }e− f (ui ,ui )wi =1{ui ≤T ∗∧τ }
(

wi − λui ΔA(ui )
)
, i ≥ 1,

which is equivalent to

1{ui ≤T ∗∧τ } f (ui , ui ) = − 1{ui ≤T ∗∧τ } log
wi − λui ΔA(ui )

wi
, i ≥ 1.

We obtain (9) and the claim follows.

Example 1 (The Merton model) The paper [23] considers a simple capital structure
of a firm, consisting only of equity and a zero-coupon bond with maturity U > 0.
The firm defaults at U if the total market value of its assets is not sufficient to cover
the liabilities.

We are interested in setting up an arbitrage-free market for credit derivatives and
consider a market of defaultable bonds P(t, T ), 0 ≤ t ≤ T ≤ T ∗ with 0 < U ≤ T ∗
as basis for more complex derivatives. In a stylized form the Merton model can be
represented by aBrownianmotion W denoting the normalized logarithm of the firm’s
assets, a constant K > 0 and the default time

τ =
{

U if WU ≤ K

∞ otherwise.

Assume for simplicity a constant interest rate r and let F be the filtration generated
by W . Then P(t, T ) = e−r(T −t) whenever T < U because these bonds do not carry
default risk. On the other hand, for t < U ≤ T ,

P(t, T ) = e−r(T −t)E∗[1{τ>T }|Ft ] = e−r(T −t)E∗[1{τ=∞}|Ft ] = e−r(T −t)Φ

(
Wt − K√

U − t

)
,

where Φ denotes the cumulative distribution function of a standard normal random
variable and E∗ denotes the expectation with respect to Q∗. For t → U we recover
P(U, U ) = 1{τ=∞}. The derivation of representation (6)withν(du) := du + δU (du)

is straightforward. A simple calculation with

P(t, T ) = 1{τ>t} exp
(

−
∫ T

t
f (t, u)du − f (t, U )1{t<U≤T }

)
(16)

yields f (t, T ) = r for T �= U and

f (t, U ) = − logΦ

(
Wt − K√

U − t

)
.
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By Itô’s formula we obtain

b(t, U ) = −
ϕ

(
Wt −K√

U−t

)

Φ

(
Wt −K√

U−t

) (U − t)−1/2,

and indeed, a(t, U ) = 1
2b2(t, U ). Note that the conditions for Proposition1 hold

and, the market consisting of the bonds P(t, T ) satisfies NAFL, as expected. More
flexible models of arbitrage-free bond prices can be obtained if the market filtration
F is allowed to be more general, as we show in Sect. 3 on affine generalized Merton
models.

Example 2 (An extension of the Black–Cox model) The model suggested in [4] uses
a first-passage time approach to model credit risk. Default happens at the first time,
when the firm value falls below a pre-specified boundary, the default boundary. We
consider a stylized version of this approach and continue the Example1. Extending
the original approach,we include a zero-coupon bondwithmaturityU . The reduction
of the firm value atU is equivalent to considering a default boundary with an upward
jump at that time.Hence,we consider aBrownianmotionW and the default boundary

D(t) = D(0) + K1{U≥t}, t ≥ 0,

with D(0) < 0, and let default be the first time when W hits D, i.e.

τ = inf{t ≥ 0 : Wt ≤ D(t)}
with the usual convention that inf ∅ = ∞. The following lemmacomputes the default
probability in this setting and the forward rates are directly obtained from this result
together with (16). The filtration G = F is given by the natural filtration of the
Brownian motion W after completion. Denote the random sets

Δ1 :=
{
(x, y) ∈ R

2 : x
√

T − U ≤ D(U ) −
(

y
√

U − t + Wt

)
, y

√
U − t + Wt > D(0)

}

Δ2 :=
{
(x, y) ∈ R

2 : x
√

T − U ≤ D(U ) −
(

y
√

U − t + 2D(0) − Wt

)
,

y
√

U − t + D(0) − Wt > 0
}

.

Lemma 2 Let D(0) < 0, U > 0 and D(U ) ≥ D(0). For 0 ≤ t < U, it holds on
{τ > t}, that

P(τ > T |Ft ) = 1 − 2Φ

(
D(0) − Wt√

T − t

)
− 1{T ≥U }2(Φ2(Δ1) − Φ2(Δ2)), (17)

where Φ2 is the distribution of a two-dimensional standard normal distribution and
the sets Δt = Δt (D), t ≥ U are given by
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Δt =
{
(x, y) ∈ R

2 : x
√

T − U + y
√

U ≤ −D(U ),
}

.

For t ≥ U it holds on {τ > t}, that

P(τ > T |Ft ) = 1 − 2Φ

(
D(U ) − Wt√

T − t

)
.

Proof The first part of (17) where T < U follows directly from the reflection prin-
ciple and the property that W has independent and stationary increments. Next,
consider 0 ≤ t < U ≤ T . Then, on {WU > D(U )},

P( inf[U,T ] W > D(U )|FU ) = 1 − 2Φ

(
D(U ) − WU√

T − U

)
. (18)

Moreover, on {Wt > D(0)} it holds for x > D(0) that

P( inf[0,U ] W > D(0), WU > x |Ft ) = P(WU > x |Ft ) − P(WU < x, inf[0,U ] W ≤ D(0)|Ft )

= Φ

(
Wt − x√

U − t

)
− Φ

(
2D(0) − x − Wt√

U − t

)
.

Hence, E[g(WU )1{inf [0,U ] W>D(0)}|Ft ] = 1{inf [0,t] W>D(0)}
∫ ∞

D(0) g(x) ft (x)dx with den-
sity

ft (x) = 1{x>D(0)}
1√

U − t

[
φ

(
Wt − x√

U − t

)
− φ

(
2D(0) − x − Wt√

U − t

)]
.

Together with (18) this yields on {inf [0,t] W > D(0)}

P( inf[0,T ](W − D) > 0|Ft ) =
∫ ∞

D(0)

[
1 − 2Φ

(
D(U ) − x√

T − U

)]
ft (x)dx

= P( inf[t,T ] W > D(0)|Ft ) − 2
∫ ∞

D(0)
Φ

(
D(U ) − x√

T − U

)
ft (x)dx .

It remains to compute the integral. Regarding the first part, letting ξ and η be inde-
pendent and standard normal, we obtain that

∫ ∞

D(0)
Φ

(
D(U ) − x√

T − U

)
1√

U − t
φ
( x − Wt√

U − t

)
dx

= Pt

(√
T − Uξ ≤ D(U ) − (

√
U − tη + Wt ),

√
U − tη + Wt > D(0)

)

= Φ2(Δ1),
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where we abbreviate Pt (·) = P(·|Ft ). In a similar way,

∫ ∞
D(0)

Φ

(
D(U ) − x√

T − U

)
1√

U − t
φ
( x − (2D(0) − Wt )√

U − t

)
dx

= Pt

(√
T − Uξ ≤ D(U ) − (

√
U − tη + 2D(0) − Wt ),

√
U − tη + D(0) − Wt > 0

)

= Φ2(Δ2)

and we conclude.

3 Affine Models in the Generalized
Intensity-Based Framework

Affine processes are a well-known tool in the financial literature and one reason for
this is their analytical tractability. In this section we closely follow [12] and shortly
state the appropriate affine models which fit the generalized intensity framework.
For proofs, we refer the reader to this paper.

The main point is that affine processes in the literature are assumed to be sto-
chastically continuous (see [8, 10]). Due to the discontinuities introduced in the
generalized intensity-based framework, we propose to consider piecewise continu-
ous affine processes.

Example 3 Consider a non-negative integrable function λ, a constant λ′ ≥ 0 and a
deterministic time u > 0. Set

K (t) =
∫ t

0
λ(s)ds + 1{t≥u}κ, t ≥ 0.

Let the default time τ be given by τ = inf{t ≥ 0 : Kt ≥ ζ} with a standard
exponential-random variable ζ. Then P(τ = u) = 1 − e−κ =: λ′. Considering
ν(ds) = ds + δu(ds) with u1 = u and w1 = 1, we are in the setup of the previous
section. The drift condition (9) holds, if

f (u, u) = − log(1 − λ′) = κ.

Note, however, that K is not the compensator of H . Indeed, the compensator of H
equals Λt = ∫ t∧τ

0 λ(s)ds + 1{t≥u}λ′, see [19] for general results in this direction.

The purpose of this section is to give a suitable extension of the above example
involving affine processes. Recall that we consider a σ-finite measure

ν(du) = du +
∑
i≥1

wiδui (du),
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as well as A(u) = u + ∑
i≥1 1{u≥ui }. The idea is to consider an affine process X and

study arbitrage-free doubly stochastic term structure models where the compensator
Λ of the default indicator process H = 1{·≤τ } is given by

Λt =
∫ t

0

(
φ0(s) + ψ0(s)

� · Xs

)
ds +

∑
i≥1

1{t≥ui }
(
1 − e−φi −ψ�

i ·Xui

)
. (19)

Note that by continuity of X , Λt (ω) < ∞ for almost all ω. To ensure that Λ is non-
decreasing we will require that φ0(s) + ψ0(s)� · Xs ≥ 0 for all s ≥ 0 and φi + ψ�

i ·
Xui ≥ 0 for all i ≥ 1.

Consider a state space in canonical form X = R
m
≥0 × R

n for integers m, n ≥ 0
with m + n = d and a d-dimensional Brownian motion W . Let μ and σ be defined
onX by

μ(x) = μ0 +
d∑

i=1

xiμi , (20)

1

2
σ(x)�σ(x) = σ0 +

d∑
i=1

xiσi , (21)

where μ0,μi ∈ R
d , σ0,σi ∈ R

d×d , for all i ∈ {1, . . . , d}. We assume that the para-
meters μi , σi , i = 0, . . . , d are admissible in the sense of Theorem 10.2 in [11].
Then the continuous, unique strong solution of the stochastic differential equation

d Xt = μ(Xt )dt + σ(Xt )dWt , X0 = x, (22)

is an affine process X on the state space X , see Chap.10 in [11] for a detailed
exposition.

We call a bond-price model affine if there exist functions A : R≥0 × R≥0 → R,
B : R≥0 × R≥0 → R

d such that

P(t, T ) = 1{τ>t}e−A(t,T )−B(t,T )�·Xt , (23)

for 0 ≤ t ≤ T ≤ T ∗.We assume that A(., T ) and B(., T ) are right-continuous.More-
over, we assume that t �→ A(t, .) and t �→ B(t, .) are differentiable from the right
and denote by ∂+

t the right derivative. For the convenience of the reader we state
the following proposition giving sufficient conditions for absence of arbitrage in an
affine generalized intensity-based setting. It extends [12] where only finitely many
risky times were treated.

Proposition 1 Assume thatφ0 : R≥0 → R,ψ0 : R≥0 → R
d are continuous,ψ0(s) +

ψ0(s)� · x ≥ 0 for all s ≥ 0 and x ∈ X and the constants φi ∈ R and ψi ∈ R
d , i ≥ 1

satisfy φi + ψ�
i · x ≥ 0 for all 1 ≤ i ≤ n and x ∈ X as well as

∑
i≥1 |wi |(|φi | +

|ψi,1| + · · · + |ψi,d |) < ∞. Moreover, let the functions A : R≥0 × R≥0 → R and
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B : R≥0 × R≥0 → R
d be the unique solutions of

A(T, T ) = 0

A(ui , T ) = A(ui−, T ) − φi wi

−∂+
t A(t, T ) = φ0(t) + μ�

0 · B(t, T ) − B(t, T )� · σ0 · B(t, T ),

(24)

and

B(T, T ) = 0

Bk(ui , T ) = Bk(ui−, T ) − ψi,kwi

−∂+
t Bk(t, T ) = ψ0,k(t) + μ�

k · B(t, T ) − B(t, T )� · σk · B(t, T ),

(25)

for 0 ≤ t ≤ T . Then, the doubly-stochastic affine model given by (19) and (23)
satisfies NAFL.

Proof By construction,

A(t, T ) =
∫ T

t
a′(t, u)du +

∑
i :ui ∈(t,T ]

φi wi

B(t, T ) =
∫ T

t
b′(t, u)du +

∑
i :ui ∈(t,T ]

ψi wi

with suitable functions a′ and b′ and a′(t, t) = φ0(t) as well as b′(t, t) = ψ0(t). A
comparison of (23) with (6) yields the following: on the one hand, for T = ui ∈ U ,
we obtain f (t, ui ) = φi + ψ�

i · Xt . Hence, the coefficients a(t, T ) and b(t, T ) in (7)
for T = ui ∈ U compute to a(t, ui ) = ψ�

i · μ(Xt ) and b(t, ui ) = ψ�
i · σ(Xt).

On the other hand, for T /∈ U we obtain that f (t, T ) = a′(t, T ) + b′(t, T )� · Xt .
Then, the coefficients a(t, T ) and b(t, T ) can be computed as follows: applying Itô’s
formula to f (t, T ) and comparing with (7) yields that

a(t, T ) = ∂t a
′(t, T ) + ∂t b

′(t, T )� · Xt + b′(t, T )� · μ(Xt )

b(t, T ) = b′(t, T )� · σ(Xt ).
(26)

Set ā′(t, T ) = ∫ T
t a′(t, u)du and b̄′(t, T ) = ∫ T

t b′(t, u)du and note that,

∫ T

t
∂t a

′(t, u)du = ∂t ā
′(t, T ) + a′(t, t).

As ∂+
t A(t, T ) = ∂t ā′(t, T ), and ∂+

t B(t, T ) = ∂t b̄′(t, T ), we obtain from (26) that
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ā(t, T ) =
∫ T

t
a(t, u)ν(du) =

∫ T

t
a(t, u)du +

∑
ui ∈(t,T ]

wiψ
�
i · μ(Xt )

= ∂+
t A(t, T ) + a′(t, t) + (

∂+
t B(t, T ) + b′(t, t)

)� · Xt + B(t, T )� · μ(Xt ),

b̄(t, T ) =
∫ T

t
b(t, u)ν(du) =

∫ T

t
b(t, u)du +

∑
ui ∈(t,T ]

wiψ
�
i · σ(Xt )

= B(t, T )� · σ(Xt )

for 0 ≤ t ≤ T ≤ T ∗. We now show that under our assumptions, the drift conditions
(9) and (10) hold: Observe that, by Eqs. (24), (25), and the affine specification (20),
and (21), the drift condition (10) holds. Moreover, from (11),

ΔH ′(ui ) = φi + ψ�
i · Xui

and λs = φ0(s) + ψ0(s)� · Xs by (19). We recover ΔΛui = 1 − exp(−φi − ψ�
i ·

Xui ) taking values in [0, 1) by assumption. Hence, (9) holds and the claim follows.

Example 4 In the one-dimensional case we consider X , given as solution of

d Xt = (μ0 + μ1Xt )dt + σ
√

Xt dWt , t ≥ 0.

Consider only one risky time u1 = 1 and let φ0 = φ1 = 0, ψ0 = 1, such that

Λ =
∫ t

0
Xsds + 1{u≥1}(1 − e−ψ1X1).

Hence the probability of having no default at time 1 just prior to 1 is given by e−ψ1X1 ,
compare Example 3.

An arbitrage-free model can be obtained by choosing A and B according to
Proposition 1 which can be immediately achieved using Lemma 10.12 from [11] (see

in particular Sect. 10.3.2.2 on the CIR short-rate model): denote θ =
√

μ2
1 + 2σ2 and

L1(t) = 2(eθt − 1),

L2(t) = θ(eθt + 1) + μ1(e
θt − 1),

L3(t) = θ(eθt + 1) − μ1(e
θt − 1),

L4(t) = σ2(eθt − 1).

Then

A0(s) = 2μ0

σ2
log

(
2θe

(σ−μ1)t
2

L3(t)

)
, B0(s) = − L1(t)

L3(t)
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are the unique solutions of the Riccati equations B ′
0 = σ2B2

0 − μ1B0 with boundary
condition B0(0) = 0 and A′

0 = −μ0B0 with boundary condition A0(0) = 0.Note that
with A(t, T ) = A0(T − t) and B(t, T ) = B0(T − t) for 0 ≤ t ≤ T < 1, the condi-
tions of Proposition 1 hold. Similarly, for 1 ≤ t ≤ T , choosing A(t, T ) = A0(T − t)
and B(t, T ) = B0(T − t) implies again the validity of (24) and (25). On the other
hand, for 0 ≤ t < 1 and T ≥ 1 we set u(T ) = B(1, T ) + ψ1 = B0(T − 1) + ψ1,
according to (25), and let

A(t, T ) = 2μ0

σ2
log

(
2θe

(σ−μ1)(1−t)
2

L3(1 − t) − L4(1 − t)u(T )

)

B(t, T ) = − L1(1 − t) − L2(1 − t)u(T )

L3(1 − t) − L4(1 − t)u(T )
.

It is easy to see that (24) and (25) are also satisfied in this case, in particular
ΔA(1, T ) = −φ1 = 0 and ΔB(1, T ) = −ψ1. Note that, while X is continuous, the
bond prices are not even stochastically continuous because they jump almost surely
at u1 = 1. We conclude by Proposition 1 that this affine model is arbitrage-free. �

4 Conclusion

In this article we studied a new class of dynamic term structure models with credit
risk where the compensator of the default time may jump at predictable times. This
framework was called generalized intensity-based framework. It extends existing
theory and allows to include Merton’s model, in a reduced-form model for pricing
credit derivatives. Finally, we studied a class of highly tractable affine models which
are only piecewise stochastically continuous.
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