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Abstract The recent financial crisis has led to so-called multi-curve models for the
term structure. Here we study a multi-curve extension of short rate models where,
in addition to the short rate itself, we introduce short rate spreads. In particular,
we consider a Gaussian factor model where the short rate and the spreads are sec-
ond order polynomials of Gaussian factor processes. This leads to an exponentially
quadratic model class that is less well known than the exponentially affine class. In
the latter class the factors enter linearly and for positivity one considers square root
factor processes. While the square root factors in the affine class have more involved
distributions, in the quadratic class the factors remain Gaussian and this leads to
various advantages, in particular for derivative pricing. After some preliminaries on
martingale modeling in the multi-curve setup, we concentrate on pricing of linear
and optional derivatives. For linear derivatives, we exhibit an adjustment factor that
allows one to pass from pre-crisis single curve values to the corresponding post-crisis
multi-curve values.
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1 Introduction

The recent financial crisis has heavily impacted the financial market and the fixed
income markets in particular. Key features put forward by the crisis are counterparty
and liquidity/funding risk. In interest rate derivatives the underlying rates are typically
Libor/Euribor. These are determined by a panel of banks and thus reflect various risks
in the interbankmarket, in particular counterparty and liquidity risk. The standard no-
arbitrage relations between Libor rates of different maturities have broken down and
significant spreads have been observed betweenLibor rates of different tenors, aswell
as between Libor andOIS swap rates, where OIS stands for Overnight Indexed Swap.
For more details on this issue see Eqs. (5)–(7) and the paragraph following them, as
well as the paper by Bormetti et al. [1] and a corresponding version in this volume.
This has led practitioners and academics alike to construct multi-curvemodels where
future cash flows are generated through curves associated to the underlying rates
(typically the Libor, one for each tenor structure), but are discounted by another
curve.

For the pre-crisis single-curve setup various interest rate models have been pro-
posed. Some of the standard model classes are: the short rate models; the instan-
taneous forward rate models in an Heath–Jarrow–Morton (HJM) setup; the market
forward rate models (Libor market models). In this paper we consider a possible
multi-curve extension of the short rate model class that, with respect to the other
model classes, has in particular the advantage of leading more easily to a Markovian
structure. Other multi-curve extensions of short rate models have appeared in the
literature such as Kijima et al. [22], Kenyon [20], Filipović and Trolle [14], Morino
andRunggaldier [27]. The present paper considers an exponentially quadraticmodel,
whereas the models in the mentioned papers concern mainly the exponentially affine
framework, except for [22] in which the exponentially quadratic models are men-
tioned. More details on the difference between the exponentially affine and expo-
nentially quadratic short rate models will be provided below.

Inspired by a credit risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve risk-
free quantities, we shall consider, next to the short rate itself, a short rate spread to
be added to the short rate, one for each possible tenor structure. Notice that these
spreads are added from the outset.

To discuss the basic ideas in an as simple as possible way, we consider just a two-
curve model, namely with one curve for discounting and one for generating future
cash flows; in other words, we shall consider a single tenor structure. We shall thus
concentrate on the short rate rt and a single short rate spread st and, for their dynamics,
introduce a factor model. In the pre-crisis single-curve setting there are two basic
factor model classes for the short rate: the exponentially affine and the exponentially
quadratic model classes. Here we shall concentrate on the less common quadratic
class with Gaussian factors. In the exponentially affine class where, to guarantee
positivity of rates and spreads, one considers generally square root models for the
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factors, the distribution of the factors is χ2. In the exponentially quadratic class the
factors have a more convenient Gaussian distribution.

The paper is structured as follows. In the preliminary Sect. 2 we mainly dis-
cuss issues related to martingale modeling. In Sect. 3 we introduce the multi-curve
Gaussian, exponentially quadratic model class. In Sect. 4 we deal with pricing of
linear interest rate derivatives and, finally, in Sect. 5 with nonlinear/optional interest
rate derivatives.

2 Preliminaries

2.1 Discount Curve and Collateralization

In the presence of multiple curves, the choice of the curve for discounting the future
cash flows, and a related choice of the numeraire for the standard martingale measure
used for pricing, in other words, the question of absence of arbitrage, becomes non-
trivial (see e.g. the discussion inKijima andMuromachi [21]). To avoid issues of arbi-
trage, one should possibly have a common discount curve to be applied to all future
cash flows independently of the tenor. A choice, which has been widely accepted
and became practically standard, is given by theOIS-curveT �→ p(t,T) = pOIS(t,T)

that can be stripped from OIS rates, namely the fair rates in an OIS. The arguments
justifying this choice and which are typically evoked in practice, are the fact that
the majority of the traded interest rate derivatives are nowadays being collateral-
ized and the rate used for remuneration of the collateral is exactly the overnight
rate, which is the rate the OIS are based on. Moreover, the overnight rate bears
very little risk due to its short maturity and therefore can be considered relatively
risk-free. In this context we also point out that prices, corresponding to fully col-
lateralized transactions, are considered as clean prices (this terminology was first
introduced by Crépey [6] and Crépey et al. [9]). Since collateralization is by now
applied in the majority of cases, one may thus ignore counterparty and liquidity risk
between individual parties when pricing interest rate derivatives, but cannot ignore
the counterparty and liquidity risk in the interbank market as a whole. These risks
are often jointly referred to as interbank risk and they are main drivers of the multi-
curve phenomenon, as documented in the literature (see e.g. Crépey and Douady [7],
Filipović and Trolle [14], and Gallitschke et al. [15]). We shall thus consider only
clean valuation formulas, which take into account the multi-curve issue. Possible
ways to account for counterparty risk and funding issues between individual coun-
terparties in a contract are, among others, to follow a global valuation approach that
leads to nonlinear derivative valuation (see Brigo et al. [3, 4] and other references
therein, and in particular Pallavicini and Brigo [28] for a global valuation approach
applied specifically to interest ratemodeling), or to consider various valuation adjust-
ments that are generally computed on top of the clean prices (see Crépey [6]). A fully
nonlinear valuation is preferable, but is more difficult to achieve. On the other hand,
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valuation adjustments are more consolidated and also used in practice and this gives
a further justification to still look for clean prices. Concerning the explicit role of
collateral in the pricing of interest rate derivatives, we refer to the above-mentioned
paper by Pallavicini and Brigo [28].

2.2 Martingale Measures

The fundamental theorem of asset pricing links the economic principle of absence
of arbitrage with the notion of a martingale measure. As it is well known, this is a
measure, under which the traded asset prices, expressed in units of a same numeraire,
are local martingales. Models for interest rate markets are typically incomplete so
that absence of arbitrage admits many martingale measures. A common approach
in interest rate modeling is to perform martingale modeling, namely to model the
quantities of interest directly under a generic martingale measure; one has then to
perform a calibration in order to single out the specificmartingalemeasure of interest.
The modeling under a martingale measure now imposes some conditions on the
model and, in interest rate theory, a typical such condition is the Heath–Jarrow–
Morton (HJM) drift condition.

Starting from the OIS bonds, we shall first derive a suitable numeraire and then
consider as martingale measure a measure Q under which not only the OIS bonds,
but also the FRA contracts seen as basic quantities in the bond market, are local
martingales when expressed in units of the given numeraire. To this basic market
one can then add various derivatives imposing that their prices, expressed in units of
the numeraire, are local martingales under Q.

Having made the choice of the OIS curve T �→ p(t,T) as the discount curve, con-
sider the instantaneous forward rates f (t,T) := − ∂

∂T log p(t,T) and let rt = f (t, t)
be the corresponding short rate at the generic time t. Define the OIS bank account as

Bt = exp

(∫ t

0
rsds

)
(1)

and, as usual, the standard martingale measure Q as the measure, equivalent to the
physical measure P, that is associated to the bank account Bt as numeraire. Hence
the arbitrage-free prices of all assets, discounted by Bt , have to be local martingales
with respect to Q. For derivative pricing, among them also FRA pricing, it is often
more convenient to use, equivalently, the forward measure QT associated to the OIS
bond p(t,T) as numeraire. The two measures Q and QT are related by their Radon–
Nikodym density process

d QT

d Q

∣∣∣
Ft

= p(t,T)

Btp(0,T)
0 ≤ t ≤ T . (2)
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As already mentioned, we shall follow the traditional martingale modeling, whereby
the model dynamics are assigned under the martingale measure Q. This leads to
defining the OIS bond prices according to

p(t,T) = EQ

{
exp

[
−
∫ T

t
rudu

]
| Ft

}
(3)

after having specified the Q−dynamics of r.
Coming now to the FRA contracts, recall that they concern a forward rate agree-

ment, established at a time t for a future interval [T ,T + Δ], where at time T + Δ

the interest corresponding to a floating rate is received in exchange for the interest
corresponding to a fixed rate R. There exist various possible conventions concern-
ing the timing of the payments. Here we choose payment in arrears, which in this
case means at time T + Δ. Typically, the floating rate is given by the Libor rate and,
having assumed payments in arrears, we also assume that the rate is fixed at the begin-
ning of the interval of interest, here at T . Recall that for expository simplicity we
had reduced ourselves to a two-curve setup involving just a single Libor for a given
tenor Δ. The floating rate received at T + Δ is therefore the rate L(T;T ,T + Δ),
fixed at the inception time T . For a unitary notional, and using the (T + Δ)-forward
measure QT+Δ as the pricing measure, the arbitrage-free price at t ≤ T of the FRA
contract is then

PFRA(t;T ,T + Δ,R) = Δp(t,T + Δ)ET+Δ {L(T;T ,T + Δ) − R | Ft} , (4)

where ET+Δ denotes the expectation with respect to the measure QT+Δ. From this
expression it follows that the value of the fixed rate R that makes the contract fair at
time t is given by

Rt = ET+Δ {L(T;T ,T + Δ) | Ft} := L(t;T ,T + Δ) (5)

and we shall call L(t;T ,T + Δ) the forward Libor rate. Note that L(·;T ,T + Δ) is
a QT+Δ−martingale by construction.

In view of developing a model for L(T;T ,T + Δ), recall that, by absence of
arbitrage arguments, the classical discrete compounding forward rate at time t for
the future time interval [T ,T + Δ] is given by

F(t;T ,T + Δ) = 1

Δ

(
p(t,T)

p(t,T + Δ)
− 1

)
,

where p(t,T) represents here the price of a risk-free zero coupon bond. This expres-
sion can be justified also by the fact that it represents the fair fixed rate in a forward
rate agreement, where the floating rate received at T + Δ is

F(T;T ,T + Δ) = 1

Δ

(
1

p(T ,T + Δ)
− 1

)
(6)
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and we have
F(t;T ,T + Δ) = ET+Δ {F(T;T ,T + Δ) | Ft} . (7)

This makes the forward rate coherent with the risk-free bond prices, where the latter
represent the expectation of the market concerning the future value of money.

Before the financial crisis, L(T;T ,T + Δ) was assumed to be equal to F(T;T ,

T + Δ), an assumption that allowed for various simplifications in the determina-
tion of derivative prices. After the crisis L(T;T ,T + Δ) is no longer equal to
F(T;T ,T + Δ) and what one considers for F(T;T ,T + Δ) is in fact the OIS
discretely compounded rate, which is based on the OIS bonds, even though the
OIS bonds are not necessarily equal to the risk-free bonds (see Sects. 1.3.1 and
1.3.2 of Grbac and Runggaldier [18] for more details on this issue). In particular,
the Libor rate L(T;T ,T + Δ) cannot be expressed by the right-hand side of (6).
The fact that L(T;T ,T + Δ) �= F(T;T ,T + Δ) implies by (5) and (7) that also
L(t;T ,T + Δ) �= F(t;T ,T + Δ) for all t ≤ T and this leads to a Libor-OIS spread
L(t;T ,T + Δ) − F(t;T ,T + Δ).

Following some of the recent literature (see e.g. Kijima et al. [22], Crépey et al.
[8], Filipović and Trolle [14]), one possibility is now to keep the classical relationship
(6) also for L(T;T ,T + Δ) thereby replacing however the bonds p(t,T) by fictitious
risky ones p̄(t,T) that are assumed to be affected by the same factors as the Libor
rates. Such a bond can be seen as an average bond issued by a representative bank
from the Libor group and it is therefore sometimes referred to in the literature as a
Libor bond. This leads to

L(T;T ,T + Δ) = 1

Δ

(
1

p̄(T ,T + Δ)
− 1

)
. (8)

Recall that, for simplicity of exposition, we consider a single Libor for a single
tenor Δ and so also a single fictitious bond. In general, one has one Libor and one
fictitious bond for each tenor, i.e. LΔ(T;T ,T + Δ) and p̄Δ(T ,T + Δ). Note that we
shall model the bond prices p̄(t,T), for all t and T with t ≤ T , even though only
the prices p̄(T ,T + Δ), for all T , are needed in relation (8). Moreover, keeping in
mind that the bonds p̄(t,T) are fictitious, they do not have to satisfy the boundary
condition p̄(T ,T) = 1, but we still assume this condition in order to simplify the
modeling.

To derive a dynamic model for L(t;T ,T + Δ), we may now derive a dynamic
model for p̄(t,T + Δ), where we have to keep in mind that the latter is not a traded
quantity. Inspired by a credit-risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve (risk-
free) quantities, which in this case is the short rate rt , let us define then the Libor
(risky) bond prices as

p̄(t,T) = EQ

{
exp

[
−
∫ T

t
(ru + su)du

]
| Ft

}
, (9)
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with st representing the short rate spread. In case of default risk alone, st corresponds
to the hazard rate/default intensity, but here it corresponds more generally to all the
factors affecting the Libor rate, namely besides credit risk, also liquidity risk, etc.
Notice also that the spread is introduced here from the outset. Having for simplicity
considered a single tenor Δ and thus a single p̄(t,T), we shall also consider only a
single spread st . In general, however, one has a spread sΔt for each tenor Δ.

We need now a dynamical model for both rt and st and we shall define this model
directly under the martingale measure Q (martingale modeling).

3 Short Rate Model

3.1 The Model

As mentioned, we shall consider a dynamical model for rt and the single spread st
under the martingale measure Q that, in practice, has to be calibrated to the market.
For this purpose we shall consider a factor model with several factors driving rt
and st .

The two basic factor model classes for the short rate in the pre-crisis single-curve
setup, namely the exponentially affine and the exponentially quadratic model classes,
both allow for flexibility and analytical tractability and this in turn allows for closed
or semi-closed formulas for linear and optional interest rate derivatives. The former
class is usually better known than the latter, but the latter has its own advantages. In
fact, for the exponentially affine class onewould consider rt and st as given by a linear
combination of the factors and so, in order to obtain positivity, one has to consider a
square root model for the factors. On the other hand, in the Gaussian exponentially
quadratic class, one considers mean reverting Gaussian factor models, but at least
some of the factors in the linear combination for rt and st appear as a square. In this
way the distribution of the factors remains always Gaussian; in a square-root model it
is a non-central χ2−distribution. Notice also that the exponentially quadratic models
can be seen as dual to the square root exponentially affine models.

In the pre-crisis single-curve setting, the exponentially quadraticmodels have been
considered, e.g. in El Karoui et al. [12], Pelsser [29], Gombani and Runggaldier [17],
Leippold andWu [24], Chen et al. [5], and Gaspar [16]. However, since the pre-crisis
exponentially affinemodels aremore common, there have also beenmore attempts to
extend them to a post-crisis multi-curve setting (for an overview and details see e.g.
Grbac and Runggaldier [18]). A first extension of exponentially quadratic models
to a multi-curve setting can be found in Kijima et al. [22] and the present paper is
devoted to a possibly full extension.

Let us now present the model for rt and st , where we consider not only the short
rate rt itself, but also its spread st to be given by a linear combination of the factors,
where at least some of the factors appear as a square. To keep the presentation simple,
we shall consider a small number of factors and, in order to model also a possible
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correlation between rt and st , the minimal number of factors is three. It also follows
from some of the econometric literature that a small number of factors may suffice
to adequately model most situations (see also Duffee [10] and Duffie and Gârleanu
[11]).

Given three independent affine factor processes Ψ i
t , i = 1, 2, 3, having under Q

the Gaussian dynamics

dΨ i
t = −biΨ i

t dt + σi dwi
t, i = 1, 2, 3, (10)

with bi,σi > 0 and wi
t , i = 1, 2, 3, independent Q−Wiener processes, we let

{
rt = Ψ 1

t + (Ψ 2
t )2

st = κΨ 1
t + (Ψ 3

t )2
, (11)

where Ψ 1
t is the common systematic factor allowing for instantaneous correlation

between rt and st with correlation intensity κ and Ψ 2
t and Ψ 3

t are the idiosyncratic
factors. Other factors may be added to drive st , but the minimal model containing
common and idiosyncratic components requires three factors, as explained above.
The common factor is particularly important because we want to take into account
the realistic feature of non-zero correlation between rt and st in the model.

Remark 3.1 The zero mean-reversion level is here considered only for convenience
of simpler formulas, but can be easily taken to be positive, so that short rates and
spreads can become negative onlywith small probability (seeKijima andMuromachi
[21] for an alternative representation of the spreads in terms of Gaussian factors that
guarantee the spreads to remain nonnegative and still allows for correlation between
rt and st). Note, however, that given the current market situation where the observed
interest rates are very close to zero and sometimes also negative, even models with
negative mean-reversion level have been considered, as well as models allowing for
regime-switching in the mean reversion parameter.

Remark 3.2 For the short rate itself one could also consider the model rt = φt +
Ψ 1
t + (Ψ 2

t )2 where φt is a deterministic shift extension (see Brigo and Mercurio [2])
that allows for a good fit to the initial term structure in short rate models even with
constant model parameters.

In the model (11) we have included a linear term Ψ 1
t which may lead to negative

values of rates and spreads, although onlywith small probability in the case ofmodels
of the type (10) with a positive mean reversion level. The advantage of including this
linear term is more generality and flexibility in the model. Moreover, it allows to
express p̄(t,T) in terms of p(t,T) multiplied by a factor. This property will lead
to an adjustment factor by which one can express post-crisis quantities in terms of
corresponding pre-crisis quantities, see Morino and Runggaldier [27] in which this
idea has been first proposed in the context of exponentially affine short rate models
for multiple curves.
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3.2 Bond Prices (OIS and Libor Bonds)

In this subsection we derive explicit pricing formulas for the OIS bonds p(t,T) as
defined in (3) and the fictitious Libor bonds p̄(t,T) as defined in (9). Thereby, rt and
st are supposed to be given by (11) with the factor processes Ψ i

t evolving under the
standard martingale measure Q according to (10). Defining the matrices

F =
⎡
⎣−b1 0 0

0 −b2 0
0 0 −b3

⎤
⎦ , D =

⎡
⎣σ1 0 0
0 σ2 0
0 0 σ3

⎤
⎦ (12)

and considering the vector factor process Ψt := [Ψ 1
t , Ψ 2

t , Ψ 3
t ]′ as well as the mul-

tivariate Wiener process Wt := [w1
t ,w

2
t ,w

3
t ]′, where ′ denotes transposition, the

dynamics (10) can be rewritten in synthetic form as

dΨt = FΨtdt + DdWt . (13)

Using results on exponential quadratic term structures (see Gombani and
Runggaldier [17], Filipović [13]), we have

p(t,T) = EQ
{
e− ∫ T

t rudu
∣∣∣Ft

}
= EQ

{
e− ∫ T

t (Ψ 1
u +(Ψ 2

u )2)du
∣∣∣Ft

}

= exp
[
−A(t,T) − B′(t,T)Ψt − Ψ ′

t C(t,T)Ψt

]
(14)

and, setting Rt := rt + st ,

p̄(t,T) = EQ
{
e− ∫ T

t Rudu
∣∣∣Ft

}
= EQ

{
e− ∫ T

t ((1+κ)Ψ 1
u +(Ψ 2

u )2+(Ψ 3
u )2)du

∣∣∣Ft

}

= exp
[
−Ā(t,T) − B̄′(t,T)Ψt − Ψ ′

t C̄(t,T)Ψt

]
, (15)

where A(t,T), Ā(t,T), B(t,T), B̄(t,T), C(t,T) and C̄(t,T) are scalar, vector, and
matrix-valued deterministic functions to be determined.

For this purpose we recall the Heath–Jarrow–Morton (HJM) approach for the case
when p(t,T) in (14) represents the price of a risk-free zero coupon bond. The HJM
approach leads to the so-called HJM drift conditions that impose conditions on the
coefficients in (14) so that the resulting prices p(t,T) do not imply arbitrage possi-
bilities. Since the risk-free bonds are traded, the no-arbitrage condition is expressed
by requiring p(t,T)

Bt
to be a Q−martingale for Bt defined as in (1) and it is exactly this

martingality property to yield the drift condition. In our case, p(t,T) is the price of
an OIS bond that is not necessarily traded and in general does not coincide with the
price of a risk-free bond. However, whether the OIS bond is traded or not, p(t,T)

Bt
is a

Q−martingale by the very definition of p(t,T) in (14) (see the first equality in (14))
and so we can follow the same HJM approach to obtain conditions on the coefficients
in (14) also in our case.
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For what concerns, on the other hand, the coefficients in (15), recall that p̄(t,T) is
a fictitious asset that is not traded and thus is not subject to any no-arbitrage condition.
Notice, however, that by analogy to p(t,T) in (14), by its very definition given in
the first equality in (15), p̄(t,T)

B̄t
is a Q−martingale for B̄t given by B̄t := exp

∫ t
0 Rudu.

The two cases p(t,T) and p̄(t,T) can thus be treated in complete analogy provided
that we use for p̄(t,T) the numeraire B̄t .

We shall next derive from the Q−martingality of p(t,T)

Bt
and p̄(t,T)

B̄t
conditions on

the coefficients in (14) and (15) that correspond to the classical HJM drift condition
and lead thus to ODEs for these coefficients. For this purpose we shall proceed by
analogy to Sect. 2 in [17], in particular to the proof of Proposition 2.1 therein, to
which we also refer for more detail.

Introducing the “instantaneous forward rates” f (t,T) := − ∂
∂T log p(t,T) and

f̄ (t,T) := − ∂
∂T log p̄(t,T), and setting

a(t,T) := ∂

∂T
A(t,T) , b(t,T) := ∂

∂T
B(t,T) , c(t,T) := ∂

∂T
C(t,T) (16)

and analogously for ā(t,T), b̄(t,T), c̄(t,T), from (14) and (15) we obtain

f (t,T) = a(t,T) + b′(t,T)Ψt + Ψ ′
t c(t,T)Ψt, (17)

f̄ (t,T) = ā(t,T) + b̄′(t,T)Ψt + Ψ ′
t c̄(t,T)Ψt . (18)

Recalling that rt = f (t, t) and Rt = f̄ (t, t), this implies, with a(t) := a(t, t),
b(t) := b(t, t), c(t) := c(t, t) and analogously for the corresponding quantities with
a bar, that

rt = a(t) + b′(t)Ψt + Ψ ′
t c(t)Ψt (19)

and
Rt = rt + st = ā(t) + b̄′(t)Ψt + Ψ ′

t c̄(t)Ψt . (20)

Comparing (19) and (20) with (11), we obtain the following conditions where i, j =
1, 2, 3, namely

⎧⎪⎨
⎪⎩
a(t) = 0

bi(t) = 1{i=1}
cij(t) = 1{i=j=2}

⎧⎪⎨
⎪⎩
ā(t) = 0

b̄i(t) = (1 + κ)1{i=1}
c̄ij(t) = 1{i=j=2}∪{i=j=3}.

Using next the fact that

p(t,T) = exp

[
−
∫ T

t
f (t, s)ds

]
, p̄(t,T) = exp

[
−
∫ T

t
f̄ (t, s)ds

]
,
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and imposing p(t,T)

Bt
and p̄(t,T)

B̄t
to beQ−martingales, one obtains ordinary differential

equations to be satisfied by c(t,T), b(t,T), a(t,T) and analogously for the quantities
with a bar. Integrating these ODEs with respect to the second variable and recalling
(16) one obtains (for the details see the proof of Proposition 2.1 in [17])

{
Ct(t,T) + 2FC(t,T) − 2C(t,T)DDC(t,T) + c(t) = 0, C(T ,T) = 0

C̄t(t,T) + 2FC̄(t,T) − 2C̄(t,T)DDC̄(t,T) + c̄(t) = 0, C̄(T ,T) = 0
(21)

with

c(t) =
⎡
⎣0 0 0
0 1 0
0 0 0

⎤
⎦ c̄(t) =

⎡
⎣0 0 0
0 1 0
0 0 1

⎤
⎦ . (22)

The special forms ofF,D, c(t) and c̄(t) togetherwith boundary conditionsC(T ,T) =
0 and C̄(T ,T) = 0 imply that only C22, C̄22, C̄33 are non-zero and satisfy

⎧⎪⎨
⎪⎩
C22
t (t,T) − 2b2C22(t,T) − 2(σ2)2(C22(t,T))2 + 1 = 0, C22(T ,T) = 0

C̄22
t (t,T) − 2b2C̄22(t,T) − 2(σ2)2(C̄22(t,T))2 + 1 = 0, C̄22(T ,T) = 0

C̄33
t (t,T) − 2b3C̄33(t,T) − 2(σ3)2(C̄33(t,T))2 + 1 = 0, C̄33(T ,T) = 0

(23)

that can be shown to have as solution
⎧⎨
⎩
C22(t,T) = C̄22(t,T) = 2(e(T−t)h2−1)

2h2+(2b2+h2)(e(T−t)h2−1)

C̄33(t,T) = 2(e(T−t)h3−1)
2h3+(2b3+h3)(e(T−t)h3−1)

(24)

with hi = √
4(bi)2 + 8(σi)2 > 0, i = 2, 3.

Next, always by analogy to the proof of Proposition 2.1 in [17], the vectors of
coefficients B(t,T) and B̄(t,T) of the first order terms can be seen to satisfy the
following system

{
Bt(t,T) + B(t,T)F − 2B(t,T)DDC(t,T) + b(t) = 0, B(T ,T) = 0

B̄t(t,T) + B̄(t,T)F − 2B̄(t,T)DDC̄(t,T) + b̄(t) = 0, B̄(T ,T) = 0
(25)

with
b(t) = [1, 0, 0] b̄(t) = [(1 + κ), 0, 0].

Noticing similarly as above that only B1(t,T), B̄1(t,T) are non-zero, system (25)
becomes {

B1
t (t,T) − b1B1(t,T) + 1 = 0 B1(T ,T) = 0

B̄1
t (t,T) − b1B̄1(t,T) + (1 + κ) = 0 B̄1(T ,T) = 0

(26)
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leading to the explicit solution

⎧⎨
⎩
B1(t,T) = 1

b1

(
1 − e−b1(T−t)

)

B̄1(t,T) = 1+κ
b1

(
1 − e−b1(T−t)

)
= (1 + κ)B1(t,T).

(27)

Finally, A(t,T) and Ā(t,T) have to satisfy

{
At(t,T) + (σ2)2C22(t,T) − 1

2 (σ
1)2(B1(t,T))2 = 0,

Āt(t,T) + (σ2)2C̄22(t,T) + (σ3)2C̄33(t,T) − 1
2 (σ

1)2(B̄1(t,T))2 = 0
(28)

with boundary conditions A(T ,T) = 0, Ā(T ,T) = 0. The explicit expressions can
be obtained simply by integrating the above equations.

Summarizing, we have proved the following:

Proposition 3.1 Assume that the OIS short rate r and the spread s are given by
(11) with the factor processes Ψ i

t , i = 1, 2, 3, evolving according to (10) under the
standard martingale measure Q. The time-t price of the OIS bond p(t,T), as defined
in (3), is given by

p(t,T) = exp[−A(t,T) − B1(t,T)Ψ 1
t − C22(t,T)(Ψ 2

t )2], (29)

and the time-t price of the fictitious Libor bond p̄(t,T), as defined in (9), by

p̄(t, T) = exp[−Ā(t,T) − (κ + 1)B1(t,T)Ψ 1
t − C22(t,T)(Ψ 2

t )2 − C̄33(t, T)(Ψ 3
t )2]

= p(t, T)exp[−Ã(t,T) − κB1(t,T)Ψ 1
t − C̄33(t,T)(Ψ 3

t )2],
(30)

where Ã(t,T) := Ā(t,T) − A(t,T) with A(t,T) and Ā(t,T) given by (28),
B1(t,T) given by (27) and C22(t,T) and C33(t,T) given by (24).

In particular, expression (30) gives p̄(t,T) in terms of p(t,T). Based on this we
shall derive in the following section the announced adjustment factor allowing to
pass from pre-crisis quantities to the corresponding post-crisis quantities.

3.3 Forward Measure

The underlying factor model was defined in (10) under the standard martingale
measure Q. For derivative prices, which we shall determine in the following two
sections, it will be convenient to work under forward measures, for which, given the
single tenor Δ, we shall consider a generic (T + Δ)-forward measure. The density
process to change the measure from Q to QT+Δ is
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Lt := d QT+Δ

d Q

∣∣∣
Ft

= p(t,T + Δ)

p(0,T + Δ)

1

Bt
(31)

from which it follows by (29) and the martingale property of
(
p(t,T+Δ)

Bt

)
t≤T+Δ

that

dLt = Lt
(−B1(t,T + Δ)σ1dw1

t − 2C22(t,T + Δ)Ψ 2
t σ2dw2

t

)
.

This implies by Girsanov’s theorem that

⎧⎨
⎩
dw1,T+Δ

t = dw1
t + σ1B1(t,T + Δ)dt

dw2,T+Δ
t = dw2

t + 2C22(t,T + Δ)Ψ 2
t σ2dt

dw3,T+Δ
t = dw3

t

(32)

are QT+Δ−Wiener processes. From the Q−dynamics (10) we then obtain the fol-
lowing QT+Δ−dynamics for the factors

dΨ 1
t = − [

b1Ψ 1
t + (σ1)2B1(t,T + Δ)

]
dt + σ1dw1,T+Δ

t

dΨ 2
t = − [

b2Ψ 2
t + 2(σ2)2C22(t,T + Δ)Ψ 2

t

]
dt + σ2dw2,T+Δ

t

dΨ 3
t = −b3Ψ 3

t dt + σ3dw3,T+Δ
t .

(33)

Remark 3.3 While in the dynamics (10) for Ψ i
t , (i = 1, 2, 3) under Q we had for

simplicity assumed a zero mean-reversion level, under the (T + Δ)-forward mea-
sure the mean-reversion level is for Ψ 1

t now different from zero due to the measure
transformation.

Lemma 3.1 Analogously to the case when p(t,T) represents the price of a risk-free
zero coupon bond, also for p(t,T) viewed as OIS bond we have that p(t,T)

p(t,T+Δ)
is a

QT+Δ−martingale.

Proof We have seen that also for OIS bonds as defined in (3) we have that, with Bt

as in (1), the ratio p(t,T)

Bt
is a Q−martingale. From Bayes’ formula we then have

ET+Δ
{

p(T ,T)

p(T ,T+Δ)
| Ft

}
= EQ

{
1

p(0,T+Δ)
1

BT+Δ

p(T ,T)

p(T ,T+Δ)
|Ft

}

EQ
{

1
p(0,T+Δ)

1
BT+Δ

|Ft

}

= EQ
{

p(T ,T)

p(T ,T+Δ)
EQ

{
1

BT+Δ
|FT

}
|Ft

}
p(t,T+Δ)

Bt

= BtEQ
{

p(T ,T)

p(T ,T+Δ)

p(T ,T+Δ)

BT
|Ft

}
p(t,T+Δ)

= BtEQ
{

p(T ,T)

BT
|Ft

}
p(t,T+Δ)

= p(t,T)

p(t,T+Δ)
,

thus proving the statement of the lemma. �
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We recall that we denote the expectation with respect to the measure QT+Δ by
ET+Δ{·}. The dynamics in (33) lead to Gaussian distributions forΨ i

t , i = 1, 2, 3 that,
given B1(·) and C22(·), have mean and variance

ET+Δ{Ψ i
t } = ᾱi

t = ᾱi
t(b

i,σi) , VarT+Δ{Ψ i
t } = β̄i

t = β̄i
t (b

i,σi),

which can be explicitly computed. More precisely, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ1
t = e−b1t

[
Ψ 1
0 − (σ1)2

2(b1)2 e
−b1(T+Δ)(1 − e2b

1t) − (σ1)2

(b1)2 (1 − eb
1t)
]

β̄1
t = e−2b1t(e2b

1t − 1) (σ1)2

2(b1)

ᾱ2
t = e−(b2t+2(σ2)2C̃22(t,T+Δ))Ψ 2

0

β̄2
t = e−(2b2t+4(σ2)2C̃22(t,T+Δ))

∫ t
0 e

2b2s+4(σ2)2C̃22(s,T+Δ)(σ2)2ds

ᾱ3
t = e−b3tΨ 3

0

β̄3
t = e−2b3t (σ3)2

2b3 (e2b
3t − 1),

(34)

with

C̃22(t,T + Δ) = 2(2 log(2b2(e(T+Δ−t)h2 − 1) + h2(e(T+Δ−t)h2 + 1)) + t(2b2 + h2))

(2b2 + h2)(2b2 − h2)

− 2(2 log(2b2(e(T+Δ)h2 − 1) + h2(e(T+Δ)h2 + 1))

(2b2 + h2)(2b2 − h2)
(35)

and h2 = √
(2b2)2 + 8(σ2)2, and where we have assumed deterministic initial values

Ψ 1
0 , Ψ 2

0 andΨ 3
0 .For details of the above computation see the proof of Corollary 4.1.3.

in Meneghello [25].

4 Pricing of Linear Interest Rate Derivatives

We have discussed in Sect. 3.2 the pricing of OIS and Libor bonds in the Gaussian,
exponentially quadratic short ratemodel introduced in Sect. 3.1. In the remaining part
of the paperwe shall be concernedwith the pricing of interest rate derivatives, namely
with derivatives having the Libor rate as underlying rate. In the present section we
shall deal with the basic linear derivatives, namely FRAs and interest rate swaps,
while nonlinear derivatives will then be dealt with in the following Sect. 5. For the
FRA rates discussed in the next Sect. 4.1 we shall in Sect. 4.1.1 exhibit an adjustment
factor allowing to pass from the single-curve FRA rate to the multi-curve FRA rate.
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4.1 FRAs

We start by recalling the definition of a standard forward rate agreement. We empha-
size that we use a text-book definition which differs slightly from amarket definition,
see Mercurio [26].

Definition 4.1 Given the time points 0 ≤ t ≤ T < T + Δ, a forward rate agreement
(FRA) is an OTC derivative that allows the holder to lock in at the generic date t ≤ T
the interest rate between the inception date T and the maturity T + Δ at a fixed value
R. At maturity T + Δ a payment based on the interest rate R, applied to a notional
amount of N , is made and the one based on the relevant floating rate (generally the
spot Libor rate L(T;T ,T + Δ)) is received.

Recalling that for the Libor rate we had postulated the relation (8) to hold at the
inception time T , namely

L(T;T ,T + Δ) = 1

Δ

(
1

p̄(T ,T + Δ)
− 1

)
,

the price, at t ≤ T , of the FRA with fixed rate R and notional N can be computed
under the (T + Δ)-forward measure as

PFRA(t;T ,T + Δ,R,N)

= NΔp(t,T + Δ)ET+Δ {L(T;T ,T + Δ) − R | Ft}
= Np(t,T + Δ)ET+Δ

{
1

p̄(T ,T + Δ)
− (1 + ΔR) | Ft

}
, (36)

Defining

ν̄t,T := ET+Δ

{
1

p̄(T ,T + Δ)
| Ft

}
, (37)

it is easily seen from (36) that the fair rate of the FRA, namely the FRA rate, is given
by

R̄t = 1

Δ

(
ν̄t,T − 1

)
. (38)

In the single-curve case we have instead

Rt = 1

Δ

(
νt,T − 1

)
, (39)

where, given that p(·,T)

p(·,T+Δ)
is a QT+Δ−martingale (see Lemma 3.1),

νt,T := ET+Δ

{
1

p(T ,T + Δ)
| Ft

}
= p(t,T)

p(t,T + Δ)
, (40)
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which is the classical expression for the FRA rate in the single-curve case. Notice
that, contrary to (37), the expression in (40) can be explicitly computed on the basis
of bond price data without requiring an interest rate model.

4.1.1 Adjustment Factor

We shall show here the following:

Proposition 4.1 We have the relationship

ν̄t,T = νt,T · AdT ,Δ
t · ResT ,Δ

t (41)

with

AdT ,Δ
t := EQ

{
p(T ,T + Δ)

p̄(T ,T + Δ)
| Ft

}
= EQ

{
exp

[
Ã(T ,T + Δ)

+ κB1(T ,T + Δ)Ψ 1
T + C̄33(T ,T + Δ)(Ψ 3

T )2
]

| Ft

}
(42)

and

ResT ,Δ
t = exp

[
−κ

(σ1)2

2(b1)3

(
1 − e−b1Δ

) (
1 − e−b1(T−t)

)2]
, (43)

where Ã(t,T) is defined after (30), B1(t,T) in (27) and C̄33(t,T) in (24).

Proof Firstly, from (30) we obtain

p(T ,T + Δ)

p̄(T ,T + Δ)
= eÃ(T ,T+Δ)+κB1(T ,T+Δ)Ψ 1

T +C̄33(T ,T+Δ)(Ψ 3
T )2 . (44)

In (37) we now change back from the (T + Δ)-forward measure to the standard
martingale measure using the density process Lt given in (31). Using furthermore
the above expression for the ratio of the OIS and the Libor bond prices and taking
into account the definition of the short rate rt in terms of the factor processes, we
obtain

ν̄t,T = ET+Δ

{
1

p̄(T ,T + Δ)

∣∣Ft

}
= L −1

t EQ

{
LT

p̄(T ,T + Δ)

∣∣Ft

}

= 1

p(t,T + Δ)
EQ

{
exp

(
−
∫ T

t
rudu

)p(T ,T + Δ)

p̄(T ,T + Δ)

∣∣Ft

}

= 1

p(t,T + Δ)
exp[Ã(T ,T + Δ)]EQ

{
eC̄

33(T ,T+Δ)(Ψ 3
T )2
∣∣Ft

}
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· EQ
{
e− ∫ T

t (Ψ 1
u +(Ψ 2

u )2)dueκB1(T ,T+Δ)Ψ 1
T
∣∣Ft

}

= 1

p(t,T + Δ)
exp[Ã(T ,T + Δ)]EQ

{
eC̄

33(T ,T+Δ)(Ψ 3
T )2
∣∣Ft

}

· EQ
{
e− ∫ T

t Ψ 1
u dueκB1(T ,T+Δ)Ψ 1

T
∣∣Ft

}
EQ
{
e− ∫ T

t (Ψ 2
u )2du

∣∣Ft

}
, (45)

where we have used the independence of the factors Ψ i, i = 1, 2, 3 under Q.
Recall now from the theory of affine processes (see e.g. Lemma 2.1 in Grbac and

Runggaldier [18]) that, for a process Ψ 1
t satisfying (10), we have for all δ,K ∈ R

EQ

{
exp

[
−
∫ T

t
δΨ 1

u du − KΨ 1
T

]
| Ft

}
= exp[α1(t,T) − β1(t,T)Ψ 1

t ], (46)

where {
β1(t,T) = Ke−b1(T−t) − δ

b1

(
e−b1(T−t) − 1

)
α1(t,T) = (σ1)2

2

∫ T
t (β1(u,T))2du.

Setting K = −κB1(T ,T + Δ) and δ = 1, and recalling from (27) that B1(t,T) =
1
b1

(
1 − e−b1(T−t)

)
, this leads to

EQ
{
e− ∫ T

t Ψ 1
u dueκB1(T ,T+Δ)Ψ 1

T
∣∣Ft

}

= exp

[
(σ1)2

2
(κB1(T ,T + Δ))2

∫ T

t
e−2b1(T−u)du

− κB1(T ,T + Δ)(σ1)2
∫ T

t
B1(u,T)e−b1(T−u)du + (σ1)2

2

∫ T

t
(B1(u,T))2du

+
(
κB1(T ,T + Δ)e−b1(T−t) − B1(t,T)

)
Ψ 1
t

]
. (47)

On the other hand, from the results of Sect. 3.2 we also have that, for a process Ψ 2
t

satisfying (10),

EQ

{
exp

[
−
∫ T

t
(Ψ 2

u )2du

]
| Ft

}
= exp

[−α2(t,T) − C22(t,T)(Ψ 2
t )2

]
,

where C22(t,T) corresponds to (24) and (see (28))

α2(t,T) = (σ2)2
∫ T

t
C22(u,T)du.
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This implies that

EQ

{
exp

[
−
∫ T

t
(Ψ 2

u )2du

]
| Ft

}

= exp

[
−(σ2)2

∫ T

t
C22(u,T)du − C22(t,T)

(
Ψ 2
t

)2]
. (48)

Replacing (47) and (48) into (45), and recalling the expression for p(t,T) in (29)
with A(·),B1(·),C22(·) according to (28), (27) and (24) respectively, we obtain

ν̄t,T = p(t,T)

p(t,T + Δ)
eÃ(T ,T+Δ)EQ

[
eC̄

33(T ,T+Δ)(Ψ 3
T )2 ∣∣Ft

]

· exp
[

(σ1)2

2
(κB1(T , T + Δ))2

∫ T

t
e−2b1(T−u)du + κB1(T , T + Δ)e−b1(T−t)Ψ 1

t

]

· exp
[
−κB1(T , T + Δ)(σ1)2

∫ T

t
B1(u, T)e−b1(T−u)du

]
. (49)

We recall the expression (44) for p(T ,T+Δ)

p̄(T ,T+Δ)
and the fact that, according to (46), we

have

EQ
{
eκB

1(T ,T+Δ)Ψ 1
T
∣∣Ft

}

= exp

[
(σ1)2

2 (κB1(T ,T + Δ))2
∫ T

t
e−2b1(T−u)du + κB1(T ,T + Δ)e−b1(T−t)Ψ 1

t

]
.

Inserting these expressions into (49) we obtain the result, namely

ν̄t,T = p(t,T)

p(t,T+Δ)
EQ
{
p(T ,T+Δ)

p̄(T ,T+Δ)

∣∣Ft

}

·exp
[
−κB1(T ,T + Δ)(σ1)2

∫ T

t
B1(u,T)e−b1(T−u)du

]

= p(t,T)

p(t,T+Δ)
EQ
{
p(T ,T+Δ)

p̄(T ,T+Δ)

∣∣Ft

}
·exp

[
− κ

b1 (e
−b1Δ − 1)(σ1)2

(
1

2(b1)2 (1 − e−2b1(T−t)) − 1
(b1)2 (1 − e−b1(T−t))

)]
,

(50)

where we have also used the fact that

∫ T

t
B1(u,T)e−b1(T−u)du =

∫ T

t

1

b1

(
1 − e−b1(T−u)

)
e−b1(T−u)du

= − 1

2(b1)2

(
1 − e−2b1(T−t)

)
+ 1

(b1)2

(
1 − e−b1(T−t)

)
.

�



Derivative Pricing for a Multi-curve Extension … 209

Remark 4.1 The adjustment factor AdT ,Δ
t allows for some intuitive interpretations.

Here we mention only the easiest one for the case when κ = 0 (independence of rt
and st). In this case we have rt + st > rt implying that p̄(T ,T + Δ) < p(T ,T + Δ)

so that AdT ,Δ
t ≥ 1. Furthermore, always for κ = 0, the residual factor has value

ResT ,Δ
t = 1. All this in turn implies ν̄t,T ≥ νt,T and with it R̄t ≥ Rt , which is what

one would expect to be the case.

Remark 4.2 (Calibration to the initial term structure). The parameters in the model
(10) for the factors Ψ i

t and thus also in the model (11) for the short rate rt and the
spread st are the coefficients bi and σi for i = 1, 2, 3. From (14) notice that, for
i = 1, 2, these coefficients enter the expressions for the OIS bond prices p(t,T) that
can be assumed to be observable since they can be bootstrapped from the market
quotes for the OIS swap rates. We may thus assume that these coefficients, i.e. bi and
σi for i = 1, 2, can be calibrated as in the pre-crisis single-curve short rate models. It
remains to calibrate b3, σ3 and, possibly the correlation coefficient κ. Via (15) they
affect the prices of the fictitious Libor bonds p̄(t,T) that are, however, not observable.
One may observe though the FRA rates Rt and R̄t and thus also νt,T , as well as ν̄t,T .
Via (41) this would then allow one to calibrate also the remaining parameters. This
task would turn out to be even simpler if one would have access to the value of κ by
other means.

We emphasize that in order to ensure a good fit to the initial bond term structure,
a deterministic shift extension of the model or time-dependent coefficients bi could
be considered. We recall also that we have assumed the mean-reversion level equal
to zero for simplicity; in practice it would be one more coefficient to be calibrated
for each factor Ψ i

t .

4.2 Interest Rate Swaps

Wefirst recall the notion of a (payer) interest rate swap.Given a collection of dates 0 ≤
T0 < T1 < · · · < Tn with γ ≡ γk := Tk − Tk−1 (k = 1, · · · , n), as well as a notional
amountN , a payer swap is a financial contract, where a streamof interest payments on
the notionalN is made at a fixed rateR in exchange for receiving an analogous stream
corresponding to the Libor rate. Among the various possible conventions concerning
the fixing for the Libor and the payment dates, we choose here the one where, for
each interval [Tk−1,Tk], the Libor rates are fixed in advance and the payments are
made in arrears. The swap is thus initiated at T0 and the first payment is made at
T1. A receiver swap is completely symmetric with the interest at the fixed rate being
received; here we concentrate on payer swaps.

The arbitrage-free price of the swap, evaluated at t ≤ T0, is given by the following
expression where, analogously to ET+Δ{·},we denote by ETk {·} the expectation with
respect to the forward measure QTk (k = 1, · · · , n)
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PSw(t;T0,Tn,R) = γ

n∑
k=1

p(t,Tk)E
Tk {L(Tk−1;Tk−1,Tk) − R|Ft}

= γ

n∑
k=1

p(t,Tk) (L(t;Tk−1,Tk) − R) . (51)

For easier notation we have assumed the notional to be 1, i.e. N = 1.
We shall next obtain an explicit expression for PSw(t;T0,Tn,R) starting from the

first equality in (51). To this effect, recalling from (24) that C22(t,T) = C̄22(t,T),
introduce again some shorthand notation, namely

Ak := Ā(Tk−1,Tk),B
1
k := B1(Tk−1,Tk),

C22
k := C22(Tk−1,Tk) = C̄22(Tk−1,Tk), C̄33

k := C̄33(Tk−1,Tk).
(52)

The crucial quantity to be computed in (51) is the following one

ETk {γL(Tk−1;Tk−1,Tk)|Ft} = ETk
{ 1

p̄(Tk−1,Tk)
|Ft

}
− 1

= eAkETk {exp((κ + 1)B1
kΨ

1
Tk−1

+ C22
k (Ψ 2

Tk−1
)2 + C̄33

k (Ψ 3
Tk−1

)2)|Ft} − 1, (53)

where we have used the first relation on the right in (30). The expectations in (53)
have to be computed under the measures QTk , under which, by analogy to (33), the
factors have the dynamics

dΨ 1
t = − [

b1Ψ 1
t + (σ1)2B1(t,Tk)

]
dt + σ1dw1,k

t

dΨ 2
t = − [

b2Ψ 2
t + 2(σ2)2C22(t,Tk)Ψ 2

t

]
dt + σ2dw2,k

t

dΨ 3
t = −b3Ψ 3

t dt + σ3dw3,k
t .

(54)

where wi,k , i = 1, 2, 3, are independent Wiener processes with respect to QTk . A
straightforward generalization of (46) to the casewhere the factor processΨ 1

t satisfies
the following affine Hull–White model

dΨ 1
t = (a1(t) − b1Ψ 1

t )dt + σ1dwt

can be obtained as follows

EQ

{
exp

[
−
∫ T

t
δΨ 1

u du − KΨ 1
T

]
| Ft

}
= exp[α1(t,T) − β1(t,T)Ψ 1

t ], (55)

with ⎧⎪⎨
⎪⎩

β1(t,T) = Ke−b1(T−t) − δ
b1

(
e−b1(T−t) − 1

)

α1(t,T) = (σ1)2

2

∫ T

t
(β1(u,T))2du −

∫ T

t
a1(u)β1(u,T)du.

(56)
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We apply this result to our situation where under QTk the process Ψ 1
t satisfies

the first SDE in (54) and thus corresponds to the above dynamics with a1(t) =
−(σ1)2B1(t,Tk). Furthermore, setting K = −(κ + 1)B1

k and δ = 0, we obtain for
the first expectation in the second line of (53)

ETk {exp((κ + 1)B1
kΨ

1
Tk−1

|Ft} = exp[Γ 1(t,Tk) − ρ1(t,Tk) Ψ 1
t ], (57)

with
⎧⎨
⎩

ρ1(t,Tk) = −(κ + 1)B1
ke

−b1(Tk−t)

Γ 1(t,Tk) = (σ1)2

2

∫ Tk

t

(
ρ1(u,Tk)

)2
du + (σ1)2

∫ Tk

t
B1(u,Tk)ρ

1(u,Tk)du.
(58)

For the remaining two expectations in the second line of (53) we shall use the fol-
lowing:

Lemma 4.1 Let a generic process Ψt satisfy the dynamics

dΨt = b(t)Ψtdt + σ dwt (59)

with wt a Wiener process. Then, for all C ∈ R such that EQ
{
exp

[
C (ΨT )2

]}
< ∞,

we have
EQ

{
exp

[
C (ΨT )2

] | Ft
} = exp

[
Γ (t,T) − ρ(t,T) (Ψt)

2
]

(60)

with ρ(t,T) and Γ (t,T) satisfying

{
ρt(t,T) + 2b(t)ρ(t,T) − 2(σ)2 (ρ(t,T))2 = 0 ; ρ(T ,T) = −C
Γt(t,T) = (σ)2ρ(t,T).

(61)

Proof Anapplicationof Itô’s formula yields that the nonnegative processΦt := (Ψt)
2

satisfies the following SDE

dΦt = (
(σ)2 + 2b(t)Φt

)
dt + 2σ

√
Φt dwt .

We recall that a process Φt given in general form by

dΦt = (a + λ(t)Φt)dt + η
√

Φt dwt,

with a, η > 0 and λ(t) a deterministic function, is a CIR process. Thus, (Ψt)
2 is

equivalent in distribution to a CIR process with coefficients given by

λ(t) = 2b(t) , η = 2σ , a = (σ)2.
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From the theory of affine term structure models (see e.g. Lamberton and Lapeyre
[23], or Lemma 2.2 in Grbac and Runggaldier [18]) it now follows that

EQ
{
exp

[
C (ΨT )2

] | Ft
} = EQ {exp [C ΦT ] | Ft} = exp [Γ (t,T) − ρ(t,T)Φt]

= exp
[
Γ (t,T) − ρ(t,T) (Ψt)

2]

with ρ(t,T) and Γ (t,T) satisfying (61).

Corollary 4.1 When b(t) is constant with respect to time, i.e. b(t) ≡ b, so that also
λ(t) ≡ λ, then the equations for ρ(t,T) andΓ (t,T) in (61) admit an explicit solution
given by ⎧⎨

⎩
ρ(t,T) = 4bhe2b(T−t)

4(σ)2he2b(T−t)−1 with h := C
4(σ)2C+4b

Γ (t,T) = −(σ)2
∫ T

t
ρ(u,T)du.

(62)

Coming now to the second expectation in the second line of (53) and using the second
equation in (54), we set

b(t) := − [
b2 + 2(σ2)2C22(t,Tk)

]
, σ := σ2, C = C22

k

and apply Lemma 4.1, provided that the parameters b2 and σ2 of the process Ψ 2 are
such that C = C22

k satisfies the assumption from the lemma. We thus obtain

ETk {exp(C22
k (Ψ 2

Tk−1
)2)|Ft} = exp[Γ 2(t,Tk) − ρ2(t,Tk)(Ψ

2
t )2], (63)

with ρ2(t,T), Γ 2(t,T) satisfying

⎧⎪⎪⎨
⎪⎪⎩

ρ2t (t,T) − 2
[
b2 + 2(σ2)2C22(t,Tk)

]
ρ2(t,T) − 2(σ2)2(ρ2(t,T))2 = 0

ρ2(Tk,Tk) = −C22
k

Γ 2(t,T) = −(σ2)2
∫ T

t
ρ2(u,T)du.

(64)

Finally, for the third expectation in the second line of (53), we may take advantage
of the fact that the dynamics of Ψ 3

t do not change when passing from the measure Q
to the forward measure QTk . We can then apply Lemma 4.1, this time with (see the
third equation in (54))

b(t) := −b3, σ := σ3, C = C̄33
k

and ensuring that the parameters b3 and σ3 of the process Ψ 3 are such that C = C̄33
k

satisfies the assumption from the lemma. Since b(t) is constant with respect to time,
also Corollary 4.1 applies and we obtain

ETk {exp(C̄33
k (Ψ 3

Tk−1
)2)|Ft} = exp[Γ 3(t,Tk) − ρ3(t,Tk)(Ψ

3
t )2],
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where ⎧⎪⎨
⎪⎩

ρ3(t,Tk) = −4b3h3k e
−2b3(Tk−t)

4(σ3)2h3k e
−2b3(Tk−t)−1

with h3k = C̄33
k

4(σ3)2C̄33
k −4b3

Γ 3(t,Tk) = −(σ3)2
∫ Tk

t
ρ3(u,Tk)du.

(65)

With the use of the explicit expressions for the expectations in (53), and taking
also into account the expression for p(t,T) in (29), it follows immediately that the
arbitrage-free swap price in (51) can be expressed according to the following

Proposition 4.2 The price of a payer interest rate swap at t ≤ T0 is given by

PSw(t;T0, Tn,R) = γ

n∑
k=1

p(t,Tk)E
Tk
{
L(Tk−1; Tk−1,Tk) − R|Ft

}

=
n∑

k=1

p(t, Tk)
(
Dt,ke

−ρ1(t,Tk )Ψ
1
t −ρ2(t,Tk )(Ψ

2
t )2−ρ3(t,Tk )(Ψ

3
t )2 − (Rγ + 1)

)

=
n∑

k=1

(
Dt,ke

−At,k e
−B̃1t,kΨ

1
t −C̃22

t,k (Ψ
2
t )2−C̃33

t,k (Ψ
3
t )2

− (Rγ + 1)e−At,k e
−B1t,kΨ

1
t −C22

t,k (Ψ
2
t )2

)
, (66)

where

At,k := A(t,Tk), B1
t,k := B1(t,Tk), C22

t,k := C22(t,Tk)
B̃1
t,k := B1

t,k + ρ1(t,Tk), C̃22
t,k := C22

t,k + ρ2(t,Tk), C̃33
t,k := ρ3(t,Tk)

Dt,k := eAkexp[Γ 1(t,Tk) + Γ 2(t,Tk) + Γ 3(t,Tk)],
(67)

with ρi(t,Tk), Γ i(t,Tk) (i = 1, 2, 3) determined according to (58), (64), and (65)
respectively and with Ak as in (52).

5 Nonlinear/optional Interest Rate Derivatives

In this section we consider the main nonlinear interest rate derivatives with the Libor
rate as underlying. They are also called optional derivatives since they have the form
of an option. In Sect. 5.1 we shall consider the case of caps and, symmetrically, that of
floors. In the subsequent Sect. 5.2 we shall then concentrate on swaptions as options
on a payer swap of the type discussed in Sect. 4.2.

5.1 Caps and Floors

Since floors can be treated in a completely symmetric way to the caps simply by
interchanging the roles of the fixed rate and the Libor rate, we shall concentrate
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here on caps. Furthermore, to keep the presentation simple, we consider here just
a single caplet for the time interval [T ,T + Δ] and for a fixed rate R (recall also
that we consider just one tenor Δ). The payoff of the caplet at time T + Δ is
thus Δ(L(T;T ,T + Δ) − R)+, assuming the notional N = 1, and its time-t price
PCpl(t;T + Δ,R) is given by the following risk-neutral pricing formula under the
forward measure QT+Δ

PCpl(t;T + Δ,R) = Δ p(t,T + Δ)ET+Δ
{
(L(T;T ,T + Δ) − R)+ | Ft

}
.

In view of deriving pricing formulas, recall from Sect. 3.3 that, under the (T + Δ)−
forward measure, at time T the factors Ψ i

T have independent Gaussian distributions
(see (34)) with mean and variance given, for i = 1, 2, 3, by

ET+Δ{Ψ i
t } = ᾱi

t = ᾱi
t(b

i,σi), VarT+Δ{Ψ i
t } = β̄i

t = β̄i
t (b

i,σi).

In the formulas below we shall consider the joint probability density function of
(Ψ 1

T , Ψ 2
T , Ψ 3

T ) under the T + Δ forward measure, namely, using the independence
of the processes Ψ i

t , (i = 1, 2, 3),

f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x1, x2, x3) =

3∏
i=1

fΨ i
T
(xi) =

3∏
i=1

N (xi, ᾱ
i
T , β̄i

T ), (68)

and use the shorthand notation fi(·) for fΨ i
T
(·) in the sequel. We shall also write

Ā,B1,C22, C̄33 for the corresponding functions evaluated at (T ,T + Δ) and given
in (28), (27) and (24) respectively.

Setting R̃ := 1 + ΔR, and recalling the first equality in (30), the time-0 price of
the caplet can be expressed as

PCpl(0; T + Δ,R) = Δ p(0,T + Δ)ET+Δ
{
(L(T ; T ,T + Δ) − R)+

}

= p(0,T + Δ)ET+Δ

{(
1

p̄(T ,T + Δ)
− R̃

)+}

= p(0,T + Δ)ET+Δ

{(
eĀ+(κ+1)B1Ψ 1

T +C22(Ψ 2
T )2+C̄33(Ψ 3

T )2 − R̃
)+}

= p(0,T + Δ)

∫
R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z). (69)

To proceed, we extend to the multi-curve context an idea suggested in Jamshidian
[19] (where it is applied to the pricing of coupon bonds) by considering the function

g(x, y, z) := exp[Ā + (κ + 1)B1x + C22y2 + C̄33z2]. (70)
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Noticing that C̄33(T ,T + Δ) > 0 (see (24) together with the fact that h3 > 0 and
2b3 + h3 > 0), for fixed x, y the function g(x, y, z) can be seen to be continuous and
increasing for z ≥ 0 and decreasing for z < 0 with limz→±∞ g(x, y, z) = +∞. It will
now be convenient to introduce some objects according to the following:

Definition 5.1 Let a setM ⊂ R
2 be given by

M := {(x, y) ∈ R
2 | g(x, y, 0) ≤ R̃} (71)

and let Mc be its complement. Furthermore, for (x, y) ∈ M let

z̄1 = z̄1(x, y) , z̄2 = z̄2(x, y)

be the solutions of g(x, y, z) = R̃. They satisfy z̄1 ≤ 0 ≤ z̄2.

Notice that, for z ≤ z̄1 ≤ 0 and z ≥ z̄2 ≥ 0, we have g(x, y, z) ≥ g(x, y, z̄k) = R̃,
and for z ∈ (z̄1, z̄2), we haveg(x, y, z) < R̃. InMcwehaveg(x, y, z) ≥ g(x, y, 0) > R̃
and thus no solution of the equation g(x, y, z) = R̃.

In view of the main result of this subsection, given in Proposition 5.1 below, we
prove as a preliminary the following:

Lemma 5.1 Assuming that the (nonnegative) coefficients b3,σ3 in the dynamics
(10) of the factor Ψ 3

t satisfy the condition

b3 ≥ σ3

√
2
, (72)

we have that 1 − 2β̄3
T C̄

33 > 0, where C̄33 = C̄33(T ,T + Δ) is given by (24) and

where β̄3
T = (σ3)2

2b3 (1 − e−2b3T ) according to (34).

Proof From the definitions of β̄3
T and C̄33 we may write

1 − 2β̄3
T C̄

33 = 1 −
(
1 − e−2b3T

) 2
(
eΔ h3 − 1

)

2 b3h3
(σ3)2

+ b3
(σ3)2

(2b3 + h3)
(
eΔ h3 − 1

) . (73)

Notice next that b3 > 0 implies that 1 − e−2b3T ∈ (0, 1) and that b3h3

(σ3)2
≥ 0. From (73)

it then follows that a sufficient condition for 1 − 2β̄3
T C̄

33 > 0 to hold is that

2 ≤ b3

(σ3)2
(2b3 + h3). (74)

Given that, see definition after (24), h3 = 2
√

(b3)2 + 2(σ3)2 ≥ 2b3, the condition
(74) is satisfied under our assumption (72). �
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Proposition 5.1 Under assumption (72) we have that the time-0 price of the caplet
for the time interval [T ,T + Δ] and with fixed rate R is given by

PCpl(0; T + Δ,R) = p(0,T + Δ)

[∫
M
eĀ+(κ+1)B1x+C22(y)2

·
[
γ(ᾱ3

T , β̄3
T , C̄33)

(
Φ(d1(x, y)) + Φ(−d2(x, y))

)

− eC̄
33(z̄1(x,y))2Φ(d3(x, y)) + eC̄

33(z̄2(x,y))2Φ(−d4(x, y))
]

× f1(x)f2(y)dxdy + γ(ᾱ3
T , β̄3

T , C̄33)

∫
Mc

eĀ+(κ+1)B1x+C22(y)2

× f1(x)f2(y)dxdy − R̃ QT+Δ
{
(Ψ 1

T , Ψ 2
T ) ∈ Mc

}]
, (75)

where Φ(·) is the cumulative standard Gaussian distribution function, M and Mc

are as in Definition 5.1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(x, y) :=
√

1−2β̄3
T C̄

33 z̄1(x,y)−(ᾱ3
T−θβ̄3

T )√
β̄3
T

d2(x, y) :=
√

1−2β̄3
T C̄

33 z̄2(x,y)−(ᾱ3
T−θβ̄3

T )√
β̄3
T

d3(x, y) := z̄1(x,y)−ᾱ3
T√

β̄3
T

d4(x, y) := z̄2(x,y)−ᾱ3
T√

β̄3
T

(76)

with θ := ᾱ3
T

(
1−1/

√
1−2β̄3

T C̄
33
)

β̄3
T

, which by Lemma 5.1 is well defined under the given

assumption (72), and with γ(ᾱ3
T , β̄3

T , C̄33) := e( 12 (θ)2 β̄3T−ᾱ3T θ)√
1−2β̄3

T C̄
33

.

Remark 5.1 Notice that, once the setM and its complementMc from Definition 5.1
are made explicit, the integrals, as well as the probability in (75), can be computed
explicitly.

Proof On the basis of the setsM and Mc we can continue (69) as

PCpl(0;T + Δ,R) = p(0,T + Δ)

∫
R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)

= p(0,T + Δ)

∫
M×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)
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+ p(0,T + Δ)

∫
Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)

=: P1(0;T + Δ) + P2(0;T + Δ). (77)

We shall next compute separately the two terms in the last equality in (77) distin-
guishing between two cases according to whether (x, y) ∈ M or (x, y) ∈ Mc.

Case (i): For (x, y) ∈ M we have from Definition 5.1 that there exist z̄1(x, y) ≤ 0
and z̄2(x, y) ≥ 0 so that for z ∈ [z̄1, z̄2] we have g(x, y, z) ≤ g(x, y, z̄k) = R̃. For
P1(0;T + Δ) we now obtain

P1(0;T + Δ) = p(0,T + Δ)

·
∫
M
eĀ+(κ+1)B1x+C22y2

(∫ z̄1(x,y)

−∞
(eC̄

33z2 − eC̄
33(z̄1)2)f3(z)dz

+
∫ +∞

z̄2(x,y)
(eC̄

33z2 − eC̄
33(z̄2)2)f3(z)dz

)
f2(y)f1(x)dydx. (78)

Next, using the results of Sect. 3.3 concerning the Gaussian distribution f3(·) =
fΨ 3

T
(·), we obtain the calculations in (79) below, where, recalling Lemma 5.1, we

make successively the following changes of variables: ζ :=
√
1 − 2β̄3

T C̄
33z, θ :=

ᾱ3
T (1−1/

√
1−2β̄3

T C̄
33)

β̄3
T

, s := ζ−(ᾱ3
T−θβ̄3

T )√
β̄3
T

and where di(x, y), i = 1, · · · , 4 are as defined

in (76)

∫ z̄1(x,y)

−∞
eC̄

33z2 f3(z)dz =
∫ z̄1(x,y)

−∞
eC̄

33z2 1√
2πβ̄3

T

e
− 1

2

(z−ᾱ3T )2

β̄3T dz

=
∫ z̄1(x,y)

−∞
1√
2πβ̄3

T

e
− 1

2

(

√
1−2β̄3T C̄33z−ᾱ3T )2

β̄3T e
− ᾱ3T (

√
1−2β̄3T C̄33−1)

β̄3T
z
dz

=
∫ √

1−2β̄3
T C̄

33 z̄1(x,y)

−∞
1√
2πβ̄3

T

e
− 1

2

(ζ−ᾱ3T )2

β̄3T e
− ᾱ3T (1−1/

√
1−2β̄3T C̄33)

β̄3T
ζ 1√

1 − 2β̄3
T C̄

33
dζ

= 1√
1 − 2β̄3

T C̄
33

∫ √
1−2β̄3

T C̄
33 z̄1(x,y)

−∞
1√
2πβ̄3

T

e
− 1

2

(ζ−ᾱ3T )2

β̄3T e−θζdζ

= e( 1
2 (θ)2β̄3

T−ᾱ3
T θ)√

1 − 2β̄3
T C̄

33

∫ d1(x,y)

−∞
1√
2π

e− s2

2 ds= e( 1
2 (θ)2β̄3

T−ᾱ3
T θ)√

1 − 2β̄3
T C̄

33
Φ(d1(x, y)). (79)
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On the other hand, always using the results of Sect. 3.3 concerning the Gaussian

distribution f3(·) = fΨ 3
T
(·) and making this time the change of variables ζ := (z−ᾱ3

T )√
β̄3
T

,

we obtain

∫ z̄1(x,y)

−∞
eC̄

33(z̄1)2 f3(z)dz = eC̄
33(z̄1)2

∫ z̄1(x,y)

−∞
1√
2πβ̄3

T

e
− 1

2

(z−ᾱ3T )2

β̄3T dz

= eC̄
33(z̄1)2

∫ d3(x,y)

−∞
1√
2π

e− 1
2 ζ2dζ = eC̄

33(z̄1)2Φ(d3(x, y)). (80)

Similarly, we have

∫ +∞

z̄2(x,y)
eC̄

33z2 f3(z)dz = 1√
1 − 2β̄3

T C̄
33
e( 1

2 (θ)2β̄3
T−ᾱ3

T θ)Φ(−d2(x, y))

∫ +∞

z̄2(x,y)
eC̄

33(z̄1)2 f3(z)dz = eC̄
33(z̄2)2Φ(−d4(x, y)).

(81)

Case (ii):We comenext to the case (x, y) ∈ Mc, forwhich g(x, y, z) ≥ g(x, y, 0) > R̃.
For P2(0;T + Δ) we obtain

P2(0; T + Δ) = p(0,T + Δ)

∫
Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)

· f3(z)f2(y)f1(x)dzdydx
= p(0,T + Δ)

(
eĀ
∫
Mc

e(κ+1)B1x+C22y2 f1(x)f2(y)dxdy
∫
R

eC̄
33z2 f3(z)dz

− R̃QT+Δ[(Ψ 1
T , Ψ 2

T ) ∈ Mc]
)

= p(0,T + Δ)
(
eĀ
[∫

Mc
e(κ+1)B1x+C22y2 f1(x)f2(y)dxdy

] e( 12 (θ3)2β̄3T−ᾱ3
T θ3)√

1 − 2β̄3
T C̄

33

− R̃QT+Δ[(Ψ 1
T , Ψ 2

T ) ∈ Mc]
)
, (82)

where we computed the integral over R analogously to (79).
Adding the two expressions derived for Cases (i) and (ii), we obtain the statement

of the proposition. �

5.2 Swaptions

We start by recalling some of themost relevant aspects of a (payer) swaption. Consid-
ering a swap (see Sect. 4.2) for a given collection of dates 0 ≤ T0 < T1 < · · · < Tn,
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a swaption is an option to enter the swap at a pre-specified initiation date T ≤ T0,
which is thus also the maturity of the swaption and that, for simplicity of notation, we
assume to coincide with T0, i.e. T = T0. The arbitrage-free swaption price at t ≤ T0
can be computed as

PSwn(t;T0,Tn,R) = p(t,T0)E
T0
{(
PSw(T0;Tn,R)

)+ |Ft

}
, (83)

where we have used the shorthand notation PSw(T0;Tn,R) = PSw(T0;T0,Tn,R).

We first state the next Lemma, that follows immediately from the expression for
ρ3(t,Tk) and the corresponding expression for h3k in (65).

Lemma 5.2 We have the equivalence

ρ3(t,Tk) > 0 ⇔ h3k ∈
(
0,

1

4(σ3)2e−2b3(Tk−t)

)
. (84)

This lemma prompts us to split the swaption pricing problem into two cases:

Case(1) : h3k < 0 or h3k > 1
4(σ3)2e−2b3(Tk−t)

Case(2) : 0 < h3k < 1
4(σ3)2e−2b3(Tk−t)

.
(85)

Note from the definition of ρ3(t,Tk) that h3k �= 1
4(σ3)2e−2b3(Tk−t)

and that h3k = 0 would

imply C̄33
k = 0 which corresponds to a trivial case in which the factor Ψ 3 is not

present in the dynamics of the spread s, hence the inequalities in Case (1) and Case
(2) above are indeed strict.

To proceed, we shall introduce some more notation. In particular, instead of only
one function g(x, y, z) as in (70), we shall consider also a function h(x, y), more
precisely, we shall define here the continuous functions

g(x, y, z) :=
n∑

k=1

D0,ke
−A0,k e−B̃1

0,kx−C̃22
0,ky

2−C̃33
0,kz

2
(86)

h(x, y) :=
n∑

k=1

(Rγ + 1)e−A0,k e−B1
0,kx−C22

0,ky
2
, (87)

with the coefficients given by (67) for t = T0. Note that by a slight abuse of notation
we write D0,k for DT0,k and similarly for other coefficients above, always meaning
t = T0 in (67). We distinguish the two cases specified in (85):
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For Case (1) we have (see (67) and Lemma 5.2) that C̃33
0,k = ρ3(T0,Tk) < 0 for all

k = 1, · · · , n, and so the function g(x, y, z) in (86) is, for given (x, y), monotonically
increasing for z ≥ 0 and decreasing for z < 0 with

lim
z→±∞ g(x, y, z) = +∞.

For Case (2) we have instead that C̃33
0,k = ρ3(T0,Tk) > 0 for all k = 1, · · · , n

and so the nonnegative function g(x, y, z) in (86) is, for given (x, y), monotonically
decreasing for z ≥ 0 and increasing for z < 0 with

lim
z→±∞ g(x, y, z) = 0.

Analogously to Definition 5.1 we next introduce the following objects:

Definition 5.2 Let a set M̄ ⊂ R
2 be given by

M̄ := {(x, y) ∈ R
2 | g(x, y, 0) ≤ h(x, y)}. (88)

Since g(x, y, z) and h(x, y) are continuous, M̄ is closed, measurable and connected.
Let M̄c be its complement. Furthermore, we define two functions z̄1(x, y) and z̄2(x, y)
distinguishing between the two Cases (1) and (2) as specified in (85).

Case (1) If (x, y) ∈ M̄, we have g(x, y, 0) ≤ h(x, y) and so there exist z̄1(x, y) ≤ 0
and z̄2(x, y) ≥ 0 for which, for i = 1, 2,

g(x, y, z̄i) =
n∑

k=1

D0,ke
−A0,k e−B̃1

0,kx−C̃22
0,ky

2−C̃33
0,k(z̄

i)2

=
n∑

k=1

(Rγ + 1)e−A0,k e−B1
0,kx−C22

0,ky
2 = h(x, y) (89)

and, for z /∈ [z̄1, z̄2], one has g(x, y, z) ≥ g(x, y, z̄i).
If (x, y) ∈ M̄c, we have g(x, y, 0) > h(x, y) so that g(x, y, z) ≥
g(x, y, 0) > h(x, y) for all z andwehave nopoints corresponding to z̄1(x, y)
and z̄2(x, y) above.

Case (2) If (x, y) ∈ M̄, we have, as for Case (1), g(x, y, 0) ≤ h(x, y) and so there
exist z̄1(x, y) ≤ 0 and z̄2(x, y) ≥ 0 forwhich, for i = 1, 2, (89) holds. How-
ever, this time it is for z ∈ [z̄1, z̄2] that one has g(x, y, z) ≥ g(x, y, z̄i).
If (x, y) ∈ Mc, then we are in the same situation as for Case (1).

Starting from (83) combined with (66) and taking into account the set M̄ accord-
ing to Definition 5.2, we can obtain the following expression for the swaption
price at t = 0. As for the caps, here too we consider the joint Gaussian distribu-
tion f(Ψ 1

T0
,Ψ 2

T0
,Ψ 3

T0
)(x, y, z) of the factors under the T0−forward measure QT0 and we

have
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PSwn(0;T0,Tn,R) = p(0,T0)E
T0
{(
PSw(T0;Tn,R)

)+ |F0

}

= p(0,T0)
∫
R3

[ n∑
k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

= p(0,T0)
∫
M̄×R

[ n∑
k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

+ p(0,T0)
∫
M̄c×R

[ n∑
k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

=: P1(0;T0,Tn,R) + P2(0;T0,Tn,R). (90)

We can now state and prove the main result of this subsection consisting in a
pricing formula for swaptions for the Gaussian exponentially quadratic model of this
paper. We have

Proposition 5.2 Assume that the parameters in themodel are such that, if h3k belongs
to Case (1) in (85) and h3k > 0, then h3k > 1

4(σ3)2e−2b3Tk
. The arbitrage-free price

at t = 0 of the swaption with payment dates T1 < · · · < Tn such that γ = γk :=
Tk − Tk−1 (k = 1, · · · , n), with a given fixed rate R and a notional N = 1, can be
computed as follows where we distinguish between the Cases (1) and (2) specified
in Definition 5.2.

Case (1) We have

PSwn(0; T0,Tn,R) = p(0,T0)

{ n∑
k=1

e−A0,k

[∫
M̄
D0,kexp(−B̃1

0,kx − C̃22
0,ky

2)

·
(
e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )√
1 + 2β̄3

T0
C̃33
0,k

Φ(d1k (x, y)) − e−C̃33
0,k (z̄

1)2
Φ(d2k (x, y))

+ e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )√
1 + 2β̄3

T0
C̃33
0,k

Φ(−d3k (x, y)) − e−C̃33
0,k (z̄

2)2
Φ(−d4k (x, y))

)
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× f2(y)f1(x)dydx +
∫
M̄c

(
D0,ke

−B̃10,kx−C̃22
0,ky

2 e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)e−B10,kx−C22
0,ky

2
)
f2(y)f1(x)dydx

]}
. (91)

Case (2) We have

PSwn(0;T0,Tn,R) = p(0,T0)

{ n∑
k=1

e−A0,k

[∫
M̄
D0,kexp(−B̃1

0,kx − C̃22
0,ky

2)
(e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)√

1 + 2β̄3
T0
C̃33
0,k

×
[
Φ(d3k (x, y)) − Φ(d1k (x, y))

]
− e−C̃33

0,k(z̄
1)2
[
Φ(d4k (x, y))

− Φ(d2k (x, y))
])

f2(y)f1(x)dydx

+
∫
M̄c

(
D0,ke

−B̃1
0,kx−C̃22

0,ky
2 e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)√

1 + 2β̄3
T0
C̃33
0,k

− (Rγ + 1)e−B1
0,kx−C22

0,ky
2
)
f2(y)f1(x)dydx

]}
. (92)

The coefficients in these formulas are as specified in (67) for t = T0, f1(x), f2(x) are
the Gaussian densities corresponding to (68) for T = T0 and the functions dik(x, y),
for i = 1, . . . , 4 and k = 1, . . . , n, are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1k (x, y) :=
√
1+2β̄3

T0
C̃33
0,k z̄

1(x,y)−(ᾱ3
T0

−θk β̄
3
T0

)√
β̄3
T0

d2k (x, y) := z̄1(x,y)−ᾱ3
T0√

β̄3
T0

d3k (x, y) :=
√
1+2β̄3

T0
C̃33
0,k z̄

2(x,y)−(ᾱ3
T0

−θk β̄
3
T0

)√
β̄3
T0

d4k (x, y) := z̄2(x,y)−ᾱ3
T0√

β̄3
T0

(93)

with θk := ᾱ3
T0

(
1−1/

√
1+2β̄3

T0
C̃33
0,k

)
β̄3
T0

, for k = 1, . . . , n, and where z̄1 = z̄1(x, y), z̄2 =
z̄2(x, y) are solutions in z of the equation g(x, y, z) = h(x, y).

In addition, themean and variance values for theGaussian factors (Ψ 1
T0

, Ψ 2
T0

, Ψ 3
T0

)

are here given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ1
T0

= e−b1T0Ψ 1
0 − (σ1)2

2(b1)2 e
−b1T0(1 − e2b

1T0) − (σ1)2

(b1)2 (1 − eb
1T0)

]
β̄1
T0

= e−2b1T0(e2b
1T0 − 1) (σ1)2

2(b1)

ᾱ2
T0

= e−b2T0Ψ 2
0

β̄2
T0

= e−2b2T0

∫ T0

0
e2b

2u+4(σ2)2C̄22(u,T0)(σ2)2du

ᾱ3
T0

= e−b3T0Ψ 3
0

β̄3
T0

= e−2b3T0 (σ3)2

2b3 (e2b
3T0 − 1).

(94)

Remark 5.2 A remark analogous to Remark 5.1 applies here too concerning the sets
M̄ and M̄c.

Proof First of all notice that, when h3k < 0 or h3k > 1
4(σ3)2e−2b3Tk

in Case (1), this

implies 1 + 2β̄3
T0
C̃33
0,k ≥ 0 (in Case (2) we always have 1 + 2β̃3

T0
C̃33
0,k ≥ 0). Hence,

the square-root of the latter expression in the various formulas of the statement of the
proposition is well-defined. This can be checked, similarly as in the proof of Lemma
5.1, by direct computation taking into account the definitions of β̄3

T0
in (94) and of

C̃33
0,k in (67) and (65) for t = T0.
We come now to the statement for:

Case 1. We distinguish between whether (x, y) ∈ M̄ or (x, y) ∈ M̄c and compute
separately the two terms in the last equality in (90).

(i) For (x, y) ∈ M̄ we have from Definition 5.2 that there exist z̄1(x, y) ≤ 0 and
z̄2(x, y) ≥ 0 so that, for z /∈ [z̄1, z̄2], one has g(x, y, z) ≥ g(x, y, z̄i). Taking into
account that, under QT0 , the random variables Ψ 1

T0
, Ψ 2

T0
, Ψ 3

T0
are independent, so

that we shall write f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z) = f1(x)f2(y)f3(z) (see also (68) and the line
following it), we obtain

P1(0;T0,Tn,R) = p(0,T0)
[ n∑
k=1

D0,ke
−A0,k

∫
M
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(∫ z̄1(x,y)

−∞
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ z̄1(x,y)

−∞
exp(−C̃33

0,k(z̄
1)2)f3(z)dz

+
∫ +∞

z̄2(x,y)
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ +∞

z̄2(x,y)
exp(−C̃33

0,k(z̄
2)2)f3(z)dz

)
f2(y)f1(x)dydx

]
. (95)

By means of calculations that are completely analogous to those in the proof of
Proposition 5.1, we obtain, corresponding to (79)–(81) respectively and with the
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same meaning of the symbols, the following explicit expressions for the integrals in
the last four lines of (95), namely

∫ z̄1(x,y)

−∞
e−C̃33

0,k z
2
f3(z)dz = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)√

1 + 2β̄3
T0
C̃33
0,k

Φ(d1k (x, y)), (96)

∫ z̄1(x,y)

−∞
e−C̃33

0,k(z̄
1)2 f3(z)dz = e−C̃33

0,k(z̄
1)2Φ(d2k (x, y)), (97)

and, similarly,

∫ +∞

z̄2(x,y)
e−C̃33

0,k z
2
f3(z)dz = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)√

1 + 2β̄3
T0
C̃33
0,k

Φ(−d3k (x, y)),

∫ +∞

z̄2(x,y)
e−C̃33

0,k(z̄
2)2 f3(z)dz = e−C̃33

0,k(z̄
2)2Φ(−d4k (x, y)),

(98)

where the dik(x, y), for i = 1, . . . , 4 and k = 1, . . . , n, are as specified in (93).

(ii) If (x, y) ∈ M̄c then, according to Definition 5.2 we have g(x, y, z) ≥ g(x, y, 0) >

h(x, y) for all z. Noticing that, analogously to (96),

∫
R

e−C̃33
0,kζ

2
f3(ζ)dζ = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)√

1 + 2β̄3
T0
C̃33
0,k

we obtain the following expression

P2(0; T0,Tn,R) = p(0,T0)
n∑

k=1

e−A0,k
[∫

M̄c×R

(
D0,ke

−B̃10,kx−C̃22
0,ky

2−C̃33
0,k z

2

− (Rγ + 1)e−B10,kx−C22
0,ky

2
)
f3(z)f2(y)f1(x)dzdydx

]

= p(0,T0)
n∑

k=1

e−A0,k
[
D0,k

(∫
Mc

e−B̃10,kx−C̃22
0,ky

2
f2(y)f1(x)dydx

)

× e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)
(∫

M̄c
e−B10,kx−C22

0,ky
2
f2(y)f1(x)dydx

)]
.

(99)

Adding the two expressions in (i) and (ii) we obtain the statement for Case 1.

Case (2).Also for this casewedistinguish betweenwhether (x, y) ∈ M̄ or (x, y) ∈ M̄c

and, again, compute separately the two terms in the last equality in (90).
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(i) For (x, y) ∈ M̄ we have that there exist z̄1(x, y) ≤ 0 and z̄2(x, y) ≥ 0 so that,
contrary to Case 1), one has g(x, y, z) ≥ g(x, y, z̄i) when z ∈ [z̄1, z̄2]. It follows that

P1(0; T0,Tn,R) = p(0,T0)

[ n∑
k=1

D0,ke
−A0,k

∫
M̄
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,k(z̄
1)2)f3(z)dz

)
f2(y)f1(x)dydx

]

= p(0,T0)

[ n∑
k=1

D0,ke
−A0,k

∫
M̄
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(
e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )√
1 + 2β̄3

T0
C̃33
0,k

(
Φ(d3k (x, y)) − Φ(d1k (x, y))

)

− e−C̃33
0,k (z̄

1)2
(
Φ(d4k (x, y)) − Φ(d2k (x, y))

))
f2(y)f1(x)dydx

]
,

(100)

where we have made use of (96) and (97), (98).

(ii) For (x, y) ∈ M̄c we can conclude exactly as we did it for Case (1) and, by adding
the two expressions in (i) and (ii), we obtain the statement also for Case (2).
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