Skip to main content

Human Endocrine System and Hormonal Measurement

  • Chapter
  • First Online:
Electrochemical Sensing: Carcinogens in Beverages

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 20))

  • 829 Accesses

Abstract

The endocrine system in living organisms is made up of the set of cells and glands that produce chemical signals called hormones. Hormones travel through human bloodstream to approach respective receptors in the target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Schettler, Human exposure to phthalates via consumer products. Int. J. Androl. 29(1), 134–139 (2005)

    Article  Google Scholar 

  2. P. Montuori, E. Jover, M. Morgantini et al., Assessing human exposure to phthalic acid and phthalate esters from mineral water stored in polyethylene terephthalate and glass bottles. Food Addit. Contam. 25(4), 511–518 (2008)

    Article  Google Scholar 

  3. R. Green, R. Hauser, A.M. Calafat et al., Use of di (2-ethylhexyl) phthalate–containing medical products and urinary levels of mono (2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environ. Health Perspect. 113(9), 1222 (2005)

    Article  Google Scholar 

  4. P. Foster, Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int. J. Androl. 29(1), 140–147 (2006)

    Article  Google Scholar 

  5. J.D. Meeker, A.M. Calafat, R. Hauser, Urinary metabolites of di (2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J. Androl. 30(3), 287 (2009)

    Article  Google Scholar 

  6. J.A. Colacino, T.R. Harris, A. Schecter, Dietary intake is associated with phthalate body burden in a nationally representative sample. Environ. Health Perspect. 118(7), 998 (2010)

    Article  Google Scholar 

  7. L. López-Carrillo, R.U. Hernández-Ramírez, A.M. Calafat et al., Exposure to phthalates and breast cancer risk in northern Mexico. Environ. Health Perspect. 118(4), 539 (2010)

    Article  Google Scholar 

  8. J.A. Colacino, A.S. Soliman, A.M. Calafat et al., Exposure to phthalates among premenstrual girls from rural and urban Gharbiah, Egypt: a pilot exposure assessment study. Environ. Health 10(1), 40 (2011)

    Article  Google Scholar 

  9. M.R. Lee, F.Y. Lai, J. Dou et al., Determination of trace leaching phthalate esters in water and urine from plastic containers by solid-phase microextraction and gas chromatography-mass spectrometry. Anal. Lett. 44(4), 676–686 (2011)

    Article  Google Scholar 

  10. R. Sendón, A. Sanches-Silva, J. Bustos et al., Detection of migration of phthalates from agglomerated cork stoppers using HPLC-MS/MS. J. Sep. Sci. 35(10–11), 1319–1326 (2012)

    Article  Google Scholar 

  11. Z. Guo, D. Wei, M. Wang et al., Determination of six phthalic acid esters in orange juice packaged by PVC bottle using SPE and HPLC-UV: application to the migration study. J. Chromatogr. Sci. 48(9), 760–765 (2010)

    Article  Google Scholar 

  12. WHO, WHO|Guidelines for drinking-water quality, fourth edition, World Health Organization (2011), http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/. ISBN: 978-92-4-154815-1

  13. X.L. Cao, Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry. J. Chromatogr. A 1178(1–2), 231–238 (2008)

    Article  Google Scholar 

  14. J. Li, Y. Cai, Y. Shi et al., Analysis of phthalates via HPLC-UV in environmental water samples after concentration by solid-phase extraction using ionic liquid mixed hemimicelles. Talanta 74(4), 498–504 (2008)

    Article  Google Scholar 

  15. F. Tamayo, E. Turiel, A. Martín-Esteban, Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J. Chromatogr. A 1152(1), 32–40 (2007)

    Article  Google Scholar 

  16. J.-P. Lai, M.-L. Yang, R. Niessner et al., Molecularly imprinted microspheres and nanospheres for di (2-ethylhexyl) phthalate prepared by precipitation polymerization. Anal. Bioanal. Chem. 389(2), 405–412 (2007)

    Article  Google Scholar 

  17. P. Qi, J. Wang, Y. Li et al., Molecularly imprinted solid-phase extraction coupled with HPLC for the selective determination of monobutyl phthalate in bottled water. J. Sep. Sci. 34(19), 2712–2718 (2011)

    Article  Google Scholar 

  18. M. Wagner, J. Oehlmann, Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ. Sci. Pollut. Res. 16(3), 278–286 (2009)

    Article  Google Scholar 

  19. C. Giam, H. Chan, G. Neff, Rapid and inexpensive method for detection of polychlorinated biphenyls and phthalates in air. Anal. Chem. 47(13), 2319–2320 (1975)

    Article  Google Scholar 

  20. D.A. Vignali, Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243(1), 243–255 (2000)

    Article  Google Scholar 

  21. J. Šmisterová, K. Ensing, R. De Zeeuw, Methodological aspects of quantitative receptor assays. J. Pharm. Biomed. Anal. 12(6), 723–745 (1994)

    Article  Google Scholar 

  22. R. Nebel, On-farm milk progesterone tests. J. Dairy Sci. 71(6), 1682–1690 (1988)

    Article  Google Scholar 

  23. N.D. Cook, Scintillation proximity assay: a versatile high-throughput screening technology. Drug Discov. Today 1(7), 287–294 (1996)

    Article  Google Scholar 

  24. T. Jonsson, C.D. Waldburger, R.T. Sauer, Nonlinear free energy relationships in Arc repressor unfolding imply the existence of unstable, native-like folding intermediates. Biochemistry 35(15), 4795–4802 (1996)

    Article  Google Scholar 

  25. H.C. Ishikawa-Ankerhold, R. Ankerhold, G.P. Drummen, Advanced fluorescence microscopy techniques—frap, flip, flap, fret and flim. Molecules 17(4), 4047–4132 (2012)

    Article  Google Scholar 

  26. B.S. Watson, T.L. Hazlett, J.F. Eccleston et al., Macromolecular arrangement in the aminoacyl-tRNA. cntdot. elongation factor Tu. cntdot. GTP ternary complex. A fluorescence energy transfer study. Biochemistry 34(24), 7904–7912 (1995)

    Article  Google Scholar 

  27. W. Berger, H. Prinz, J. Striessnig et al., Complex molecular mechanism for dihydropyridine binding to L-type Ca2 + channels as revealed by fluorescence resonance energy transfer. Biochemistry 33(39), 11875–11883 (1994)

    Article  Google Scholar 

  28. P.L. Khanna, E.F. Ullman, 4′, 5′-Dimethoxy-6-carboxyfluorescein: A novel dipole-dipole coupled fluorescence energy transfer acceptor useful for fluorescence immunoassays. Anal. Biochem. 108(1), 156–161 (1980)

    Article  Google Scholar 

  29. R.M. Clegg, A. Murchie, D. Lilley, The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis. Biophys. J. 66(1), 99–109 (1994)

    Article  Google Scholar 

  30. A. Gagne, P. Banks, S. Hurt, Use of fluorescence polarization detection for the measurement of Fluopeptide™ binding to G protein-coupled receptors. J. Recept. Signal Transduct. 22(1–4), 333–343 (2002)

    Article  Google Scholar 

  31. T.J. Kowski, J.J. Wu, Fluorescence polarization is a useful technology for reagent reduction in assay miniaturization. Comb. Chem. High Throughput Screening 3(5), 437–444 (2000)

    Article  Google Scholar 

  32. P. Zuck, Z. Lao, S. Skwish et al., Ligand-receptor binding measured by laser-scanning imaging. Proc. Natl. Acad. Sci. 96(20), 11122–11127 (1999)

    Article  Google Scholar 

  33. E.F. Ullman, H. Kirakossian, A. Switchenko et al., Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method. Clin. Chem. 42(9), 1518–1526 (1996)

    Google Scholar 

  34. M.B. Meza, Bead-based HTS applications in drug discovery. Drug Discov. Today 5, 38–41 (2000)

    Article  Google Scholar 

  35. B. Bohn, Flow cytometry: a novel approach for the quantitative analysis of receptor-ligand interactions on surfaces of living cells. Mol. Cell. Endocrinol. 20(1), 1–15 (1980)

    Article  Google Scholar 

  36. M. Eigen, R. Rigler, Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. 91(13), 5740–5747 (1994)

    Article  Google Scholar 

  37. U. Jönsson, L. Fägerstam, S. Löfas et al., Introducing a Biosensor Based Technology for Real-Time Biospecific Interaction Analysis, pp. 19–26

    Google Scholar 

  38. U. Jönsson, L. Fägerstam, B. Ivarsson et al., Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11(5), 620–627 (1991)

    Google Scholar 

  39. S. Subrahmanyam, S.A. Piletsky, A.P. Turner, Application of natural receptors in sensors and assays. Anal. Chem. 74(16), 3942–3951 (2002)

    Article  Google Scholar 

  40. W.D. Wilson, Analyzing biomolecular interactions. Science 295(5562), 2103–2105 (2002)

    Article  Google Scholar 

  41. J.E. Gestwicki, H.V. Hsieh, J.B. Pitner, Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal. Chem. 73(23), 5732–5737 (2001)

    Article  Google Scholar 

  42. D. Kröger, F. Hucho, H. Vogel, Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance. Anal. Chem. 71(15), 3157–3165 (1999)

    Article  Google Scholar 

  43. E.L. Schmid, A.-P. Tairi, R. Hovius et al., Screening ligands for membrane protein receptors by total internal reflection fluorescence: the 5-HT3 serotonin receptor. Anal. Chem. 70(7), 1331–1338 (1998)

    Article  Google Scholar 

  44. D. Axelrod, T.P. Burghardt, N.L. Thompson, Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng. 13(1), 247–268 (1984)

    Article  Google Scholar 

  45. D. Axelrod, E.H. Hellen, R.M. Fulbright, Total internal reflection fluorescence, in Topics in Fluorescence Spectroscopy (Springer, 2002), pp. 289–343

    Google Scholar 

  46. N.D. Käppel, F. Pröll, G. Gauglitz, Development of a TIRF-based biosensor for sensitive detection of progesterone in bovine milk. Biosens. Bioelectron. 22(9), 2295–2300 (2007)

    Article  Google Scholar 

  47. U. Jönsson, M. Malmqvist, I. Ronnberg, Adsorption of immunoglobulin G, protein A, and fibronectin in the submonolayer region evaluated by a combined study of ellipsometry and radiotracer techniques. J. Colloid Interface Sci. 103(2), 360–372 (1985)

    Article  Google Scholar 

  48. M. Stenberg, H. Nygren, A receptor-ligand reaction studied by a novel analytical tool—the isoscope ellipsometer. Anal. Biochem. 127(1), 183–192 (1982)

    Article  Google Scholar 

  49. B. Meyer, T. Peters, NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 42(8), 864–890 (2003)

    Article  Google Scholar 

  50. C.A. Lepre, J.M. Moore, J.W. Peng, Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 104(8), 3641–3676 (2004)

    Article  Google Scholar 

  51. B. R. Eggins, Chemical sensors and biosensors: John Wiley & Sons, 2008

    Google Scholar 

  52. D. Pritchard, H. Morgan, J. Cooper, Simultaneous determination of follicle stimulating hormone and luteinising hormone using a multianalyte immunosensor. Anal. Chim. Acta 310(2), 251–256 (1995)

    Article  Google Scholar 

  53. L. Watson, P. Maynard, D. Cullen et al., A microelectronic conductimetric biosensor. Biosensors 3(2), 101–115 (1988)

    Article  Google Scholar 

  54. C.G. Fox, J.F. Alder, Surface acoustic wave sensors for atmospheric gas monitoring. A review. Analyst 114(9), 997–1004 (1989)

    Article  Google Scholar 

  55. M. Nieuwenhuizen, A. Nederlof, M. Vellekoop et al., Preliminary results with a silicon-based surface acoustic wave chemical sensor for NO2. Sens. Actuators 19(4), 385–392 (1989)

    Article  Google Scholar 

  56. E. Gizeli, N.J. Goddard, C.R. Lowe et al., A love plate biosensor utilising a polymer layer. Sens. Actuators B: Chem. 6(1), 131–137 (1992)

    Article  Google Scholar 

  57. P.J. Edmonson, W.D. Hunt, D.D. Stubbs et al., Analogies between digital radio and chemical orthogonality as a method for enhanced analysis of molecular recognition events. Int. J. Mol. Sci. 9(2), 154–168 (2008)

    Article  Google Scholar 

  58. A. Voller, D.E. Bidwell, A. Bartlett, in The enzyme linked immunosorbent assay (ELISA). A guide with abstracts of microplate applications (Dynatech Europe, Borough House, Rue du Pre., 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Iqbal Zia .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zia, A.I., Mukhopadhyay, S.C. (2016). Human Endocrine System and Hormonal Measurement. In: Electrochemical Sensing: Carcinogens in Beverages. Smart Sensors, Measurement and Instrumentation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-32655-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32655-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32654-2

  • Online ISBN: 978-3-319-32655-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics