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Abstract. Tomographic acquisitions can be described mathematically
as discrete projective transforms. Direct reconstruction methods aim
to compute an accurate inverse for such transforms. We assemble a
limited set of measurements and then apply the inversion to obtain
a high-fidelity image of the original object. In this work, we compare
the following direct inversion techniques for sets of discrete projections:
Radon-i(inverse)Radon, a least squared error method and filtered back-
projection for Mojette inversion. We observe that filtered back-projection
is the best of these methods, as the reconstruction errors that arise using
this method depend least strongly on the image structure. We aim to
improve results for the filtered back-projection method by optimizing
the design of the regularizing filter and here present work towards elim-
inating the regularization threshold that is used as part of this method.

1 Introduction

The classic Radon transform is based on the continuous spatial domain and
requires infinitely many projections for exact reconstruction [1], which is practi-
cally infeasible. Thus, the inverse Radon transform is an ill-posed problem. This
lead to the evolution of Discrete Radon Transform (DRT) in which the underly-
ing object is viewed as a discrete entity rather than a continuous entity. Digital
projections are computed along specific set of angles and if the number of angles
is sufficient, then exact inversion is possible. However, in practice, the trajectory
of X-rays does not follow discrete paths. The acquired measurements, which are
in Radon form, can be converted to equivalent discrete measurements by solving
a system of equations, as described in [2].

A type of DRT, called the Mojette transform, was developed by Guédon
et al. [3]. The advantage of this transform is that, if a sufficiently large number
of angles are used, then direct back-projection of discrete Mojette projections
results in exact recovery of the image [4], and is reasonably robust to noise [5,6].
Each discrete projection angle is defined by a set of numbers: (p, q) where p and
q are co-prime integers. Computing projection along (p, q) involves summing the
intensity values of pixels that lie along the line making an angle of tan−1 p

q .
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This procedure is also termed as ‘Dirac’ Mojette transform because the under-
lying 2D pixel representation is a ‘Dirac’ field, i.e.

f(x, y) =
∑

k

∑

l

f(k, l)δ(x − k)δ(y − l) (1)

Here, there is no notion of interpolation like the Radon transform as every
pixel is considered to be a weighted Dirac function [7]. The Dirac Mojette trans-
form is formally defined as:

M(b, p, q) = Projectionpq(b)

=
+∞∑

k=−∞

+∞∑

l=−∞
f(k, l)δ(b + kq − pl)

(2)

where δ(n) is the kronecker delta function with value 1 when n = 0 and 0
everywhere else. Thus, values of all pixels that lie on the line kq − pl = b are
summed and put into the bin b. Both Mojette forward projection and inverse
transforms of an image can be computed with the same complexity, given by
O(IN) [8]. Thus it is linear in I, the number of projections and N , total number
of pixels in an image. The number of bins required for a projection is given by:

Nbins(i) = (W − 1) ∗ |pi| + (H − 1) ∗ |qi| + 1 (3)

It is thus dependent on the angle (pi, qi), and the image size H ×W . In order
to uniquely reconstruct this image, the following criterion [9] must be satisfied
by the chosen angle set:

W ≤
∑

i

|pi| or H ≤
∑

i

|qi| (4)

This is called the Katz sufficiency criterion. Our aim is to perform image recon-
structions below the Katz limit. When this sufficiency criterion is not met, the
‘missing’ projections give rise to reconstruction artefacts (called ‘ghosts’) [10].

Our aim here is to evaluate several methods to invert discrete projection
data from a limited set of (p, q) view angles. This work is part of a study [11]
reconstructing 3D and 4D image data under sparse assumptions by pooling pro-
jections across multiple 2D ‘slices’. Direct reconstructions of 2D slices will be
used as seeds for iterative reconstruction methods or as part of the guiding
mechanism used to select and pool slices.

We seek optimal and robust 2D image reconstruction using minimal pro-
jection data. The goal of this paper is to compare three methods of direct
tomographic reconstruction: classical Radon-i(inverse) Radon, filtered back-
projection and a least squared error driven filtered back-projection method. We
have not analyzed corner-based inversion [7], because it is noise intolerant; the
Finite Radon Transform (FRT) [12], as it requires a fixed set of view angles and
has strong image artefacts when the available data is under-sampled; and iter-
ative multi-scale methods- as they work best for selected combinations of (p, q)
view angles. We will include the recently published fractional Fourier method of
Kingston [13] in our future work.



A Comparison of Some Methods for Direct 2D Reconstruction 119

2 Direct Inversion Methods

We compared the performance of the following three reconstruction techniques
on a set of images shown in Fig. 1:

1. Shepp-Logan inverse Radon (filtered back-projection) on Radon projected
images.

2. Point Spread Function (PSF) estimation by least squared error method on
Mojette projected images.

3. Filtered back-projection on Mojette projected images.

The circular mask of the images constrains the reconstructed views to have
equal projection lengths for all view angles (as is common for CT where the ROI
shape is framed by the edges of a rotating X-ray beam). A set of discrete angles
was used for computing projections. Each angle consisted of (p, q) where p and q
are co-prime integers. Throughout this paper, we refer to the ‘shortest’ angles as
those which have small

√
p2 + q2 values. Thus, the first six shortest angles are

(0, 1), (1, 0), (1, 1), (−1, 1), (2, 1) and (−2, 1). For all the experiments described
in this section, the shortest 52 angles were used. To measure the quality of
reconstructed images, we have used the Mean Squared Error (MSE) based Peak
Signal to Noise Ratio (PSNR), as a metric.

2.1 Radon-iRadon

We computed the Radon projection along a fixed set of angles, each being
given by tan−1 p

q , corresponding to the discrete angle (p, q). Following this, the
image was reconstructed using Shepp-Logan filtered back-projection for inverse
Radon. The use of Shepp-Logan filter is a compromise between applying no filter
(Ram-Lak) and the more heavy noise suppression of filters like Cosine or Ham-
ming (We synthesize our projections by forward projection of the image data.
Hence noise is not a major problem here). The results are shown in Fig. 2.

2.2 Least Squared Error Method

The Mojette back-projected image m and the original image im are related by
the following expression [7]:

mp,q(x, y) = im(x, y) ∗ hp,q(x, y) (5)

where hp,q denotes the PSF corresponding to the Mojette angle set (p, q) along
which the projections are taken and ∗ denotes convolution operator. In the fre-
quency domain, we have

M(u, v) = IM(u, v) · H(u, v) (6)

We estimated 1/H(u, v) using a least squared error technique. The sum of
((1/H) ·M − IM)2 is minimized over all the training images. The resultant PSF
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(a) (b) (c)

Fig. 1. Original images used for testing reconstruction algorithms throughout this
paper. (a): Slice of the brain [14], (b): Cameraman, (c): House. Each image is of size
179 × 179

(a) PSNR = 21.24 (b) PSNR = 17.43 (c) PSNR = 19.66

Fig. 2. Reconstruction by Radon-iRadon technique with the 52 shortest projection
angles

is checked for extremely small values (below a fixed threshold) and these values
are replaced by the mean of their neighborhoods. The training set included 10
randomly chosen images from a dataset of images of birds and natural scenery.
The size of the training set did not affect the quality of estimation. A small
training set with 10 images was found to give results which were similar to
those when 100 or 500 training images were used. This is because the PSF is
not entirely image dependent. Its value (when estimated this way) is erroneous
only in those locations where the 0/0 problem arises, because of which specific
structural artefacts were observed in the reconstructed images, as shown in Fig. 3.

2.3 Filtered Back-Projection

The obvious way to reconstruct original image im is the following:

im(x, y) = F−1M(u, v)
H(u, v)

(7)

where F denotes the Fourier transform. But, retrieving im as shown in Eq. 7 is
unstable as H tends to be zero or very small at multiple frequencies.
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(a) PSNR = 18.13 (b) PSNR = 14.42 (c) PSNR = 17.42

(d) PSNR = 18.34 (e) PSNR = 13.84 (f) PSNR = 17.18

(g) PSNR = 17.92 (h) PSNR = 13.62 (i) PSNR = 16.65

Fig. 3. Reconstruction by least squared error estimate with the 52 shortest projection
angles and (a, b, c): 10 training images, (d, e, f): 100 training images, (g, h, i): 500
training images

In [15], Hp,q(u, v) is regularized with a weighted filter so that the central
region has no holes. The image is then reconstructed by direct deconvolution of
the filtered PSF with the Mojette back-projected image (Fig. 4). This is equiv-
alent to regularizing the back-projected image in the frequency domain and
then taking the inverse Fourier transform. Extremely low values (below a fixed
threshold) in the FFT of the filtered PSF are replaced by the mean evaluated
over neighborhoods of fixed size. The PSF filtration in [15] is described by:

PSFmodified =
{

PSF. × wnp : K > 1
PSF. × tnp : K < 1
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(a) PSNR = 26.32 (b) PSNR = 22.55 (c) PSNR = 23.04

Fig. 4. Reconstruction by the filtered back-projection with the 52 shortest projection
angles

(a) (b) (c) (d)

Fig. 5. (a): raw PSF (inverted); (b): FFT of PSF (center-shifted and inverted);
(c): The wnp filter for a 179 × 179 image, measured using the 52 shortest Mojette
angles; (d): absolute difference between FFT of raw PSF and filtered PSF (center-
shifted and inverted)

where .× denotes ‘point-to-point’ multiplication and K = k/N ; k being the
Katz number given by: k = 1 + max(

∑
i |pi|,

∑
i |qi|) [9] and N × N being the

dimension of the image. The Katz number is dependent not only on the number
of views but also on the specific set of angles (p, q) chosen. The filter wnp is
computed [15] by cross-correlating the back-projected images wp and wn; wp
being generated by back-projecting delta image along the set of angles that was
used while taking measurements and wn being generated by back-projecting
delta image along complementary set of angles.

wnp = (wp � wn) � (D � D) (8)

tnp = (wp � wn) (9)

where D is 1 within the region of interest and � denotes cross-correlation. The
wnp filter for an image of size 179 × 179 and measurements taken along the 52
shortest angles, is shown in Fig. 5. A big advantage of this approach is that it
can accommodate, with small drop in performance, angle distributions that are
uniform, random or clumped.
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Fig. 6. Absolute error (in log scale to accentuate small intensity differences) on apply-
ing different direct reconstruction techniques using the shortest 52 projection angles.
Left column: Radon-iRadon; Middle column: least squared error reconstruction; Right
column: filtered back-projection reconstruction for images of brain (top row), camera-
man (middle row) and house (bottom row)

2.4 Comparison of Different Reconstruction Techniques

The absolute errors in reconstruction by all the above techniques are shown in
Figs. 6 and 7 in logarithmic scale, while the reconstructions on rotated images
are shown in Fig. 8. The errors in Radon-iRadon and more so, in least squared
error based methods are strongly dependent on image structure. However, in the
filtered back-projection, for a sufficient number of projection views, a significant
portion of the error is image independent, indicating scope for improvement in
this technique.

For example, when the number of projection views was 52, errors of all meth-
ods were dependent on image structure, as shown in Fig. 6. But, when the number
of views was increased to 200, the errors in the filtered back-projection method
alone was weakly dependent on the image structure (Fig. 7), whereas the errors
in other two methods still showed strong image dependency.

The PSF model is simple and makes no assumptions about the back-
projected data. The image reconstruction is very fast and avoids any concern
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Fig. 7. Absolute error (in log scale to accentuate small intensity differences) on apply-
ing different direct reconstruction techniques using the shortest 200 projection angles.
Left column: Radon-iRadon; Middle column: least squared error reconstruction; Right
column: filtered back-projection reconstruction for images of brain (top row), camera-
man (middle row) and house (bottom row)

over convergence rates and local minima in optimization that may constrain
iterative methods.

3 Improved Filtered Back-Projection for Mojette
Inversion

We wish to investigate ways to improve the filtered back-projection method,
because it gives better results than the other two techniques. First, we discuss
the sensitivity of this method to the value of threshold and then the strong
effects of selecting particular angles as part of the projection set.

3.1 Replacing Holes in the Fourier Domain of the Filtered Point
Spread Function

In filtered back-projection, the FFT of the filtered PSF is checked for values lower
than a threshold. Such values are replaced by mean of their neighborhood [15].
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(a) PSNR=21.25 (b) PSNR=18.65 (c) PSNR=25.63

(d) PSNR=18.11 (e) PSNR=14.59 (f) PSNR=22.31

(g) PSNR=20.96 (h) PSNR=17.14 (i) PSNR=25.36

Fig. 8. Reconstruction on rotated images of brain (top row), cameraman (middle row)
and house (bottom row) using Radon-iRadon (left column), least squared error method
(middle column) and filtered back-projection (right column) with the 52 shortest pro-
jection angles

Fig. 9. Reconstruction with the shortest 50 angles excluding the angles: (0,1) and (1,0);
Left: original Image; Middle: reconstructed image; Right: absolute error
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Table 1. Variation of optimal threshold (fval) with image size and Katz ratio. The
optimal threshold is the smallest threshold corresponding to the PSNR that lies within
0.01 of the global maximum PSNR, computed for resized versions of the cameraman
image

Katz ratio Image size: 179× 179 Image size: 89× 89 Image size: 43× 43

# shortest Peak fval # shortest Peak fval # shortest Peak fval
angles PSNR angles Peak angles PSNR

0.46 33 16.6 13 21 18.13 8 13 17.65 8

0.7 44 20.52 16 28 21.36 10 17 20.12 7

0.88 52 22.39 15 32 22.26 11 20 22.2 8

1.10 60 23.58 14 38 23.63 11 24 23.36 7

1.30 64 24.24 15 42 24.69 11 25 24.34 8

1.75 81 26.51 13 50 26.75 10 31 26.44 9

Fig. 10. Observing the quality of reconstruction as the size of neighborhood over which
mean is evaluated is varied in each of the three images. The middle red line represents
median and the ends of the boxes represent the 25th and 75th percentiles of PSNRs
(Color figure online).

We observed the quality of reconstruction for different values of threshold. The
optimal threshold is slightly dependent on image size, as seen in Table 1. This
is because a larger sized PSF has higher frequency content (requiring a rela-
tively higher threshold). However, the sensitivity of image reconstructions to the
selected value of the threshold is quite weak over a wide range of image sizes
and Katz values. We also observed (Fig. 10) how the size of neighborhood over
which the mean is evaluated, affects the quality of reconstruction. Based on this
information, we have used a 5 × 5 neighborhood.
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3.2 Choice of Discrete Angles

Guillaume de Charette [16] and Matúš et al. [12] studied the amount of variance
captured by different discrete angles. They observed that a discrete angle (p, q)
captures variance (or information) proportional to 1

p2+q2 . Our observation con-
firms this. Figure 9 shows reconstructed image when angles (0, 1) and (1, 0) were
omitted. The resultant reconstructed image has strong errors along 0◦ and 90◦.
Hence, even when random set of angles is used, it is essential to include shorter
angles like (1, 0), (0, 1), (1, 1) and (−1, 1). This effect might be compensated for
by improved design of the weighting filter wnp.

4 Conclusion

We have compared three related techniques for direct image reconstruction from
a finite set of discrete projections. We observed that as the number of projections
increases, the reconstruction errors in filtered back-projection method is least
dependent on the image structure and orientation. Hence, there is good scope
for further improvement in this method. Ideally, we would like to modify the
filter such that there is no need for a final threshold based clipping. Towards
this, we observed how this optimal threshold depends on image size and Katz
number.
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