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Abstract. The notion of hypergraph generalizes that of graph in the
sense that each hyperedge is a non-void subset of the set of vertices,
without constraints on its cardinality.

A fundamental and widely investigated notion related both to graphs
and to hypergraphs is the characterization of their degree sequences, that
is the lists of their vertex degrees.

Concerning graphs, this problem has been solved in a classical study
by Erdős and Gallai, while no efficient solutions are known for hyper-
graphs. If we restrict the (degree sequences) characterization to uniform
hypergraphs, several necessary conditions are provided in the literature,
but only few sufficient ones: among the latter, a recent one requires to
split a sequence into suitable subsequences whose graphicality has to
be recursively tested. Unfortunately, such an approach does not allow a
direct efficient implementation.

We study this problem under a tomographical perspective by adapt-
ing an already known reconstruction algorithm that has been defined
for regular h-uniform degree sequences to the proposed instances, pro-
viding efficiency to the sufficient condition. Furthermore, we extend the
set of h-uniform degree sequences whose graphicality can be efficiently
tested. This tomographical approach seems extremely promising for fur-
ther developments.

Keywords: Graphic sequence · Discrete Tomography · Reconstruction
problem

1 Introduction

A hypergraph H is defined as a couple (V ert, E), where V ert is a finite set of
vertices v1, . . . , vn, and E ⊂ 2|V ert| \∅ is a set of hyperedges, i.e. subsets of V ert.
The notion of hypergraph naturally extends that of graph, where the edges are
restricted to only couples of vertices (see [2] for preliminary notions and results
on hypergraphs). In this paper, we consider simple hypergraphs, i.e. hypergraphs
that are loopless and with distinct hyperedges. The degree of a vertex v ∈ V ert is
the number of hyperedges that contain v. A hypergraph is said to be h-uniform
(simply h-graph), if every hyperedge has cardinality h.
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A fundamental and widely investigated notion related both to graph and to
hypergraph is that of degree sequence, that is the list of its vertex degrees, usually
written in non-increasing order, as d = (d1, d2, . . . , dn), with d1 ≥ d2 ≥ · · · ≥ dn,
and n being the cardinality of V ert.

The problem of characterizing the degree sequences for simple graphs, say
graphic sequences, was solved by Erdős and Gallai (see [1,6]):

Theorem 1 (Erdős, Gallai). A sequence d = (d1, d2, . . . , dn) where d1 ≥ d2 ≥
· · · ≥ dn is graphic if and only if Σn

i=1di is even and

k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, 1 ≤ k ≤ n.

Then, other characterizations appeared in the literature: in [9], seven of them
are listed and they are proved to be equivalent, one of them leading to a con-
structive proof of the Erdős-Gallai Theorem.

On the other hand, the problem of the characterization of the degree
sequences of h-uniform hypergraphs (say h-graphic sequences) is one of the most
challenging among the unsolved problems in the theory of hypergraphs even for
the simplest case of h = 3.

In [5], Dewdney proposes the following theorem as a non-constructive charac-
terization of an h-uniform degree sequences based on the possibility of splitting
a uniform hypergraph into two uniform parts, one of them (eventually void) of
smaller degree:

Theorem 2 (Dewdney). Let π = (d1, . . . , dn) be a non-increasing sequence of
non-negative integers. π is h-graphic if and only if there exists a non-increasing
sequence π′ = (d′

2, . . . , d
′
n) of non-negative integers such that

1. π′ is (h − 1)-graphic,
2.

∑n
i=2 d′

i = (h − 1)d1, and
3. π′′ = (d2 − d′

2, . . . , dn − d′
n) is h-graphic.

The underlying idea in the characterization rests on the possibility of splitting
an h-uniform hypergraph H into two parts: for each vertex v, the first one
consists of the hypergraph obtained from H after deleting all the hyperedges not
containing v, and then removing, from all the remaining hyperedges, the vertex
v; this hypergraph is identified in the literature with LH(v), say the link of v,
and its degree sequence the link sequence of v. The second hypergraph H−

v , say
the residual of v, is obtained from H after removing all hyperedges containing v.
It is clear that H can be obtained from LH(v) and H−

v ; furthermore one can
notice that LH(v) is (h − 1)-uniform, while H−

v preserves the h-uniformity.
Such a recursive decomposition of a uniform hypergraph into smaller parts

stops when each of them either is 2-uniform, or has only one single hyper-
edge: in both cases the hypergraphs that realize the sequence can be efficiently
reconstructed. Finally, we proceed in merging the obtained hypergraph: let
π′ = (d′

2, . . . , d
′
n) be (h − 1)-graphic and π′′ = (d′′

2 , . . . , d′′
n) be h-graphic, and let
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H ′ = (V ert′, E ′) and H ′′ = (V ert′′, E ′′) be the related hypergraphs, respectively.
H ′ and H ′′ can be merged into the hypergraph H = (V ert, E) whose degree
sequence is π = ( |E|

h−1 , d′
1 + d′′

1 , . . . , d′
n + d′′

n), as follows: identify the sets V ert′

and V ert′′

– V ert = V ert′ ∪ {v}, v being a new vertex not in V ert,
– E = E ′

v ∪E ′′ being E ′
v the set of hyperedges obtained adding to each element

of E ′ the vertex v.

It is straightforward that E is h-uniform and it has π as degree sequence.
We point out that the process to split the degree sequence π cannot be

efficiently performed, since one has to test, in general, a non-polynomial number
of couple of sequences π′ and π′′.

So, gaining the efficiency in this step, will guarantee efficiency to the whole
process, making a valuable step towards the general problem of the character-
ization of the degree sequences of hypergraphs. Surprisingly, many necessary
conditions have been provided for a sequence to be h-uniform, most of them
generalize the Erdős and Gallai Theorem, or rely on two well known theorems
by Havel and Hakimi [13,14], on the other hand, few necessary ones are present.
Recently, one of this latter, provided in [10], exploits Dewdney’s Theorem to set
a lower bound on the length of a sequence in order to be h-uniform, according
to its maximum value and to the span of its elements, where span of a sequence
means the maximum difference between its elements. The present paper describes
and extends this result using a different perspective, providing a polynomial
time strategy to determine one of the hypergraphs of the related instances. The
Discrete Tomography framework we are going to consider, has valuable mathe-
matical and statistical tools to challenge inverse problems in the form of recon-
structions of discrete objects modeled as integer matrices, from the knowledge of
their row and column sums, say horizontal and vertical projections. The paper
is organized as follows: in Sect. 2 we introduce the main definitions and we recall
some results about h-uniform degree sequences. Furthermore, after translating
the h-uniformity problem in the Discrete Tomography framework, we sketch an
already known hypergraph reconstruction strategy. In Sect. 3, we extend this
strategy to a set of instances including those introduced in [10], and so pro-
viding for them an effective proof. Finally, in Sect. 4, we discuss future possible
developments of our strategy, and we present some related open problems.

2 Definitions and Known Results

Here, we recall a sufficient condition, provided in [10], for a sequence to be
h-uniform, together with an extension as corollary. This condition turns out to
be non efficient in the sense that a non-polynomial number of cases has to be
considered in order to test the h-uniformity. Then, we move to the Discrete
Tomography environment, where we show how to embed the h-uniformity prob-
lem. A recent strategy described in [11] allows to efficiently reconstruct one of
the h-uniform hypergraphs compatible with a given constant degree sequence.
After recalling this result, we show how to adapt it to comprehend near-regular
sequences.
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2.1 A Sufficient Condition for a Sequence to be h-Graphic

A characterization of the degree sequences of simple hypergraphs is a challenging
task. As a first step, we consider the subset of hypergraphs having h-uniformity,
i.e. those hypergraphs whose hyperedges have the same cardinality h.

The following sufficient condition for a sequence π to be h-graphic is provided
in [10] and it relies on Theorem 2; when h = 2, it turns out to be a simple
consequence of the Erdős-Gallai Theorem for graphs. Let σ(π) indicate the sum
of the elements of π.

Theorem 3. Let π be a non-increasing sequence of length n with maximum
entry Δ and t entries that are at least Δ − 1. If h divides σ(π) and

(
t − 1
h − 1

)
≥ Δ (1)

then π is h-graphic.

It is useful to sketch the proof of this theorem in order to underline the
connection with Theorem 2 and, as a consequence, the non-efficiency of the
process.

The h-graphicality of a sequence π = (d0, . . . , dn−1) is tested after recursively
split it into a series of link and residual sequences as follows: let 0 ≤ i ≤ Δ − 1,

si =
n−1∑

j=1

max{0, dj − i} − (h − 1)Δ and c = max{i : si ≥ 0}.

The link sequence of π is defined as the sequence L = (l1, . . . , ln−1) where, for
1 ≤ i ≤ n − 1,

li =

{
di − c − 1 if 1 ≤ i ≤ sc,

di − c otherwise.
(2)

Finally, the residual sequence is defined as the sequence R = (r1, . . . , rn−1),
with ri = di − li, for 1 ≤ i ≤ n − 1. The proof proceeds by showing that
the two sequences already defined are h − 1 and h uniform, respectively. The
proof completes after noticing that a sequence of the form π′ = (1mh, 0n−mh)
is h-graphic since it is realized by a hypergraph on n vertices having m disjoint
hyperedges.

Corollary 1. Let π be a non-increasing sequence with maximum entry Δ, and
let p be the minimum integer such that Δ ≤ (

p−1
h−1

)
. If h divides σ(π) and σ(π) ≥

(Δ − 1)p + 1, then π is h-graphic.

The corollary allows to drop the near-regularity condition on the first part
of the sequence, replacing it with a sufficiently large sum of the sequence.

In the sequel, we will show how one can have a better grasp on both these
results once translated into the Discrete Tomography environment. Further-
more, this translation allows to use its mathematical tools to enlarge the set
of sequences that can be tested be h-graphic.
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2.2 Translating h-Graphicality into the Discrete Tomography
Environment

The problem of checking the h-graphicality of a non-increasing integer sequence
π has been related to a class of problems that are of great relevance in the
field of Discrete Tomography. More precisely the aim of Discrete Tomography
is the retrieval of geometrical information about a physical structure, regarded
as a finite set of points in the integer lattice, from measurements, known as
projections, of the number of atoms in the structure that lie on parallel lines with
fixed scopes. A common simplification is to represent a finite physical structure
as a binary matrix, where an entry is 1 or 0 according to the presence or absence
of an atom in the structure at the corresponding point of the lattice. One of
the challenging problems in the field is then to reconstruct the structure, or,
at least, to detect some of its geometrical properties from a small number of
projections. One can refer to the books of G.T. Herman and A. Kuba [7,8] for
further information on the theory, algorithms and applications of this classical
problem in Discrete Tomography.

So, let A = (ai,j) be an m × n binary matrix; we define two vectors H =
(h1, . . . , hm), and V = (v1, . . . , vn) called the horizontal and vertical projections
of A, respectively, such that

n∑

j=1

ai,j = hi and
m∑

i=1

ai,j = vj with 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Seminal results show that the characterization, and the reconstruction of A
from its two projections H and V , can be done in polynomial time; see [7] for
a survey. Furthermore, in [7,8] there are applications in Discrete Tomography
requiring additional constraints.

As shown in [1], Chapters 14 and 15, this problem is equivalent to the
reconstruction of a bipartite graph G = (H,V,E) from its degree sequences
H = (h1, . . . , hm) and V = (v1, . . . , vn).

So, in this context, the problem of the characterization of the degree sequence
(d1, d2, . . . , dn) of an h-uniform hypergraph H (without parallel edges) asks
whether there is a binary matrix A with non-negative projection vectors H =
(h, h, . . . , h) and V = (d1, d2, . . . , dn) with distinct rows, i.e., A is the incidence
matrix of H where rows and columns correspond to hyperedges and vertices,
respectively, so that the element ai,j has value 1 if and only if the i-th hyperedge
contains the j-th vertex. We indicate with E the class of such matrices.

In [11], the authors consider the case of h-uniform hypergraphs that are also
d-regular, i.e., each vertex has the same degree. This reflects on the vertical
projection V of the related matrix by setting all its values to d.

The authors start from the following two trivial conditions that are necessary
for the existence of an m×n matrix consistent with two vectors H = (h1, . . . , hm)
and V = (v1, . . . , vn) of projections:

Condition 1: for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, it holds hi ≤ n and vj ≤ m;
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Condition 2: the sums of the entries of the horizontal and the vertical projec-
tions are equal, i.e.,

∑m
i=1 hi =

∑n
j=1 vj ,

and then they add a third one that is trivially necessary and that determines
the existence of an element of E having projections H = (h, . . . , h) and V =
(d, . . . , d):

Condition 3: the following inequality holds:

d ≤ h

n
·
(

n

h

)
.

Condition 3 can be rephrased, in our setting, as follows: there does not exist
a matrix in E having H = (h, . . . , h) and V = (d, . . . , d) as projections, and more
than

(
n
h

)
different rows, otherwise at least two of them have to be equal.

The characterization is obtained by showing that the three conditions are
also sufficient: the authors define an efficient procedure that reconstructs an ele-
ment A of E from its constant projections H and V , and that uses properties of
combinatorics of words; we indicate this procedure by REC(H,V, E). In particu-
lar, if we consider each row of the m×n output matrix A as a binary word, then
the procedure REC inserts, inside A, a submatrix A′ of dimension m′ ×n having
the minimal admissible constant vector of vertical projections and whose rows
are all the possible cyclic h-shifts of the word u = (1)h, (0)n−h. Here, the power
notation (x)y indicates the repetition of the symbol x for y times, and the cyclic
h-shift operator is defined on a generic word w = w1, . . . , wn as the operator
s(w)h = wn−h+1, . . . , wn, w1, . . . , wn−h. Simple computations leads to the fact
that m′ = n/g.c.d.{h, n}, and the vertical projections of A′ have constant value
v = h/g.c.d.{h, n}. The computational complexity of the reconstruction process
can be obtained by observing that a CAT algorithm has been defined in [16] to
generate Lyndon words of length n and given density h, and that the number of
required Lyndon words is O(m). Furthermore, for each Lyndon word, we require
to generate the related necklace, so the total computational complexity turns
out to be O(h · n2 · m2).

3 A Constructive Proof of Theorem 3

Now, we present a variant of the procedure REC that includes near-regular
instances, and that will be used to provide a constructive proof of Theorem 3
and Corollary 1. Such approach will allow to enlarge the set of degree sequences
that can be proved to be h-graphic.

3.1 A Procedure to Reconstruct Near d-Regular, h-Uniform
Hypergraphs

Let us characterize the degree sequences of h-uniform hypergraphs that are near
d-regular, i.e., whose hyperedges have cardinality d or d − 1; we indicate the
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related set of binary matrices (having no equal rows, and horizontal and vertical
projections H = (h, . . . , h) and V = (d, . . . , d, d − 1, . . . , d − 1), respectively)
with E1.

In [3], it has been proved that for these projections H and V , Conditions
1 and 2 are sufficient to ensure the existence of a compatible matrix. Adding
Condition 3 and extending REC to REC1, we characterize the elements of E1.
We sketch the procedure REC1: let H = (h, . . . , h) of length m, and V =
(d, . . . , d, d − 1, . . . , d − 1) of length n, be two vectors of projections satisfying
Conditions 1, 2, and 3:

Step 1: compute the constant vectors of projection H ′ and V ′ such that H ′ =
(h, . . . , h) has length m′ = k/h > m, and V ′ = (v′, . . . , v′), of length n and
v′ = k/n, with k being the least integer such that it is both multiple of h
and n, and greater than h · m.

Step 2: run REC(H ′, V ′, E), and let A be its output. Detect the submatrix A′

of A whose rows are the successive h-shifts of (1)h(0)n−h, as defined in the
previous section. Delete in A, one by one, these rows according to the order
provided by the successive application of the h-shifts, till reaching the desired
near-regular projections V . Give A as output.

The details of the algorithm together with the proof of its correctness can
be found in [12]; its computational complexity is the same as REC procedure.
In Fig. 1, (b), there is an example of the reconstruction of an element of E1

representing a 3-uniform hypergraph having near regular degree sequence V =
(2, 2, 2, 2, 2, 1, 1).

3.2 Reconstructing an h-Uniform Hypergraph Whose Degree
Sequence Satisfies Inequality (1)

Let us consider a non-decreasing sequence of integers π that satisfies inequality
(1); we show how to reconstruct an h-uniform hypergraph represented by an
m × n matrix A, whose degree sequence is π.

The strategy, say REC-Link, adds efficiency to the steps in the proof of
Theorem 3, and acts on each link sequence to reconstruct the related part of A
from its horizontal and vertical projections. Two lemmas are needed:

Lemma 1. Let L = (l1, . . . , lt+1) be a link sequence, computed as in Theorem3.
It holds that

lt+1 ≤
(

t

h − 2

)
.

Proof. Let us compute an upper bound to lt+1: since σ(L) = Δ · (h−1), then we
have Δ·(h−1) ≤ (

t
h−1

)·(h−1). An upper bound of lt+1 can be set to
(

t
h−1

)· (h−1)
t+1

since L is non-increasing. The computation of the binomial coefficients leads to
the thesis. �	
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In words, Lemma 1 states that the elements 1 in column t + 1 of matrix
AL are not too many, in particular they allow different configurations of the
remaining h−2 entries 1 from column 1 to t. Note that this inequality resembles
that of Condition 3.

Remark 1. Let M be a matrix having different rows. Each permutation of its
columns preserves the difference of the rows.

So, starting from π = (d0, . . . , dn−1), let Δ be its maximum element and t
be the entries that are at least Δ − 1, as in Theorem 3. We compute the link
sequence L = (l1, . . . , ln−1) and define REC-Link as follows
REC-Link

Input: H = (h − 1, . . . , h − 1) of length Δ, and V = L;
Output: the Δ × (n − 1) matrix AL compatible with H and V .
Step 1: if t = n − 1, then REC1 on input (H,V ) reconstructs AL and provides

it as output.
Step 2: if t < n − 1, then

Step 2.1: place the elements 1 in AL from column t + 1 to n as follows: let
j = 0; for each t+1 ≤ i ≤ n place li elements 1 in column i, from position
j to j + li − 1 mod (Δ) and update j = j + li mod (Δ).

Step 2.2: divide AL into A1, . . . , Ak blocks of consecutive rows according to
their different configurations; by Step 2.1, all equal rows are grouped in
the same block. Let hi be the number of 1s that lie in each row of Ai, and
ri the number of its rows. For each block Ai run REC1 on input (Hi, Vi),
with Hi = (h − 1 − hi, . . . , h − 1 − hi) of length ri, and Vi being the
near-regular vector such that σ(Vi) = ri · (h−1−hi), i.e. the near-regular
vector compatible with Hi.

Step 2.3: update in AL the first t columns of each Ai with the matrix obtained
as output from REC1 on the related instance, after rearranging the first
t columns of each block in order to let them sum up to the near-regular
vertical projections l1, . . . , lt.

The correctness of Steps 2.1 and 2.3 directly follows from Lemma 1 and Remark 1,
respectively, and its computational complexity is inherited from REC. Each
matrix obtained from a link sequence by procedure REC-Link becomes part of
the final matrix A, according to the proof of Theorem 3, after appending as first
column a full sequence of entries 1 of length Δ. The following example clarifies
the reconstruction:

Example 1. Let us consider π = (14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 11, 11, 4),
and check if it is 5-graphic. We compute the link sequence according to the
parameters t = 8, Δ = 14, and 34×14 being the dimension of A. The conditions
of Theorem 3 are satisfied, since 5 divides σ(π) = 170, and

(
t−1
h−1

) ≥ Δ holds since
35 ≥ 14. The link sequence turns out to be L = (6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 0),
with c = 8. The link sequence satisfies the equation σ(L) = Δ(h−1) = 14·4 = 56.
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Fig. 1. (a): the link sequence L computed from π of Example 1, and the related matrix
AL to be reconstructed. (b): a call of REC1 on the near-regular instance (H3, V3). The
procedure at first computes and reconstructs the matrix satisfying the minimal regular
instance containing V3, then cuts off, one after the other, those rows that are consecutive
3-shifts of (1)3(0)4 till reaching the near-regular vertical projection V3. The darkest part
of (b) is what remains. (c): all the blocks are reconstructed and their columns arranged
in order to sum up to the near-regular sequence (l1, . . . lt) = (6, 6, 6, 5, 5, 5, 5). A first
column of 1 entries is appended and the first Δ different rows of A are reconstructed.

Let us run REC-Link on H = (4, . . . , 4) of dimension 14, and V = L. Since
t < n − 1, then Step 2 starts: Step 2.1 place the 1s in the columns from 8 to 13
as in Fig. 1(a), and the blocks B1, . . . B5 are detected according to Step 2.2. Step
2.3 proceeds in their reconstruction using REC1. Figure 1(b) shows how REC1
acts on B3, one of the blocks having maximum number of rows. Lemma 1 assures
that the instance (H3, V3) with H3 = (3, 3, 3, 3) and V3 = (2, 2, 2, 2, 2, 1, 1) can
be reconstructed by REC1, since

(
7
3

) ≥ 4.

4 Conclusions and Open Problems

In this article, we consider a sufficient condition for an integer sequence π to be
h-graphic, i.e. to be the degree sequence of an h-uniform hypergraph, as stated in
Theorem 3, from [10]. Such a result is here approached from a different perspec-
tive, and translated into the Discrete Tomography framework where its specific
tools are used to provide an effective proof. The obtained construction allows to
forecast new results that constructively relax the constraint for h-graphicality
stated in Theorem 3. Furthermore, this new perspective yields further challeng-
ing problems as sketched below.

First, it seems appropriate to approach the still unsolved problem of charac-
terizing the degree sequences of 3-uniform hypergraphs. Some NP-completeness
results are present in the literature mainly concerning their characterization
from sets of subsumed graphs (see [4]), but they do not shed light on the general
problem.
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Still concerning 3-uniform hypergraphs, in [15], the authors focus on edge
exchanges in order to determine how to pass from one hypergraph to another
satisfying the same degree sequence. One can observe that the edge exchange
has a natural counterpart in Discrete Tomography with the well known notion
of switching, i.e. the changes of the values of a matrix in specific subsets of its
elements that preserves the projections. It would be of some interest to develop
a switching theory that also preserves the mutual difference between rows by
relying on the properties of edge exchanges.

Acknowledgment. This study has been partially supported by INDAM - GNCS
Project 2015.
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