
Construction of Digital Ellipse by Recursive
Integer Intervals

Papia Mahato(B) and Partha Bhowmick

Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, India

papiamahatostar@gmail.com, bhowmick@gmail.com

Abstract. In this paper, we revisit the problem of ellipse construction in
the integer plane. Our perspective is elementary number-theoretic analy-
sis of a digital ellipse having an integer point as its center and two integer
values specifying the lengths of its semi-major and semi-minor axes. We
characterize a digital ellipse to derive certain recurrences on the integer
intervals that contain the integer values of a specific square term corre-
sponding to the integer points comprising the digital ellipse. This, in turn,
helps in designing ellipse drawing algorithm on the integer plane. We
propose two algorithms—one using floating-point-based distance com-
putation, and another using purely integer operations. Some test results
have also been presented to exhibit further research possibilities related
to digital ellipse.

Keywords: Digital ellipse · Digital geometry · Integer intervals · Integer
algorithm

1 Introduction

Ellipse is an important geometric primitive with a multitude of applications in
different fields of science and engineering. Hence, like various other geometric
primitives, its characterization and discretization is one of the necessary and
interesting research topics in the subject of digital geometry. Its computational
gamut in the discrete space brings in fundamental theoretical issues, which are
related to several fields of computer science, and to name a few, these are com-
puter graphics, computer vision, projective geometry, and image analysis.

Several methodologies have been proposed over the last fifty years for genera-
tion of digital ellipse, which may be seen in [3,6,8–13]. The adopted techniques are
predominantly based on incremental raster approximation [8], double-step gener-
ation [11,12], run slicing [13], and hybridization [5]. Most of these algorithms basi-
cally owe in concept to the one proposed in the very early stage of digitization [2].

Unlike other 2D geometric primitives like straight lines and circles, which
have been continuously and extensively studied by the digital geometers, ellipse
is possibly not yet studied up to its merit till date. This motivates us to focus on
making out some novel characterization of ellipse in the discrete space—in par-
ticular, in Z

2—with the objective of designing efficient algorithms as per the
c© Springer International Publishing Switzerland 2016
N. Normand et al. (Eds.): DGCI 2016, LNCS 9647, pp. 295–308, 2016.
DOI: 10.1007/978-3-319-32360-2 23

296 P. Mahato and P. Bhowmick

requirement of different applications. We report in this paper our first set of
results, which centers around some of the elementary number-theoretic proper-
ties of digital ellipse when it has an integer specification. It culminates to certain
interesting recurrences on integer intervals that correspond to the integer points
comprising a digital ellipse.

The paper is organized as follows. In Sect. 2, we explain the preliminary con-
cepts and the theoretical framework adopted in our work. In Sect. 3, we derive
some elementary number-theoretic properties of digital ellipse. These properties
are used in Sect. 4 for designing efficient algorithms on construction of digi-
tal ellipse. Here we first propose an algorithm that uses a few floating-point
operations, which we improve to a second algorithm that uses strictly integer
operations. In Sect. 5, we present some test results and point out further research
issues related to digital ellipse.

2 Preliminaries

We start with some definitions and metrics in 2D space, which are used in the
sequel. We mostly follow the conventions from [7].

An integer pointmeans a point with integer coordinates. A pixel is equivalent to
a 2-cell, perceived as a unit square on the xy-plane, and hence uniquely identified
by its center, as it is an integer point. Two pixels are said to be 0-adjacent if they
share a vertex (0-cell) and 1-adjacent if they share an edge (1-cell). A 0-connected
(digital) curve is a sequence of pixels such that every two consecutive pixels are
0- or 1-adjacent (i.e., in 8-neighborhood). For a 1-connected curve, every two con-
secutive pixels in the sequence have to be 1-adjacent (i.e., in 4-neighborhood).
A curve is open-ended if it has two distinct endpoints, s and t. A curve is closed
if it partitions the integer plane into an interior and an exterior. If removal of a
pixel p from an open-ended curve does not break the connectedness between s
and t, then p is said to be a simple pixel. For a closed curve, on the other hand,
removal of a simple pixel does not give rise to connectedness between its interior
and exterior. For further details on simple pixel, we refer to [7]. If a curve does
not contain any simple pixel, then it is said to be irreducible. In an open-ended
irreducible curve, s and t has one neighbor each and the rest have two neighbors
each. For a closed irreducible curve, each constituent pixel has two neighbors each.
Hence, for an open-ended irreducible k-connected curve, where k ∈ {0, 1}, there is
always a unique k-path between any two of its pixels. And for a closed irreducible
k-connected curve, there are exactly two k-paths between any two pixels.

Between two points p(i, j) and p′(i′, j′), we define x-distance as dx(p, p′) =
|i − i′|, y-distance as dy(p, p′) = |j − j′|, and the isothetic distance (Minkowski
norm [7]) as d∞(p, p′) = max{dx(p, p′), dy(p, p′)}. Based on this, the isothetic
distance of a point p(i, j) from a 2D curve C (which is an ellipse in our work) is
defined as d⊥(p,C) = min{dx(p,C), dy(p,C)}, where,

dx(p,C) =
{

dx(p, q) if there exists a point q(x, j) on C
∞ otherwise,

Digital Ellipse 297

dy(p,C) =
{

dy(p, q) if there exists a point q(i, y) on C
∞ otherwise.

While measuring dx(p, q) and dy(p, q), if there lies more than one point q on
C, then we consider the nearest. Figure 1 shows the basic idea.

O′
1

O′
2

x

y

p

p′

slope = −1

dx(p,E)

dy(p,E)E(a, b)

Fig. 1. Isothetic distance and its anomaly with pseudo-octants O′
1 and O′

2. Both p
and p′ are in O′

1, but their respective isothetic distances from E(a, b) are d⊥(p,E) =
dy(p,E) and d⊥(p′, E) = dx(p′, E), thus forming the anomaly. This anomaly gives rise
to disconnectedness in the digital ellipse if p′ is an integer point and d⊥(p′, E) � 1

2
.

We use E(a, b) to denote a real ellipse, where a and b are the respective
lengths of its semi-major and semi-minor axes. In our work, we consider a and b
as positive integers. Further, an ellipse is considered in its canonical form, which
means its center is (0, 0) and its axes are parallel to the coordinate axes [13]. So,
its equation is

x2

a2
+

y2

b2
= 1 (1)

and the corresponding digital ellipse is defined as follows.

Definition 1. A digital ellipse E(a, b) is the 0-connected irreducible sequence of
integer points obtained by discretization of the real ellipse E(a, b) such that each
point in E(a, b) has an isothetic distance of at most 1

2 from E(a, b).

2.1 Elliptic Octants

An ellipse, whether the real or the digital, possesses four-way symmetry about
its major and minor axes. As a result, we get four symmetric arcs of an ellipse,
which lie in four different quadrants. For digitization purpose, the real ellipse is
considered, and its arc in the 1st quadrant—and so for each other quadrant—is
further divided into two arcs by a radial line that passes through the point on
the ellipse at which its slope is −1. The four quadrants are thus subdivided into
eight pseudo-octants, in which the respective real arcs are digitized to generate

298 P. Mahato and P. Bhowmick

the full digital ellipse. This can be seen in the existing literature; see, for example,
[4,13], and the bibliographies therein.

The above idea works fine as far as a and b are comparable, but fails in case
of a sufficiently high eccentricity—for example, when a is sufficiently large in
value compared to b. A discussion on this can be seen in [13]. This happens due
to the anomaly that for a � b, an integer point p may satisfy dy(p,E(a, b)) >
dx(p,E(a, b)) although lying in the 1st pseudo-octant. An illustration is given in
Fig. 1, and some examples of failure are shown in Fig. 2.

(a) a = 7, b = 1 (b) a = 8, b = 1 (c) a = 9, b = 1

Fig. 2. Disconnectedness arising due to anomaly of pseudo-octants for a � 8, b = 1.

To circumvent the aforesaid problem, we introduce the concept of elliptic
octant w.r.t. E(a, b), which we henceforth refer simply as e-octant for brevity.
We use Ot to denote the tth (1 � t � 8) e-octant. We have the following
proposition based on the notion of isothetic distance.

Proposition 1. A point p lies in Ot, where

t(mod 4) ∈
{{0, 1} if and only if dy(p,E(a, b)) � dx(p,E(a, b))

{2, 3} if and only if dx(p,E(a, b)) � dy(p,E(a, b)).

By Proposition 1, O1, O4, O5, and O8 become mutually symmetric with their
isothetic distance as y-distance; and so also for O2, O3, O6, and O7 with their
isothetic distance as x-distance. Owing to the above symmetry, it suffices to
characterize the arc of a digital ellipse that lies in the first quadrant (i.e., O1

and O2). In O1, the y-distance serves as the isothetic distance; whereas in O2,
it is the x-distance.

The above characterization by isothetic distance helps in generating a digital
ellipse as a sequence of runs comprising its arcs in the eight e-octants. A run is
defined as a maximum sequence of successive integer points with equal y- or equal
x-coordinate. So, a digital ellipse in O1 consists of horizontal runs, and in O2

consists of vertical runs. This property is used during the construction of a digital
ellipse. In O1, we start from the point (0, b) and go on generating the subsequent
points along the horizontal runs, as long as the isothetic distance of an integer
point from E(a, b) is its y-distance. In O2, we do the reverse—starting from the
point (a, 0), we generate the vertical runs, as long as the isothetic distance is
x-distance. The other e-octants are easily constructed from the arcs obtained in
O1 and O2 by using the 4-symmetry of E(a, b).

Digital Ellipse 299

3 Properties of Digital Ellipse

We denote by Et(a, b) the arc of the real ellipse E(a, b) that lies in Ot, and
by Et(a, b) that of the digital ellipse E(a, b) lying in Ot. We have the following
lemma on isothetic distance in an e-octant.

Lemma 1. The isothetic distance of a point p(i, j) from Et(a, b) is
d⊥(p,Et(a, b)) = dy(p,Et(a, b)) if and only if t(mod 4) ∈ {0, 1}, or equivalently,∣∣ab|j| − b2

√
a2 − i2

∣∣ �
∣∣ab|i| − a2

√
b2 − j2

∣∣.
Proof. By definition of isothetic distance and by Eq. 1, dy(p,Et(a, b)) =

∣∣|j| −
(b/a)

√
a2 − i2

∣∣ and dx(p,Et(a, b)) =
∣∣|i| − (a/b)

√
b2 − j2

∣∣. So, by Proposition 1,
dy(p,Et(a, b)) � dx(p,Et(a, b)) if and only if

t(mod 4) ∈ {0, 1}
⇐⇒ ∣∣|j| − (b/a)

√
a2 − i2

∣∣ �
∣∣|i| − (a/b)

√
b2 − j2

∣∣
⇐⇒ ∣∣ab|j| − b2

√
a2 − i2

∣∣ �
∣∣ab|i| − a2

√
b2 − j2

∣∣. (2)

This completes the proof. �	
We consider the 1st and the 2nd e-octants to obtain a characterization of

digital ellipse. Owing to 4-symmetry, this will be applicable to other e-octants.
Lemma 1 provides the way to decide whether a (real or integer) point p lies in
O1 or in O2. But it does not tell whether p belongs to E1(a, b) or to E2(a, b).
The following theorem states the necessary and sufficient condition to decide
whether an integer point belongs to E1(a, b).

Theorem 1. An integer point p(i, j) with j > 0 belongs to E1(a, b) if and only
if

4b2a2 − a2(2j + 1)2 � 4b2i2 � 4b2a2 − a2(2j − 1)2 − 1. (3)

Proof. A point p(i, j) belongs to E1(a, b) if and only if dy(p,E1(a, b)) � 1
2 (by

Proposition 1 and Definition 1), or equivalently, there exists a real point q(i, j−δ)
on E(a, b) such that − 1

2 � δ < 1
2 . Note that j > 0 ensures that q ∈ O1.

Further, to ensure that E1(a, b) is irreducible (Definition 1), p is not considered
to be in E1(a, b) when δ = 1

2 . Now, as mentioned in the proof of Lemma1,
dy(p,Et(a, b)) =

∣∣|j| − (b/a)
√

a2 − i2
∣∣, or, dy(p,E1(a, b)) = (j − (b/a)

√
a2 − i2).

So, the last condition is true if and only if

−1
2

� j − b

a

√
a2 − i2 <

1
2

⇐⇒ j − 1
2

<
b

a

√
a2 − i2 � j +

1
2

⇐⇒ a(2j − 1) < 2b
√

a2 − i2 � a(2j + 1)
⇐⇒ −4b2a2 + a2(2j − 1)2 < −4b2i2 � −4b2a2 + a2(2j + 1)2

⇐⇒ 4b2a2 − a2(2j + 1)2 � 4b2i2 < 4b2a2 − a2(2j − 1)2,

hence we get Eq. 3, as a, b, i, j are all integers. �	

300 P. Mahato and P. Bhowmick

Theorem 1 provides all integer points of E1(a, b) with positive ordinate, i.e.,
j > 0 for a point p(i, j) ∈ E1(a, b). Now, Eq. 3 does not give a valid integer
interval if −a2(2j + 1)2 > −a2(2j − 1)2 − 1, or, −4a2j > 4a2j − 1, or, 8a2j < 1,
which implies j = 0, since a is a positive integer and j is a non-negative integer
in O1. Consequently, we have the following corollary.

Corollary 1. An integer point p(i, j) belongs to E1(a, b) but does not satisfy
Eq. 3 only if j = 0.

The equation for points constituting E2(a, b) is given in the following corol-
lary, which is also obtained in a similar way.

Corollary 2. An integer point (i, j) with i > 0 belongs to E2(a, b) if and only if

4b2a2 − b2(2i + 1)2 � 4a2j2 � 4b2a2 − b2(2i − 1)2 − 1. (4)

Moreover, if p(i, j) belongs to E2(a, b) but does not satisfy Eq. 4, then i = 0.

Now, to efficiently compute the integer points comprising the digital ellipse
in the first e-octant, we need the following theorem.

Theorem 2. An integer point (i, j) with j > 0 belongs to E1(a, b) if and only if
4b2i2 lies in the interval Ik = [uk, vk := uk + lk − 1], where j = b−k, k � 0, and
uk and lk are given as follows.

uk =
{−4a2b − a2 if k = 0

uk−1 + lk−1 otherwise

lk =
{

8a2b if k = 0
lk−1 − 8a2 otherwise

(5)

Proof. We get u0 and l0 corresponding to k = 0 by substituting j = b in Eq. 3.
To get the recurrence of lk for k > 0, observe that lk = 4b2a2 − a2(2j −

1)2 − 4b2a2 + a2(2j + 1)2 = 8a2j = 8a2(b − k), in accordance with Eq. 3. Hence,
lk − lk−1 = 8a2(b − k) − 8a2(b − k + 1) = 8a2. To get the recurrence of uk, we
substitute j = b−k in Eq. 3 to get uk = 4b2a2 −a2(2(b−k)+1)2, and substitute
j = b − k − 1 to get vk−1 = 4b2a2 − a2(2(b − k − 1) − 1)2 − 1 = uk − 1. Thus,
uk − vk−1 = 1, or, uk = vk−1 + 1 = uk−1 + lk−1. �	

Since I0 contains only perfect squares of the form 4b2i2, can we reset u0 = 0.
However, to make the recurrence of uk work for k � 1, we adhere to a negative
value of u0, and this does not affect the performance of the algorithms discussed
in Sect. 4.

The recurrence relations for E2(a, b), obtained in a similar fashion, are put
in the following corollary.

Digital Ellipse 301

Corollary 3. An integer point (i, j) with i > 0 belongs to E2(a, b) if and only if
4a2j2 lies in the interval Ik = [uk, vk := uk + lk − 1], where i = a − k, k � 0,
and uk and lk are given as follows.

uk =
{−4b2a − b2 if k = 0

uk−1 + lk−1 otherwise

lk =
{

8b2a if k = 0
lk−1 − 8b2 otherwise

(6)

We conclude this section with an important observation. Notice in the proof of
Theorem 2 that uk = vk−1 + 1, which holds for both O1 and O2. We put this in
the following corollary.

Corollary 4. For k = 0, 1, 2, . . ., the intervals Ik are disjoint and contiguous.

4 Algorithms for Ellipse Construction

The basic idea of digital ellipse construction by the proposed technique is demon-
strated in Fig. 3. Let p(i, j) be a point of E1(a, b). Then, considering the clockwise
traversal of E1(a, b), the next point would be either (i + 1, j) or (i + 1, j − 1),
the former being when it is the same run and the latter being for a change of
run. The recurrences in Theorem 2 are used for this, as demonstrated in Fig. 3
for E1(a, b) with a = 6 and b = 4. In the first e-octant, the first run starts at the
point (0, 4). We get uk = −612 and vk = 539 for the first run, and the points
that satisfy the interval [uk, vk] are (0, 4), (1, 4), and (2, 4). After this, the value
of j becomes 3 for the second run, and the values of uk and vk for k = 1 are
computed recursively using Eq. 5. The process goes on till we are in O1. For O2,
a similar process runs starting from (6, 0), as shown in Fig. 3.

4.1 Algorithm Draw-Ellipse-Float

We have designed two algorithms for generation of a digital ellipse, which are based
on the above-mentioned technique.Wefirst discuss hereAlgorithm 1 that uses both

j = 4, uk = −612, vk = 539

j = 3, uk = 540, vk = 1403

i = 6, uk = −400, vk = 367

i = 5, uk = 368, vk = 1007

x

y

Fig. 3. An example showing generation of E1(6, 4) (yellow cells) and E2(6, 4) (green
cells) by the proposed technique (Color figure online).

302 P. Mahato and P. Bhowmick

integer and floating-point operations, the latter type of operations being needed
for determining the octant between O1 and O2 based on Lemma 1. Necessary vari-
ables are defined and initialized accordingly in Steps 1–2. The first while loop
(Lines 4–5) and the second while loop (Lines 6–8) run in O1 and generate all
integer points of E1(a, b). In each iteration of the first while loop, the procedure
drawRunFloat generates a horizontal run (i.e., a maximum-length sequence of suc-
cessive points with same y-coordinate) of E1(a, b). This procedure is again used
later to generate the vertical runs of E2(a, b) in the while loop for O2 (Lines 11–
12). The value of t is set to 1 and to 2 while invoking it in O1 (Line 5) and in O2

(Line 12), respectively.The ellipse parameters (a, b) and the point coordinates (i, j)
are passed in appropriate order to generate the respective horizontal and vertical

Algorithm 1. Draw-Ellipse-Float

Input: int a, b
Output: Digital ellipse with semi-major axis a and semi-minor axis b

1 int i ← 0, j ← b, u ← −4a2b − a2, l ← 8a2b, v ← 4a2b − a2 − 1, s ← 0
2 float dy ← 0, dx ← 0
3 E ← { } � output set of integer points

4 while (dy � dx) ∧ (u � v) do
5 drawRunFloat(i, j, a, b, 1, s, dy, dx, u, l, v,E) � Lemma 1 & Theorem 1

6 while (u > v) ∧ (i < a) do
7 include4SymPoints(i, j,E) � Corollary 1

8 i ← i + 1, s ← 4b2i2

9 i ← a, j ← 0, u ← −4b2a − b2, l ← 8b2a, v ← 4b2a − b2 − 1, s ← 0
10 dy ← 0, dx ← 0
11 while (dx � dy) ∧ (u � v) do
12 drawRunFloat(j, i, b, a, 2, s, dy, dx, u, l, v,E) � Lemma 1 & Corollary 2

13 while (u > v) ∧ (j < b) do
14 include4SymPoints(i, j,E) � Corollary 2

15 j ← j + 1, s ← 4a2j2

16 return E

Procedure drawRunFloat(i, j, a, b, t, s, dy, dx, u, l, v,E)

1 repeat
2 if t = 1 then include4SymPoints(i, j,E)
3 else include4SymPoints(j, i,E) � Proposition 1

4 i ← i + 1, s ← 4b2i2

5 until s > v;
6 j ← j − 1

7 if t = 1 then dy ← |abj − b2
√
a2 − i2|, dx ← |abi − a2

√
b2 − j2|

8 else dy ← |bai − a2
√

b2 − j2|, dx ← |baj − b2
√
a2 − i2| � Lemma 1

9 u ← v + 1, l ← l − 8a2, v ← u + l − 1 � Theorem 2, Corollary 3 & 4

Digital Ellipse 303

Algorithm 2. Draw-Ellipse-Int

Input: int a, b
Output: Digital ellipse with semi-major axis a and semi-minor axis b

1 int i ← 0, j ← b, u ← −4a2b − a2, l ← 8a2b, v ← 4a2b − a2 − 1, s ← 0, i1, j1
2 E ← { }
3 while (u � s) ∧ (s � v) do
4 drawRunInt(i, j, a, b, 1, s, u, l, v, i1, j1,E) � Theorem 1

5 i1 ← i − 1, j1 ← j + 1
6 while (u > v) ∧ (i < a) do
7 include4SymPoints(i, j,E) � Corollary 1

8 i1 ← i, j1 ← j, i ← i + 1, s ← 4b2i2

9 i ← a, j ← 0, u ← −4b2a − b2, l ← 8b2a, v ← 4b2a − b2 − 1, s ← 0
10 while (u � s) ∧ (s � v) ∧ ((i �= i1) ∨ (j �= j1)) do
11 drawRunInt(j, i, b, a, 2, s, u, l, v, i1, j1,E) � Corollary 2

12 while (u > v) ∧ (j < b) do
13 include4SymPoints(i, j,E) � Corollary 2

14 j ← j + 1, s ← 4a2j2

15 return E

Procedure drawRunInt(i, j, a, b, t, s, u, l, v, i1, j1,E)

1 repeat
2 if t = 1 then include4SymPoints(i, j,E)
3 else if (i = i1) ∧ (j = j1) then return
4 else include4SymPoints(j, i,E) � Proposition 1

5 i ← i + 1, s ← 4b2i2

6 until s > v;
7 j ← j − 1
8 u ← v + 1, l ← l − 8a2, v ← u + l − 1 � Theorem 2, Corollary 3 & 4

runs for E1(a, b) and E2(a, b). For O2, the parameters are properly initialized in
Lines 9–10.

Inside the procedure drawRunFloat, there is a repeat-until loop (Lines 1–5)
that computes the points of the k(� 0)th horizontal (if t = 1) or vertical (if t = 2)
run using the integer interval [u, v]. For every s generated in succession and lying in
[u, v], the procedure include4SymPoints includes the corresponding point p(i, j)
and its three symmetric points {(i,−j), (−i,−j), (−i, j)} in E. The parameters
(i, j) are passed in include4SymPoints depending on the value of t. After gen-
eration of all the points of the kth run, all the related parameters are updated in
Lines 6–8 of drawRunFloat to generate the points of the next run.

As discussed in Sect. 3 (Corollary 1), integer points of the form (i, j = 0) and
belonging to E1(a, b) cannot be tracked by the integer intervals used in the first
while loop (Lines 4–5). This happens particularly when a is significantly large
compared to b. In order to track such points, the second while loop (Lines 6–8)

304 P. Mahato and P. Bhowmick

is used with necessary conditional checks. A similar while loop (Lines 13–15) is
also used in O2 to ensure the completeness of E2(a, b).

4.2 Algorithm Draw-Ellipse-Int

Algorithm 1 is not free from floating-point operations and hence susceptible to
computational pitfalls. So, as an improvement, we design Algorithm2 where we
use only integer operations. This algorithm, contrary to the previous, does not
resort to computation of isothetic distance. Instead, it uses two extra integer
variables, i1 and j1, meant to store the coordinates of the last point in E1(a, b).

It is worth mentioning here now a few details concerning x- and y-distances
of a (real or integer) point p(i, j) from E(a, b). Let, w.l.o.g., p lie in O1. Then,
by Proposition 1, dy(p,E1(a, b)) � dx(p,E1(a, b)). Now, p ∈ E1(a, b) if and only
if dy(p,E1(a, b)) � 1

2 , which, however, does not give any idea about the value of
dx(p,E1(a, b)). Interestingly, it may also happen that dx(p,E1(a, b)) � 1

2 for the
same integer point p. In such situation, the point p would be included only in
E1(a, b) by Algorithm 1. However, if neither of i and j is zero, then p would satisfy
the integer intervals corresponding to both E1(a, b) and E2(a, b) (Eqs. 3 and 4).

b = 2 b = 4 b = 6

b = 8 b = 10 b = 12

Fig. 4. Digital ellipses with a = 12 and increasing values of b.

a = 9 a = 10 a = 11

Fig. 5. Digital ellipses with b = 1 and increasing values of a.

Digital Ellipse 305

a = 4 a = 6 a = 8

Fig. 6. Digital ellipses with b = 12 and increasing values of a.

Fig. 7. A set of digital ellipses: {E(a, b) : (a, b) = (16, 2), (17, 4), (18, 6), . . . , (30, 30)}.

As a result, this point p would be generated twice—first in O1 and then in O2.
In fact, there may occur many such points in succession—around the junction of
O1 and O2—which would result to overlap between the two digital arcs E1(a, b)

306 P. Mahato and P. Bhowmick

Fig. 8. Another set: {E(a, b) : (a, b) = (11, 1), (12, 2), (13, 3), . . . , (30, 20)}.

and E2(a, b). This overlap is prevented by using i1 and j1 in Algorithm 2, as
mentioned above. The necessary conditional check is put in Line 10. Updating
the values of i1 and j1 are done appropriately when the algorithm executes
for O1. Notice that, except for the above-mentioned points, the while loops of
Algorithm 2 work in the same way as those of Algorithm 1.

5 Concluding Notes

Algorithms 1 and 2 both run with an optimal time complexity, which is linear in
the number of integer points comprising a digital ellipse, i.e., Θ(a+b). This owes
to the fact that the number of every type of operations (comparison, addition,
multiplication, etc.) required to report each integer point of a digital ellipse is
upper-bounded by a small constant. To derive tight asymptotic bounds on the
number of operations in either of the two algorithms, a thorough analysis has
to be done. Nature of distribution of runs with change in major- and minor-axis
lengths can also be studied as a prospective future work.

We present here some instances of digital ellipse produced by the proposed
technique. These are identical irrespective of the algorithm used.

Figure 4 displays some digital ellipses with a fixed semi-major axis (a = 12)
and increasing values of b. The corresponding real ellipses are also shown; it
helps us to understand the pattern of points forming their digitization. Figures 5
and 6 display two different sets of results with a fixed semi-minor axis—one for
small b(= 1) and another with usual b(= 12)—and with increasing values of a.
All these results show the 4-symmetry of digital ellipse along with the properties
of their composition as 0-connected irreducible sequences.

Digital Ellipse 307

Figure 7 contains a set of 15 digital ellipses whose semi-major axis increases
from 16 to 30 units at unit step, and semi-minor axis from 2 to 30 at double
step, finally reaching a digital circle of radius 30. Notice for this set that all
the fifteen digital ellipses are disjoint, as there is no common pixel between
any two. Some ‘gaps’ are left between two consecutive digital ellipses, which
indicates an interesting similitude with concentric integer circles, since the latter
class also exhibits the aforesaid disjointness property, as recently shown in [1].
Characterization of such an ellipse class would be an interesting research issue
in the context of covering the integer plane by coaxial ellipses.

In Fig. 8, we have shown another set containing 20 digital ellipses, whose
semi-major axis increases from 11 to 30, and semi-minor axis from 1 to 20—
both at unit steps. The gaps formed here are less in number, since there is
overlap between two consecutive ellipses. This set, together with the previous
set, indicates that overlapping ellipses can reduce the gaps, although not com-
pletely. What follows as a natural question is to find a minimal or a minimum
set of coaxial digital ellipses with major- and minor-axis lengths specified by two
rational numbers, so as to cover the interior of an ellipse of given integer specifi-
cation. Characterization of this set and designing efficient algorithms for digital
ellipse construction with non-integer (rational, for definiteness) specification are
two important follow-up research problems in the context of our work.

References

1. Bera, S., Bhowmick, P., Stelldinger, P., Bhattacharya, B.: On covering a digital
disc with concentric circles in Z

2. Theoret. Comput. Sci. 506, 1–16 (2013)
2. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J.

4(1), 25–30 (1965)
3. Fellner, D.W., Helmberg, C.: Robust rendering of general ellipses and elliptical

arcs. ACM Trans. Graph. 12(3), 251–276 (1993)
4. Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles

and Practice. Addison-Wesley, Reading (1993)
5. Haiwen, F., Lianqiang, N.: A hybrid generating algorithm for fast ellipses draw-

ing. In: International Conference on Computer Science and Information Processing
(CSIP), pp. 1022–1025 (2012)

6. Kappel, M.: An ellipse-drawing algorithm for raster displays. In: Earnshaw, R.A.
(ed.) Fundamental Algorithms for Computer Graphics. NATO ASI Series, vol. 17,
pp. 257–280. Springer, Heidelberg (1991)

7. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, San Francisco (2004)

8. McIlroy, M.D.: Getting raster ellipses right. ACM Trans. Graph. 11(3), 259–275
(1992)

9. Pitteway, M.L.V.: Algorithm for drawing ellipses or hyperbolae with a digital plot-
ter. Comput. J. 10, 282–289 (1967)

10. Van Aken, J., Novak, M.: Curve-drawing algorithms for raster displays. ACM
Trans. Graph. 4(2), 147–169 (1985)

11. Van Aken, J.: An efficient ellipse-drawing algorithm. IEEE Comput. Graphics
Appl. 4(9), 24–35 (1984)

308 P. Mahato and P. Bhowmick

12. Wu, X., Rokne, J.: Double-step generation of ellipses. IEEE Comput. Graphics
Appl. 9(3), 56–69 (1989)

13. Yao, C., Rokne, J.G.: Run-length slice algorithms for the scan-conversion of ellipses.
Comput. Graph. 22(4), 463–477 (1998)

	Construction of Digital Ellipse by Recursive Integer Intervals
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Octants

	3 Properties of Digital Ellipse
	4 Algorithms for Ellipse Construction
	4.1 Algorithm Draw-Ellipse-Float
	4.2 Algorithm Draw-Ellipse-Int

	5 Concluding Notes
	References

