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Abstract. Although the concept of functional plane for naive plane is
studied and reported in the literature in great detail, no similar study is yet
found for naive sphere. This article exposes the first study in this line, open-
ing up further prospects of analyzing the topological properties of sphere
in the discrete space. We show that each quadraginta octant Q of a naive
sphere forms a bijection with its projected pixel set on a unique coordinate
plane, which thereby serves as the functional plane of Q, and hence gives
rise to merely mono-jumps during back projection. The other two coor-
dinate planes serve as para-functional and dia-functional planes for Q, as
the former is ‘mono-jumping’ but not bijective, whereas the latter holds
neither of the two. Owing to this, the quadraginta octants form symme-
try groups and subgroups with equivalent jump conditions. We also show
a potential application in generating a special class of discrete 3D circles
based on back projection and jump bridging by Steiner voxels. A circle in
this class possesses 4-symmetry, uniqueness, and bounded distance from
the underlying real sphere and real plane.

Keywords: Naive sphere · Quadraginta octants · Symmetry groups ·
Functional plane · Projective geometry

1 Introduction

Discretization models and their combinatorial structures have drawn a stronger
attention of the research community over the last couple of decades [17,18]. Sev-
eral series of works have been reported on characterization and modeling of dif-
ferent geometric objects like planes and hyperplanes, spheres and hyperspheres,
polygons and polytopes, and the like, in the framework of digital geometry. The
underlying concepts often vary one from the other while imposing additional cri-
terion one over another. For example, a naive plane is discretized to satisfy the
minimality in the number of constituent voxels along with the topological condi-
tion of separating the discrete space. However, the very condition of minimality
is prohibitive to devising a proven mechanism for discretization of Euclidean
primitives like lines, segments, triangles, or polygons as connected voxel sets on
a naive plane. The ‘naive model’ of discrete plane is subsequently enhanced to
‘graceful model’—first introduced in [8] and studied later in detail in [9–12].
c© Springer International Publishing Switzerland 2016
N. Normand et al. (Eds.): DGCI 2016, LNCS 9647, pp. 256–267, 2016.
DOI: 10.1007/978-3-319-32360-2 20



Functionality of Quadraginta Octants of Naive Sphere 257

x

y

z

DP

FP

PP

Fig. 1. 1st q-octant of naive sphere of radius 23 and its projections on FP, PP, and
DP (dark green ticks = mono-jumps, other ticks = multi-jumps) (Color figure online).

1.1 Motivation

It is the functional plane that plays the leading role in characterization and con-
struction of a discrete plane to its graceful model. As shown in [8], jumps are the
root cause behind the failure of naive plane in construction of Euclidean primi-
tives on its surface. It is worth mentioning here at this point that combinatorial
configurations of jumps are given by the orientation of the functional plane.
For the formal definitions of naive plane, graceful plane, jumps, and functional
planes, we refer to [8,9].

The above concept, as a whole, is also relevant to discrete sphere and has the
potential to address many theoretical issues in the context of primitive construc-
tion on a discrete spherical surface. No perceivable progress is however noticed
in this line, which drives us to take up this work. To the best of our knowl-
edge, this is the first work of its kind, which provides a new insight of analyzing
the topological properties of discrete sphere in the integer space. More impor-
tantly, it indicates the immense possibility to make out symmetry groups and
their topological characterization for various other 3D objects, a few of which
evidently being hypersphere, ellipsoid, and hyper-ellipsoid.

1.2 Main Results

We summarize here the theoretical results obtained by us. The proofs and related
details are discussed in the subsequent sections.

A naive sphere is made up of 48 basic symmetric parts, which are called
quadraginta octants, or q-octants in short [3,6]. In this paper, we show how these
48 q-octants give rise to 3 groups when characterized by their respective func-
tional planes (FP). Each group is further subdivided into two subgroups, each
having a unique combination of its para-functional plane (PP) and dia-functional
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Fig. 2. (a) Naive sphere of radius 7. (b) Steiner voxels (dark green) corresponding to
functional planes of the q-octants. (c) A jump (q, s) in (b) and its bridging by Steiner
voxel (lying outside of the naive sphere, but may also lie inside) (Color figure online).

plane (DP) defined by jump configurations. We show how mono-jumps occur
from FP and PP, and multi-jumps from DP, while taking back projection from
them to the naive sphere. Figure 1 shows the 1st q-octant of a naive sphere, its
projections on the three coordinate planes, and their respective jumps. Figure 2
illustrates how jumps in different q-octants are bridged by inclusion of some
additional voxels in the naive sphere. By analogy to other geometric problems,
we refer to these voxels as Steiner voxels.

The grouping of q-octants results to a functional gradation of the coordinate
planes against the q-octant groups. Figure 3 shows an example. This, in turn,
eventually leads to characterization and modeling of a special class of discrete
3D circles on the surface of a naive sphere, once we bridge the jump voxels by
requisite Steiner voxels. We call these circles ortho-coordinate circles, as they are
orthogonal to one of the three coordinate planes. Their construction is efficiently
doable by a technique based on back projection from a coordinate plane based
on its functionality w.r.t. the concerned q-octants and their group properties.

2 Preliminaries

In this section, we fix some basic notions and notations to be used in the sequel.
For more details, we refer to [17]. We also go through the concepts from previous
researches which deem useful in the context of our work.

2.1 Basic Notions and Notations

By discretization, we mean rasterization or voxelation of a real object (curve or
surface), subject to certain topological constraints. The notion owes its origin to
computer graphics and geometric modeling [7,14–16].

We define x-distance, y-distance, and z-distance between two (real or inte-
ger) points, p(i, j, k) and p′(i′, j′, k′), as dx(p, p′) = |i − i′|, dy(p, p′) = |j −
j′|, and dz(p, p′) = |k − k′|, respectively. Using these inter-point distances,
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Fig. 3. Grouping of q-octants using functional gradation of coordinate planes. (a) Q-
octants with xy-plane as FP are shown in green, as PP are shown in yellow, and as
DP are shown in red. (b) Q-octants with zx-plane as FP are shown in green, as PP
are shown in yellow, and as DP are shown in red. (c) Q-octants with yz-plane as FP
are shown in green, as PP are shown in yellow, and as DP are shown in red. Voxels
belonging to more than one group are shown in white in all three renditions (Color
figure online).

we define the respective x-, y-, and z-distances between a point p(i, j, k) and
a surface S as follows. Let dx(p, S) be the x-distance between p and S. If
there exists a point p′(i′, j′, k′) (the nearest, if there is more than one) in S
such that (j′, k′) = (j, k), then dx(p, S) = dx(p, p′); otherwise, dx(p, S) = ∞.
dy(p, S) and dz(p, S) are defined in a similar way. Between two points p(i, j, k)
and p′(i′, j′, k′), the isothetic distance is taken as the Minkowski norm [17],
d∞(p, p′) = max{dx(p, p′), dy(p, p′), dz(p, p′)}; between a point p(i, j, k) and a
surface S, it is d⊥(p, S) = min{dx(p, S), dy(p, S), dz(p, S)}.

A voxel is an integer point in 3D space, and equivalently, a 3-cell [17]. Two
distinct voxels are said to be 0-adjacent if they share a vertex (0-cell), 1-adjacent
if they share an edge (1-cell), and 2-adjacent if they share a face (2-cell). Thus,
for l ∈ {0, 1, 2}, two distinct voxels p(i, j, k) and p′(i′, j′, k′) are l-adjacent if
d∞(p, p′) = 1 and dx(p, p′) + dy(p, p′) + dz(p, p′) � 3 − l. Note that the 0-, 1-,
and 2-neighborhood notations correspond respectively to the classical 26-, 18-,
and 6-neighborhood notations [13,19].

For l ∈ {0, 1, 2}, an l-path in a 3D discrete object A (or the discrete space
Z
3) is a sequence of voxels from A such that every two consecutive voxels are

l-adjacent. The object A is said to be l-connected if there is an l-path connecting
any two points of A. An l-component is a maximal l-connected subset of A.

Let D be a subset of a discrete object A. If A�D is not l-connected, then
the set D is l-separating in A. Let D be an l-separating discrete object in A such
that A�D has exactly two l-components. A 3-cell c ∈ D is said to be l-simple
w.r.t. A if D�{c} is l-separating in A. An l-separating discrete object in A is
l-minimal (or l-irreducible) if it does not contain any l-simple 3-cell w.r.t. A.

Given a discrete object A ⊆ Z
3, we say that a coordinate plane, say, xy, is

functional for A, if for every voxel v = (x0, y0, z0) ∈ A there is no other voxel in
A with the same first two coordinates.
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2.2 Naive Sphere and Quadraginta Octants

In our work, we consider sphere with integer radius and integer center. For sim-
plicity and without loss of generality, we consider its center as (0, 0, 0). We denote
by Sr the real sphere of radius r, and its corresponding naive sphere by Sr. As
shown in [3,6], the voxels comprising Sr have isothetic distance less than 1

2 from
Sr, and they form a 1-connected, 2-minimal, and tunnel-free set, thereby con-
forming to the concepts proposed in [13]. It has nine planes of symmetry, which
lead to 23 = 8 coordinate octants, or c-octants in short. The three coordinate
values of a c-octant can be ordered in 3! = 6 ways, thereby further dividing the
sphere into 8×6 = 48 quadraginta octants, or q-octants in short. For construction
of Sr, we can generate only its first q-octant, namely S

(1)
r , and reflect it about

the planes of symmetry for obtaining Sr. As shown in [3,6],

Sr =

{
p ∈ Z

3 : r2 − max(X) � s < r2 + max(X)
∧ ((s �= r2 + max(X) − 1

) ∨ (mid(X) �= max(X))
)
}

(1)

where p = (i, j, k), s = i2 + j2 + k2, and X = {|i|, |j|, |k|}.
We follow the scheme proposed in [3,6] for uniquely representing the c-octants

and the q-octants, and give here a brief review. Each c-octant Ci is represented
by a 3-tuple of signs of coordinate axes, namely Ci :=

(
c
(1)
i , c

(2)
i , c

(3)
i

)
. For

example, C1 = (+,+,+), C2 = (−,+,+), and so forth. On the contrary, the
3-tuple Qt :=

(
q
(1)
t , q

(2)
t , q

(3)
t

)
for each q-octant Qt represents the three signed

coordinate axes. That is, each element q
(·)
t has two variables, namely ω and σ.

The variable ω contains a literal (numeric form of the name of the coordinate
axis) from {1, 2, 3} := {x, y, z}, and the variable σ contains the sign of the
corresponding coordinate. That is, Q1 = (+1,+2,+3), Q2 = (+2,+1,+3), Q3 =
(+2,+3,+1), . . . , Q24 = (−1,+3,−2), . . . , Q48 = (−1,−3,−2). For example,
Q24 has ω[q(1)48 ] = 1, σ[q(1)48 ] = ‘−’, ω[q(2)48 ] = 3, etc. The sequence of coordinates
in Qt tells us the increasing order of the absolute coordinate values of the integer
points belonging to tth q-octant. We use this for grouping of q-octants.

3 Functional Gradation of Coordinate Planes

We first give a brief review on the graceful model of discrete plane. Let P be
a 3D real plane, P and P be its corresponding naive and graceful planes, and
let F be the functional plane. Let s and t be two voxels on P. Let s′ and t′ be
the projections of s and t on F . Let L(s′, t′) be the 2D digital straight segment
(DSS) joining s′ and t′ on F . As there is an one-to-one correspondence between
P and its projection pixels on F , we get a set of voxels on P corresponding to the
pixels of L(s′, t′). This set may not be connected due to the presence of one or
more jumps [9]1. A (mono-)jump is created by a pair of disconnected voxels—be
it a plane or be it a sphere—as illustrated in Fig. 2(c). This problem is solved in
P by inserting a Steiner voxel in between the two voxels forming a jump in P

1 A ‘jump’ here is synonymous with ‘mono-jump’ in the context of our work.
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Fig. 4. (a) Jumps (dark green ticks) corresponding to FP of S
(1)
r for r = 23. (b) Steiner

voxels (dark green) bridging the jumps (Color figure online).

so that those two voxels become 0-connected in P. A tandem is thus formed by
the Steiner voxel and one of the jump voxels, which are 2-adjacent to each other
(Fig. 2(c)). To ensure that P is a subset of the supercover P of P , each Steiner
voxel is chosen only if it intersects P .

For a plane in general orientation, the functional plane (FP) is unique, and
it is one of the coordinate planes. For a sphere, on the contrary, it is not so;
rather, for each q-octant, the concept is analogous with plane. To explain this,
we denote by S

(t)
r the tth q-octant of Sr, where t = 1, 2, . . . , 48, and define its

FP as follows.

Definition 1 (FP). The functional plane of S
(t)
r is the coordinate plane on

which its projection has a bijection with S
(t)
r .

Each coordinate plane serves as the functional plane (FP) of 16 specific q-
octants, as evident from the following lemma.

Lemma 1. FP of S(t)r is xy-, yz-, or zx-plane, depending on whether the value
of t mod 6 belongs to {1, 2}, {3, 4}, or {5, 0}, respectively.

Proof. Follows from the construction of S(t)r in conformance with Eq. 1. ��
By Lemma 1, we get the FP for a q-octant and hence can apply the tandem
configuration used for a graceful plane with the same FP. This owes to two
facts: (i) S(t)r has bijection with its FP projection; (ii) exactly one Steiner voxel
can bridge a jump corresponding to FP (we prove it shortly), and such jump is
a mono-jump. Jumps other than mono-jumps are called multi-jumps.

For a mono-jump, a Steiner voxel can be put either outside or inside of Sr,
in between the voxels forming the mono-jump in order to bridge them, according
to its intersection with Sr, ensuring its belongingness in the standard sphere [4].
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Fig. 5. (a) Steiner voxels (dark green) corresponding to PP of each q-octant for r = 7.
(b) A cutout jump configuration showing how the Steiner voxel is positioned (Color
figure online).

Figure 4 shows the projection of S(1)r on its FP (xy-plane), the resultant mono-
jumps, and the bridging Steiner voxels. See also Fig. 2, which shows how Steiner
voxels are inserted for bridging all mono-jumps.

For the two coordinate planes other than the one forming FP for S(t)r , we do
not get a bijection with its projection on either of them. Specifically, for these
two non-functional planes, a run of voxels (2-path with two common coordinate
values) gets projected to a single pixel. We categorize them as para-functional
plane (PP) and dia-functional plane (DP), and define as follows.

Definition 2 (PP, DP). PP of S(t)r is the coordinate plane on which its pro-
jection corresponds to only mono-jumps but is not bijective with S

(t)
r . Its DP is

the coordinate plane which is neither FP nor PP; in other words, the projection
on DP is not bijective and corresponds to mono- or multi-jumps.

We have the following theorem on mono-jumps.

Theorem 1 (FP, PP Jumps). Jumps corresponding to FP and PP are always
mono-jumps.

Proof. W.l.o.g., consider the 1st q-octant of Sr. Let (i, j, k), (i, j +1, k −d1), (i+
1, j, k − d2) ∈ S

(1)
r . By 2-minimal property of Sr, we get d1, d2 ∈ {0, 1}. Now, if

(i + 1, j + 1, k − d3) ∈ S
(1)
r , then d3 ∈ {0, 1, 2}. Hence, corresponding to FP, a

jump (q, s) arises with q = (i, j, k) ∈ S
(1)
r and s = (i+1, j+1, k−d3) ∈ S

(1)
r if and

only if d3 attains its maximum value (i.e., 2). Thus, the jump is a mono-jump,
as shown in the configuration in Fig. 2(c).

To prove the same for PP, observe that Sr is a collection of digital annuli,
where, a z-value in [−r, r] corresponds to a digital annulus bounded from inner
and outer by two digital circles (as closed 0-paths) with real radii and (0, 0, z) as
their common center. By construction of Sr, the part of a (inner/outer) digital
circle within S

(1)
r always has a unique y-value for a given x-value. If a multi-

jump occurs, then the concerned digital circle does not remain a closed 0-path.
Therefore, a jump corresponding to PP is always a mono-jump. ��
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Fig. 6. Jumps corresponding to PP (zx-plane) of S
(1)
r with radius 23. (a) Steiner voxels

(for clarity, outside ones are shown in dark green). (b) Projection of S
(1)
r on its PP;

jumps shown in dark green ticks (Color figure online).

A jump configuration for PP is shown in Fig. 5(b), where p and q are two
voxels from the outer digital circle of an annulus, and (q, s) forms the jump.
Figure 6 shows the projection of S

(1)
r on its PP (zx-plane) and the requisite

Steiner voxels bridging the jumps on S
(1)
r corresponding to PP. The mono-jump

locations are marked using dark green ticks and multi-jumps using different
colors (light green for two, yellow for three, and red for more requirement of
Steiner voxels to fill up the jump). Figure 7 shows S

(1)
r and the Steiner voxels

corresponding to DP.
A DP may contain coincident projection pixels for several runs of voxels from

the q-octant. Also, to connect the runs whose projections are adjacent, we may
need more than one Steiner voxel—a case of multi-jump (Fig. 7). We have the
following corollary.

Corollary 1 (DP Jumps). Jumps corresponding to DP are mono- or multi-
jumps.

4 Grouping of Quadraginta Octants

The following lemma explains the way of determining FP, PP, and DP for any
q-octant of Sr.

Lemma 2 (Projection Planes). FP, PP, and DP of S(t)r are determined by
dropping from Qt the coordinates ω[q(3)t ], ω[q(2)t ], and ω[q(1)t ], respectively.

Proof. As mentioned in Sect. 2.2, each q-octant S
(t)
r follows an ordering on the

absolute values of the three coordinates captured in its 3-tuple, Qt. For example,
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Fig. 7. Jumps corresponding to DP of S
(1)
r for radius 23. (a) Projection on DP (yz-

plane), showing mono-jumps in dark green and multi-jumps in different colored ticks.
(b) Steiner voxels, color-coded as per jump size (Color figure online).

Q1 = (+1,+2,+3), and so the ordering is x � y � z; on dropping z, we get
xy-plane as the FP of S(1)r . In general, for t ∈ {1, 2, . . . , 48}, the coordinate plane
obtained by dropping the coordinate of maximum absolute value in Qt is the FP
of S(t)r . Similar characterizations are valid for PP and DP, whence the proof. ��
The functional gradation of coordinate planes leads to 3 groups covering all
the 48 q-octants of naive sphere. Each group can be further subdivided into
two subgroups, containing 8 q-octants each. As per the representation scheme
(Sect. 2.2), the numeral set N = {1, 2, 3} denotes the names of the three coor-
dinates (x, y, z). We use Ga to denote the group whose FP is defined by (the
coordinates in) N�{a}, ∀a ∈ N . We use Ga:b to denote the subgroup of Ga

whose PP is defined by N�{b}, ∀b ∈ N�{a}. For example, G3 contains all the
q-octants having xy-plane as FP, and its subgroup G3:1 contains the q-octants
having yz-plane as PP. We have now the following proposition.

Proposition 1 (Grouping). For each a ∈ N , the group of q-octants with their
common FP defined by N�{a} is Ga =

{
S
(t)
r

∣∣ω[q(3)t ] = a
}
; and their subgroups in

Ga with common PP defined by N�{b} is Ga:b =
{
S
(t)
r

∣∣(ω[q(3)t ], ω[q(2)t ]) = (a, b)
}
,

where b ∈ N�{a}.
Proof. From Lemma 1, we get Ga =

{
S
(t)
r

∣∣t mod 6∈ {2a−1, (2a) mod 6}}
,

∀a∈ N . Now, by construction of Sr and referring to Lemma 2, the clause
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“t mod 6 ∈ {2a − 1, (2a) mod 6}” in the above equation is equivalent with the
clause “ω[q(3)t ] = a”. This gives the proof of group formation.

The subgroups of Ga are
{
S
(t)
r

∣∣t mod 6 = 2a − 1
}

and
{
S
(t)
r

∣∣t mod 6 =
(2a) mod 6

}
, or, equivalently, they are

{
S
(t)
r

∣∣(ω[q(3)t ], ω[q(2)t ]) = (a, b1)
}

and{
S
(t)
r

∣∣(ω[q(3)t ], ω[q(2)t ]) = (a, b2)
}
, where {b1, b2} = N�{a}. ��

We refer back to Fig. 3 to visualize the distribution of q-octants by functional
gradation of coordinate planes, which eventually leads to group and subgroup
formation.

5 Circle Drawing—An Application

A limited research has been done on discretization of circles or curves in 3D
space. Only in recent time, some progress is noticed, e.g., offset discretization
scheme in R

3 [1,2], discrete spherical paths and circles in Z
3 [3–5], etc. In this

section, we introduce a special class of 3D circle in Z
3, defined as follows.

Definition 3. A (naive) ortho-coordinate circle C〈a,b,c〉
r is a discretization of the

real circle C
〈a,b,c〉
r having radius r and lying on a real plane, with normal vector

〈a, b, c〉, that is orthogonal to one of the coordinate planes.

Note that the circle C
〈a,b,c〉
r consists of voxels from the intersection of Sr and

the naive plane with normal 〈a, b, c〉, with requisite Steiner voxels for ensuring
connectivity. It is easily constructible using q-octant groups (for fixing the mono-
and the multi-jumps in the 0-path defining C

〈a,b,c〉
r ), a line drawing algorithm [7]

(for back projection), and the formulation of naive sphere (Eq. 1, for checking the
belongingness of the voxels of C〈a,b,c〉

r in Sr). Note that one of a, b, c is zero and
the real plane is considered to pass through an integer point (w.l.o.g., (0, 0, 0)).
We consider only integer values for r, a, b, c. The major steps are as follows.

1. Set p = (0, 0) and compute q from 〈a, b, c〉. Shoot a digital ray from p towards
q, and produce up to s whose back projection on Sr includes a voxel with its
coordinate value as zero which is also zero in 〈a, b, c〉 (e.g., x = 0 if a = 0).

2. For each pixel u in DSS(p, s), execute the following steps.
(a) Use back projection from u to get a single voxel or a run of voxels on Sr.
(b) If this voxel or voxel run is not connected with the last drawn voxel or

voxel run, then identify the mono-jumps and the multi-jumps.
(c) Compute and insert Steiner voxels for bridging the jumps. (Skip (b, c) if

u = p.)
3. Use symmetry to construct the parts in other q-octants.

Figure 8 shows a demonstration. A circle C
〈a,b,c〉
r is unique for a given speci-

fication and conforms to 4-symmetry, since only the blue part needs to be gen-
erated by the algorithm, and the others just follow the symmetry. Due to the
method of selection of Steiner voxels, each voxel of C〈a,b,c〉

r belongs to the naive
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Fig. 8. Construction of an ortho-coordinate circle (r = 12 and plane normal =
〈0,−3, 1〉). (a) DSS on FP (yz-plane), which the plane (−3y + z = 0) of the circle
is orthogonal to. (b) Disconnected circle on Sr by back projection from the DSS in (a).

Parts drawn by symmetry are shown white. (c) C
〈0,−3,1〉
12 after incorporating requisite

Steiner voxels. (d, e, f) Projections of C
〈0,−3,1〉
12 on xy-, yz-, and zx-planes (Color figure

online).

plane with normal 〈a, b, c〉, and also to the standard sphere with radius r, thus
giving an upper bound of isothetic distance 1

2 from the real plane 〈a, b, c〉 and
of 2 from the real sphere with radius r. A detailed study on isothetic distance
bounds for plane and sphere can be seen in [4].

6 Concluding Note

The analysis and gradation of coordinate planes in view of their functionality
is a novel proposition in this paper. Being 48-symmetric, a naive sphere can
be divided into groups and subgroups based on this gradation. This grouping
would have various applications, as shown by us for one such, in generating a
special class of 3D circles lying on the sphere. In higher dimensions, the scope
and challenge would be higher and better, as we foresee. Characterization of
para-functional plane seems also interesting for objects like discrete planes and
hyperplanes, which is yet to be studied.
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