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Abstract. A combinatorial algorithm to find a shortest triangular path
(STP) between two points inside a digital object imposed on triangular
grid is designed having O(n

g
log n

g
) time complexity, n being the num-

ber of pixels on the contour of the object and g being the grid size.
First the inner triangular cover of the given digital object is constructed
which maximally inscribes the object. Certain combinatorial rules are
formulated based on the properties of triangular grid and are applied
whenever necessary to obtain a shortest triangular path, where the path
lies entirely in the digital object and moves only along the grid edges. The
length of STP and number of monotonicity may be two useful parame-
ters to determine shape complexity of the object. Experimental results
show the effectiveness of the algorithm.

Keywords: Shortest path · Shortest triangular path · Monotone path ·
Shape analysis · Shape complexity · Digital geometry

1 Introduction

The shortest path problem is a well-studied problem in graphs (directed and
undirected). It enquires the shortest path between two vertices in a graph such
that the sum of the weights of its constituent edges is minimized. The weights
of the edges may vary depending on the problem being studied. Shortest path
problem is a broadly useful problem solving model in robot navigation, tex-
ture mapping, typesetting in TEX, urban traffic planning, optimal pipe-lining of
VLSI chip, subroutine in advanced algorithms, telemarketer operator scheduling,
routing of telecommunications messages, approximating piecewise linear func-
tions, network routing protocols, and optimal truck routing through given traf-
fic congestion pattern [1]. The complete history of shortest path problem can
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(a) (b)

Fig. 1. A digital object with inner cover (blue), and shortest paths (a) in (red, green)
and (b) in (red, green, purple) (Color figure online)

be found in [13]. The first reported algorithm on shortest path is by Shimbel in
1954 [14], where he had reported few observations on calculating distance and
proposed a method which later became known as the Bellman-Ford method.

In 1958, Bellman proposed a dynamic programming based approach for solv-
ing shortest path problem in [3] which runs in O(n3) time, where n is the number
of vertices in the graph. In 1957, Moore proposed another algorithm on shortest
paths [11]. In 1959, Dijkstra presented a simpler algorithm which runs in O(n2)
time in [5]. Most of the works on shortest paths reported so far mainly find
paths between two vertices in a graph. However, we are proposing a combina-
torial algorithm on shortest paths which finds a path between two points inside
a digital object in triangular grid. M. Dutt et al. [6,7] proposed a combinato-
rial algorithm to find a shortest isothetic path between two grid points inside
a digital object without any holes. In [12], B. Nagy analysed some properties
of hexagonal and triangular grid (considering cell model), where distance based
neighborhood sequence is defined and an algorithm to calculate shortest distance
between two arbitrary points is proposed. In [2], chain-code representation in tri-
angular grid is discussed. There exists another work on finding shortest distance
on the hexagonal grid [10], based on the distance function and the neighboring
relations. A shortest path in triangular grid is a series of digital straight lines [8].

This paper focuses on finding a shortest path between two grid points inside
a digital object imposed on a background triangular grid. First, the inner trian-
gular cover of the given object is computed using the algorithm presented in [4].
This is done to ensure that the computed path does not go outside the inner cover
and hence outside the object. An appropriate parallelogram is considered keep-
ing the points at diagonally opposite corners. Combinatorial rules are applied
on the intersection points generated on intersection of the inner cover with the
parallelogram. Two triangular shortest paths are shown in Fig. 1(a) and (b).

The rest of the paper is organized as follows. All the required definitions and
preliminaries are presented in Sect. 2. The method to obtain the shortest path
is elaborated in Sect. 3. Estimation of running time of the proposed algorithm
is explained in Sect. 4. Section 5 presents the experimental results with analysis
and the conclusion is presented in Sect. 6.
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2 Definitions and Preliminaries

A digital object (henceforth referred as an object A) is a finite subset of Z2, which
consists of one or more 8-connected components. In this paper, a connected
hole-free object is considered. A triangular grid (henceforth simply referred as
grid) T := (L60,L0,L120) consists of three sets of parallel grid lines, which are
inclined at 60◦, 0◦, and 120◦ (w.l.o.g) w.r.t. x-axis [9].The grid lines in L60,
L0, L120 correspond to three distinct coordinates, namely α, β, γ. Three grid
lines, one each from L60, L0, L120, intersect at a (real) grid point. The distance
between two consecutive grid points along a grid line is termed as grid size, g.
A line segment of length g connecting two consecutive grid points on a grid line
is called grid edge. The smallest-area triangle formed by three grid edges, one
each from L60, L0, and L120, is called unit grid triangle (UGT). For a given grid
point, p, there are six neighboring UGTs, given by {Ti : i = 0, 1, . . . , 5} as shown
in Fig. 2. A portion of the triangular grid is shown in Fig. 2 along with direction
codes. It has six distinct regions called sextants, each of which is well-defined by
two rays starting from (0, 0, 0). For example, Sextant 1 is defined by the region
α+ ∩ β+, Sextant 2 is defined by the region α ∩ γ , and so on.

The triangular distance (dt) between two points p(αp, βp, γp) and q(αq, βq, γq)
is defined by dt(p, q) = max(|αp αq|, |βp βq|, |γp γq|).

The 6-neighborhood of a point (α, β, γ) is given by N6(α, β, γ) = {(α′, β′, γ′) :
max(|α − α′|, |β − β′|, |γ − γ′|) = 1}.

A (finite) polygon P imposed on the grid T is termed as a triangular polygon
if its sides are collinear with lines in L60, L0, and L120. It consists of a set of
UGTs, and is represented by the (ordered) sequence of its vertices, which are grid
points. Its interior is defined as the set of points with integer coordinates lying
inside it. An inner triangular polygon (or simply inner polygon) tightly inscribes
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Fig. 2. Portion of a triangular canvas, the UGTs {T0, T1, . . . , T5} incident at a grid
point p, and the direction codes {0, 1, . . . , 5} of neighboring grid points of p.
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A such that its border is a subset of A and the number of its constituting UGTs
is maximum. An inner triangular hole polygon (or inner hole polygon) tightly
circumscribes a hole and its border is a subset of A. The inner triangular cover
(ITC), P , is the set of inner polygons and inner hole polygons, such that the
region given by the union of the inner polygons minus the union of the interiors
of the inner hole polygons, contains a UGT if and only if it is a subset of A. In
this paper, ITC containing one inner polygon is considered.

A (simple) triangular path π from a grid point p to a grid point q is a sequence
of n distinct points p1, p2, . . . , pn with p1 = p and pn = q such that pi ∈ N6(pi+1),
for 1 < i < n. The length of a given triangular path is the sum of distances
traversed along each axis. A triangular path π is said to be shortest if it is of
minimum length. A path π in triangular grid is monotone if it consists of only one
direction or two consecutive directions. Otherwise π is said to be non-monotone.
In Fig. 1(a), the triangular path contains two monotone sub-paths whereas in
Fig. 1(b), the triangular path contains three monotone sub-paths.

Deriving the Inner Triangular Cover (ITC): The inner triangular cover
of A, P , is constructed using the same method as outer triangular cover as
explained in [4], but in the reverse manner. A grid point q is classified as a
vertex of the inner cover, if and only if at least one (and at most five) of the six
UGT s incident at q is fully occupied by the object A i.e., T q

i ∩ A = T q
i where

i ∈ {0, 1, 2, 3, 4, 5}. The object occupancy vector, Aq = 〈a0a1 . . . a5〉, where ai = 1
if T q

i is fully occupied else it is 0, is used to determine the type of the vertex. Let
k denote the number of fully occupied UGT s, then for k = 0: q is an exterior
point of P , k = 6: interior point, k = 1: a 600 vertex (included angle is 600), and
k = 5: 3000 vertex. For other cases, k = 2, 3, 4, Type of q is derived based on the
incoming (d) and outgoing direction (d′) at q. If the incoming direction is d, then
aj = 1 and a(j+1) mod 6 = 1 where j = (d + 2) mod 6. Now, j is incremented
until the next 1-bit in Aq, say at j′, aj′ = 1, then the outgoing direction, d′ = j′.
A Type 3 vertex is considered as edge point. Type 1, 2 vertices are considered
as convex vertices and Type 4, 5 vertices as concave vertices. The construction
of P keeps A′ (background) to the right during the traversal. The polygon is
traced to the next grid point qn, type of qn is determined and the direction of
traversal from qn is computed. The traversal continues until the start vertex,
vs is reached. During the construction of P , 4 lists are maintained L, Lα, Lβ ,
and Lγ , where, L is a doubly linked list of vertices (corner points) of P and
Lα, Lβ , and Lγ simultaneously contain vertices as well as edge points of P in
lexicographically sorted order with their respective primary and secondary keys.
The primary key for Lα is α and secondary key is β, similarly the primary and
secondary keys for Lβ and Lγ can be defined. An index (in increasing order) is
assigned to each vertex of P in order of their occurrence in P .

3 Finding Shortest Path

To find a shortest path between two points p and q, an appropriate parallelogram,
B, is constructed keeping p and q at diagonally opposite corners and then a
traversal is made along one of the semi-perimeters. Throughout this work, the
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object is assumed to lie in sextant 5 and 6, point p is assumed to be above q and
the left semi-perimeter is traversed to find shortest path. Three different types of
parallelogram are considered depending on the positions of point q(αq, βq, γq).
Regions are separated by red lines as shown in Fig. 3 and are determined as
follows, q is in Region 1 if βq < βp and αq < αp; q is in Region 2 if αq > αp and
γq > γp and finally q is in Region 3 if βq < βp and γq < γp. If q lies on the region
separator, then there will be only one shortest path (as object does not have
holes) and determining the shortest path is straight-forward. The reason behind
the construction of parallelogram is that the semi-perimeters are the shortest
distance between the two points (if semi-perimeters lie completely within the
object). So, to construct a shortest path the traversal is made along one of
the semi-perimeters. During this traversal if the semi-perimeter does not lie
completely inside the object, intersection points between the semi-perimeter and
the inner cover of the object are determined. The traversal is then guided through
those intersection points possibly applying the reduction rules to shorten the
path in such a way that the path lies inside the object. It is to be noted that not
all intersection points will be important to guide the traversal and are eliminated
using few combinatorial rules as explained in Sect. 3.1. The traversal continues
this way applying the reduction rules whenever necessary until it reaches q. The
reduction rules are explained in Sect. 3.2.

3.1 Finding Intersection Points

W.l.o.g, let p be always above q in the bounding parallelogram B and c1, q, c2
are the vertices in order, to the left of p in anti-clockwise direction. Then
the left semi-perimeter of B is defined by pc1 and c1q (Fig. 3). The procedure
CONTROL-POINTS in (Algorithm 1) finds out the points which guide the tra-
versal via the semi-perimeter. If the semi-perimeter pc1,c1q lies entirely within
the object, then the semi-perimeter itself will be a shortest path. Otherwise,
the intersection points of pc1 with the inner cover of the object are found out
by searching Lx, x ∈ {α, β, γ} depending on the orientation of pc1 and stored
in M1 and those of c1q stored in M2. If an intersection point wi lies on the
edge vjvj+1 of P , then its index is set to j + 0.5 to maintain the order that
it appears after vj . The lists are further examined and some of the points are
removed as they will not be important to find the shortest path. The points in
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Fig. 3. Three regions and corresponding orientations of bounding parallelogram
(a, b, c) (Color figure online)
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Fig. 4. Illustration of removal of unimportant intersection points. Dashed line repre-
sents one side of the parallelogram. (a) A concave vertex, w1, is followed by a convex
vertex w2, w1 is removed because it has lower index. (b) w4, a concave vertex with
higher index, is removed as it is preceded by a convex vertex, w3.

two appropriate lists among Mα,Mβ ,Mγ are considered in pairs and if a convex
(concave) vertex is followed by a concave (convex) vertex, then the vertex with
greater (lower) index is discarded using REMOVE-POINTS (Steps 1 and 2) (as
shown in Algorithm1). In Steps 3–9, the final list of intersection points M , is
formed by concatenating p,M1, c1 (if it is inside A), M2 and q. In steps 16–22,
the indices of the pairs of intersection points are checked to find whether they
are in increasing or decreasing order and whether the index falls within indices
of the extreme two points in M , namely M [1] and M [k+k′], where k is the total
number of intersection points. The value of k′ indicates whether c1 has been
included in M(k′ = 1(Step 5)) or not (k′ = 0 (Step 8)) (Fig. 4).

If the test in Step 16 succeeds, then three consecutive intersection points in
M are removed when c1 is the second next point from M [i] (Step 18); else next
two consecutive points are removed (Step 20). Finally M is the required list.
Let M = 〈p,w1, w2, . . . , wk, q〉. When the left semi-perimeter of B lies inside P ,
(semi-perimeter of)B is traversed; otherwise, P . So pw1 is traversed along B,
then w1w2 along P , next w2w3 along B, again w3w4 along P and so on. Such
an alternate traversal is made possible by reordering the vertices in Steps 16–22
if the index ordering does not hold.

Algorithm 1. CONTROL-POINTS

Input: M1,M2, p, q, c1
Output: M

1 REMOVE-POINTS(M1);

2 REMOVE-POINTS(M2);

3 if c1 ∈ A then

/* c1 is the corner point on left

semi-perimeter */

4 M ← CONCAT(p,M1, c1,M2, q);

5 k
′ ← 1;

6 else

7 M ← CONCAT(p,M1,M2, q);

8 k
′ ← 0;

9 end

10 i ← 1;

11 while M [i] �= q do

12 if M [i] = c1 then

13 i ← i + 1;

14 continue

15 else

16 while ∼ (((index[M [i]] <

index[M [i + 1]]) ∧ (index[M [i + 1]] �
index[M [k + k′]]))∨ ((index[M [i]] >

index[M [i + 1]]) ∧ (index[M [i + 1]] �
index[M [k + k′]]))) do

17 if M [i + 2] = c1 then

18 DELETE(M [i + 1],M [i +

2],M [i + 3])

19 else

20 DELETE(M [i + 1],M [i + 2])

21 end

22 end

23 end

24 i ← i + 2;

25 end

26 return M
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3.2 Reduction Rules

While traversing from p via the semi-perimeter of B, the intersection points in
M are also encountered to reach q. This path may include convexities which are
to be removed to shorten the path. The rules are discussed here. The convexities
are detected when the turn at a vertex or the sum of the turns at two consecu-
tive vertices is equal to or greater than 120◦. A clockwise (anticlockwise) change
in direction at a vertex is considered as a positive (negative) turn by the corre-
sponding angle. All possible cases are depicted in Fig. 5. A Type 1 vertex makes
a turn of 120◦ so it is a convex vertex. Similarly turn at two consecutive vertices
of types 22, 21 creates a turn of 120◦ or more and hence create convexities.
Pattern 12 and 11 also create convexity.

It is to be noted that although a Type 2 vertex is treated as a convex
vertex, unlike Type 1 vertex, it alone cannot create a convexity. The proposed
algorithm maintains with each vertex, its Type (t), length (l), and the outgoing
direction (d). Removal of convexity sometimes requires removal of some or all
vertices that are involved in the convexity and the deletion of vertex needs
adjustment of those information with vertex that precedes or follows convexity. If
the convexity is created by a Type 1 vertex, four consecutive vertices, v0v1v2v3,
where v2 is the vertex of Type 1 and v3 is the most recently visited vertex,
are considered to apply the rule to remove convexity. On the other hand, if the
convexity is created by two consecutive convex vertices (of Type 22 or 21) then
five consecutive vertices v0v1v2v3v4, where v1 and v2 are convex vertices and v4
is the most recently visited vertex; are considered to apply the rule to remove
convexity. The type of the start (p) and end (q) vertices are set to 6 since in
general the path is found between two points that lie inside the cover. The rules
are explained as follows.

Pattern < t11t3 > t1, t3 ∈ {4, 5, 6}
This pattern implies a convex region created by a single Type 1 vertex and

it is preceded or followed by concave vertices. We consider four most recently
traversed vertices, v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3), v3 being the most recent.
Depending on the lengths l1 and l2, three rules are as follows.
R11 (l1 < l2): 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)〉 →
〈v0(t0, l0)v1(t1 − 1, l1)v2(t2 + 1, l2 − l1)v3(t3, l3)〉
R12 (l1 = l2): 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)〉 →
〈v0(t0, l0)v1(t1 − 1, l1)v3(t3 − 1, l3)〉
R13(l1 > l2): 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)〉 →

1
2 2 2 1 1 2 1 1

(a) (b) (c) (d) (e)

Fig. 5. Types of convexities present in P
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〈v0(t0, l0)v1(t1, l1 − l2)v2(t2 + 1, l2)v3(t3 − 1, l3)〉. After application of the rule
whichever necessary, if type of any of the vertices is 3 then its length is added
to the vertex that precedes it and the vertex is deleted. For example, if the
type of vertex v3 becomes 3 then l3 is added to length of v2 and v3 is deleted.
The illustration of rule R1 is shown in Fig. 6. Pattern < t1t2t3t4 > where
t2, t3 ∈ {1, 2} and t1, t4 ∈ {4, 5, 6}.

This pattern implies two consecutive convex vertices followed and preceded
by concave vertices. There will be three possible cases depending on the length
of v2 and v3 as explained in the following rules (illustrated in Fig. 7).

R21: (l1 < l3) 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)v4(t4, l4)〉 →
〈v0(t0, l0)v1(t1 − 1, (t2 + t3 − 3)l1 + l2)v3(t3, l3 − l1)v4(t4, l4)〉
R22: (l1 = l3) 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)v4(t4, l4)〉 →
〈v0(t0, l0)v1(t1 − 1, (t2 + t3 − 3)l1 + l2)v4(t4 − 1, l4)〉
R23: (l1 > l3) 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)v4(t4, l4)〉 →
〈v0(t0, l0)v1(t1, l1 − l3)v2(t2, (t2 + t3 − 3)l3 + l2)v4(t4 − 1, l4)〉

Pattern < t1t2t3t4 > where t2, t3, t4 ∈ {1, 2} and t1 ∈ {4, 5, 6}.

This pattern implies a concave vertex (t1) is followed by 3 consecutive convex
t2, t3, t4 vertices. The total turn at these three consecutive convex vertices may
be more than 180◦ and if l1 > l3 the traversal may enter into a convoluted region
which should be avoided to obtain shorter path. This is explained with the help
of a sample case shown in Fig. 8. Consider the line h along v2v1 and the line
h′ in the direction of v2v3 projected at v′v4 (h and h′ meet at v′). To avoid
the convoluted region, a traversal is made from v4 and every time it reaches a
new vertex, a check is made to determine whether it has entered the free region
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Fig. 6. Illustration of rules: (a) R11, (b) R12, (c) R13
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Fig. 7. Illustration of rules (a) R21, (b) R22, (c) R23
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Fig. 9. Nearest concavity line

defined by v1, v
′, v4. For example when the traversal is at vertex v41 or v42 or

v43, it is on or to the right of the line h′ and below (right of) the line h and hence
they are within the convoluted region. When the traversal reaches v5, it is on
the left of h′ and below h which is the free region. The vertices starting from v2
to v43 are deleted, length l′ from v′v′′ and l′′ from v′′ to v5 are determined and
set accordingly. The type of v′′ i.e. t′′ is calculated from incoming and outgoing
direction at v′′ by the formula (din − complement(dout) + 6) mod 6. The rule
is given below.

R3: 〈v0(t0, l0)v1(t1, l1)v2(t2, l2)v3(t3, l3)v4(t4, l4)〉 →
〈v0(t0, l0)v1(t1, l1 − l3)v′(t2, l′)v′′(t′′, l′′)〉
However, if l1 ≤ l3, the convexities can be avoided using Rule 2. One or more

concavity can be intruded inside a convex region. In a convex region, we have to
find the concavity which is mostly intruded. This checking has to be performed
while applying reduction rules. For example, the convexity created by vertices
v1, v2, v3, shown in Fig. 9(a) is of type < t11t3 > with l1 = l2. Within the convex
region a concave portion is there. To keep the shortest path inside the object the
path should pass along the concavity line which is mostly intruded in the convex
region (dashed line via v′ as shown in Fig. 9(b)). To locate the required concavity
line, the intersection points with line v1v3 (dotted line in Fig. 9(b)) are found
out by searching the appropriate list (Lα, Lβ , Lγ). If there is no intersection
point, then appropriate reduction rule is applied directly. On the other hand, if
there are intersection points then a traversal is made in the portion of P starting
from one intersection point to the next intersection point to find out the nearest
concavity line. For example, in Fig. 9(b) line v1v3 intersects P at v′

1 and v′
3.

A traversal is made from v′
3 to v′

1, finding distance from every new vertex it
meets to v2 and choosing the one with minimum distance, v′ in this case. So the
reduction is made upto v′ via the dashed line. This introduces two new vertices
v′
2 and v′′

2 and their length and types are adjusted as shown in Fig. 9(c). If the
distance of v2 from v′ is d, then length of v1 and v′′

2 is set to l1 − d and l2 − d
respectively. Length of v′

2 is set to d and v2 is deleted.

3.3 Algorithms

The algorithm FIND-STP (Algorithm 2) takes the inner cover P , the lists
Lα, Lβ , and Lγ , source and destination points, p and q, as input. The point
of intersections of B with the semi-perimeter pc1, c1q are obtained (Steps 3–4)
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and non-essential points are removed using the procedure CONTROL-POINTS
(Algorithm 1) (Step 5). p is appended to the shortest path, π. In the while loop
(Steps 8–23), each point in M is considered until it reaches q. If M [i] is the
corner point c1, then it is appended to π and then reduced (Steps 10–11). The
procedure REDUCE uses the reduction rules to remove the convexity in π. In
Steps 15–16, M [i] is added and reduction rules are applied if needed. In Step
17, the portion of P between M [i] a 19, M [i + 1] is added to π and reduced if
needed.

In the procedure TRAVERSE in Algorithm3, if the index of M [i] is less than
that of M [i + 1], then P is traversed in an anticlockwise manner (Steps 1–11);
otherwise, P is traversed clockwise (Steps 12–22). In Steps 2–3, l′ and l′′ indicate
the pointers to the neighbor vertices of M [i] and M [i + 1] in P , taken appro-
priately. After adding P [l′] to path π (Step 4 or 15), each vertex on the path is
appended to π in the while loop (Steps 7–11 or 18-22) until the vertex P [l′′] is
reached. Appropriate reduction rules are applied by calling REDUCE in Steps
5 and 16, 9 and 20 as and when necessary. Procedure REDUCE is explained in
Sect. 3.2 with reduction rules, and procedure SEARCH is used to search inter-
section points of the boundary of P with the semi-perimeter of the bounding
parallelogram.

Algorithm 2. FIND-STP
Input: P, Lα, Lβ , Lγ , p, q
Output: π

1 c1 ← corner point on left semi-perimeter;
2 θ1, θ2 ← Orientation of segment pc1, c1q;
3 M1 ← SEARCH(p, c1, θ1);
4 M2 ← SEARCH(c1, q, θ2);
5 M ←

CONTROL-POINTS(M1, M2, p, q, c1);
6 i ← 1, π ← φ;
7 APPEND(π, p);
8 while M [i] �= q do
9 if M [i] = c1 then

10 APPEND(π, c1);
11 REDUCE(π);
12 i ← i + 1;
13 continue

14 end
15 APPEND(π, M [i]);
16 REDUCE(π);
17 TRAVERSE(P, M [i], M [i + 1], π);
18 APPEND(π, M [i + 1]);
19 REDUCE(π);
20 i ← i + 2;
21 APPEND(π, q);
22 REDUCE(π);

23 end
24 return π

Algorithm 3. TRAVERSE
Input: (P, M [i], M [i + 1], π)

1 if index[M [i]] < index[M [i + 1]]
then

2 l′ ← �(index[M [i]] + 1)�;
3 l′′ ← 	(index[M [i + 1]] − 1)
;
4 APPEND(π[m], P [l′]);
5 REDUCE(π);

6 j ← l′ + 1;

7 while j � l′′ do
8 APPEND(π[m], P [j]);
9 REDUCE(π);

10 j ← j + 1;

11 end

12 else
13 l′ ← 	(index[M [i]] − 1)
;
14 l′′ ← �(index[M [i + 1]] + 1)�;
15 APPEND(π[m], P [l′]);
16 REDUCE(π);

17 j ← l′ − 1;

18 while j � l′′ do
19 APPEND(π[m], P [j]);
20 REDUCE(π);
21 j ← j − 1;

22 end

23 end

4 Time Complexity

To compute the running time of the proposed algorithm let us look at the steps
involved and the cost of each step. Initially the inner cover of the object is
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computed by the algorithm presented in [4] which costs O(n/g) time, n being
the number pixels in the perimeter of the object and g is the grid size. During the
construction of inner cover three sorted lists Lα, Lβ and Lγ are also constructed
in O(n/g log n/g) time. The intersection points on the inner cover of the object
with the semi-perimeter of the parallelogram are found by searching Lα or Lβ or
Lγ in O(log n/g) time. The algorithm to find shortest path uses control points to
reach the destination and applies reduction rules whenever necessary. Reductions
can be performed in O(1) time. So, the overall running time of the algorithm
amounts to O(n/g) + O(n/g log n/g) + O(log n/g) + O(1) 	 O(n/g log n/g).

5 Experimental Results and Analysis

The proposed algorithm is implemented in C in Ubuntu 12.04, 64-bit, kernel
version 3.5.0-43-generic, the processor being Intel i5-3570, 3.4 GHz FSB and
tested exhaustively to show the efficacy and correctness of the algorithm. Two
instances of shortest paths for two different objects along with the bounding
parallelogram (purple) through which the shortest path is calculated are shown
with g = 8 in Fig. 10. The number of monotone sub-paths (m) with different

(a) m = 2 (b) m = 2 (c) m = 1 (d) m = 2

Fig. 10. Shortest Path of three different objects with g = 8 and # monotone paths,
m, {(a), (b)} Kangaroo, {(c), (d)} Device

)b()a(

Fig. 11. Shortest Paths of two different objects with g = 8 from single source (black)
to multiple destinations (red) (Color figure online)
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colors are also shown under each object in the results. Figure 11 also shows
shortest paths from a single source to multiple destinations for two different
objects. It is evident from the results that the reported shortest path is not
only the shortest path between the two points but also there exists a set of
shortest paths having same path-length and our algorithm reports one of the
paths between the two points.

6 Conclusions

A combinatorial algorithm to find a shortest triangular path between two points
inside a digital object is presented here, which is not unique. Our algorithm
reports one of the shortest triangular paths. Thus in future, this work can be
extended to determine all shortest paths between two points. The number of
monotone triangular sub-paths depends on the position of the two points inside
the digital object and also on the shape of the object. The number of monotone
triangular sub-paths and other related properties, e.g., length of the path, dis-
tance between two points, can be used to determine shape complexity of the
object. These metrics will also be useful for determining shape signatures.
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Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 76–90. Springer,
Heidelberg (2014)

5. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1,
269–271 (1959)

6. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding a shortest
isothetic path and its monotonicity inside a digital object. Ann. Math. Artif. Intell.
75, 27–51 (2015)

7. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding shortest iso-
thetic path inside a digital object. In: Barneva, R.P., Brimkov, V.E., Aggarwal,
J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 1–15. Springer, Heidelberg (2012)

8. Freeman, H.: Algorithm for generating a digital straight line on a triangular grid.
IEEE Trans. Comput. 28, 150–152 (1979)

9. Her, I.: Geometric transformation on the hexagonal grid. IEEE Trans. Image
Process. 4, 1213–1222 (1995)

10. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Trans. Comput.
25(5), 532–533 (1976)

11. Moore, E.: The shortest path through a maze. In: Proceedings of an International
Symposium on the Theory of Switching, 25 April 1957, pp. 285–292. Harvard
University Press, Cambridge (1959)



218 A. Sarkar et al.

12. Nagy, B.: Shortest paths in triangular grids with neighbourhood sequences. J.
Comput. Inf. Technol. 11(2), 111–122 (2003)

13. Schrijver, A.: On the history of the shortest path problem. Doc. Math. 155–167
(2012)

14. Shimbel, A.: Structural parameters of communication networks. Bull. Math. Bio-
phys. 15(4), 501–507 (1953)


	Finding Shortest Triangular Path in a Digital Object
	1 Introduction
	2 Definitions and Preliminaries
	3 Finding Shortest Path
	3.1 Finding Intersection Points
	3.2 Reduction Rules
	3.3 Algorithms

	4 Time Complexity
	5 Experimental Results and Analysis
	6 Conclusions
	References


