Skip to main content

Microwave-Assisted Sol-Gel Synthesis of Metal Oxide Nanomaterials

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The main goal of this chapter is to fill the gap in contemporary literature on the basic scientific aspects of microwave-assisted sol-gel technique. In this chapter, we shall briefly consider the microwave-assisted sol-gel method adopted for the preparation of metal oxide nanoparticles with controlled particle size, morphology, and crystal structure. Now a days researchers are motivated by an advantages of microwave-assisted technique such as facile, fast, secure, controllable and energy-saving characteristics as compared to other traditional ceramic methods. Hence, microwave-assisted technique has achieved rapid development in the field of materials science. In this chapter, we also mainly covered the basic principles of the microwave heating and mechanism based on interactions between dipoles in the material and the electromagnetic microwave. For the microwave-assisted synthesis of nanostructured materials, we will focus on metal oxides owing to very important functional materials both for the fundamental research and for practical applications in photocatalysis and gas sensors. This chapter also explores the potential application in photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameta SC, Punjabi PB, Ameta R, Ameta C. Microwave assisted organic synthesis: A green chemical approach. CRC Press/Taylor and Francis Group NW; 2015. ISBN 9781771880398.

    Google Scholar 

  • Arslan I, Balcioglou I. Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dyes Pigments. 1999;43:95–108.

    CAS  Google Scholar 

  • Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci. 2012;7:4871–88.

    CAS  Google Scholar 

  • Bi J, Wu L, Li Z, Ding Z, Wang X, Fu X. A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. J Alloys Compd. 2009;480:684–8.

    CAS  Google Scholar 

  • Chen H, Yang S, Chang J, Yu K, Li D, Sun C, Li A. Efficient degradation of crystal violet in magnetic CuFe2O4 aqueous solution coupled with microwave radiation. Chemosphere. 2012;89:185–9.

    CAS  Google Scholar 

  • Ciesla P, Kocot P, Mytych P, Stasicka Z. Homogeneous photocatalysis by transition metal complexes in the environment. J Mol Catal A Chem. 2004;224:17–33.

    CAS  Google Scholar 

  • Collins MJ. Future trends in microwave synthesis. J Future Med Chem. 2010;2:151–5.

    CAS  Google Scholar 

  • Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A. Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Mater Sci Eng C. 2003;23:707–13.

    Google Scholar 

  • Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz. 2016;3:91–112.

    CAS  Google Scholar 

  • Das S, Mukhopadhyay KA, Datta S, Basu D. Prospects of microwave processing: an overview. Bull Mater Sci. 2009;32:1–13.

    CAS  Google Scholar 

  • Emilio CA, Litter MI, Kunst M, Bouchard M, Colbeau-Justin C. Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics. Langmuir. 2006;22:3606–13.

    CAS  Google Scholar 

  • Farbod M, Jafarpoor E. Fabrication of different ZnO nanostructures and investigation of morphology dependence of their photocatalytic properties. Mater Lett. 2012;85:47–9.

    CAS  Google Scholar 

  • Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem. 1977a;81:1484–8.

    CAS  Google Scholar 

  • Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc. 1977b;99:303–4.

    CAS  Google Scholar 

  • Galema SA. Microwave chemistry. Chem Soc Rev. 1997;26:233–8.

    CAS  Google Scholar 

  • Galindo C, Jacques P, Kalt A. Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations. Chemosphere. 2001;45:997–1005.

    CAS  Google Scholar 

  • Garadkar KM, Ghule LA, Sapnar KB, Dhole SD. A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis. Mater Res Bull. 2013;48:1105–9.

    CAS  Google Scholar 

  • Gedye S, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986;27:279–82.

    CAS  Google Scholar 

  • Ghule LA, Shirke BS, Sapnar KB, Dhole SD, Hankare PP, Garadkar KM. Preparation of zinc oxide nanorods by microwave assisted technique using ethylene glycol as a stabilizing agent. J Mater Sci Mater Electron. 2011;22:1120–3.

    CAS  Google Scholar 

  • Giguere RJ, Bray TL, Duncan SM, Majetich G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 1986;27:4945–8.

    CAS  Google Scholar 

  • He D, Hao H, Chen D, Lu J, Zhong L, Chen R, Liu F, Wan G, He S, Luo Y. Rapid synthesis of nano-scale CeO2 by microwave-assisted sol–gel method and its application for CH3SH catalytic decomposition. J Environ Chem Eng. 2016;4:311–8.

    CAS  Google Scholar 

  • Hoffman A, Carraway ER, Hoffman MR. Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ Sci Technol. 1994;28:776–85.

    CAS  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Hermann JM. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ. 2001;31:145–57.

    CAS  Google Scholar 

  • Huang G, Zhu Y. Synthesis and photocatalytic performance of ZnWO4 catalyst. Mater Sci Eng B. 2007;139:201–8.

    CAS  Google Scholar 

  • Huang A, Cao L, Chen J, Spiess FJ, Suib S, Obee TN, Hay SO, Freihaut J. Photocatalytic degradation of triethylamine on titanium oxide thin films. J Catal. 1999;188:40–7.

    CAS  Google Scholar 

  • Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3:189–218.

    CAS  Google Scholar 

  • Ji P, Tian B, Chen F, Zhang J. CeO2 mediated photocatalytic degradation studies of C.I. acid orange 7. Environ Technol. 2012;33:467–72.

    CAS  Google Scholar 

  • Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim Acta A. 2014;133:669–76.

    CAS  Google Scholar 

  • Kamat PV. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J Phys Chem Lett. 2012;3:663–72.

    CAS  Google Scholar 

  • Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: characterization and photocatalytic study. Mater Chem Phys. 2008;110:166–75.

    CAS  Google Scholar 

  • Konstantinou IK, Albanis TA. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl Catal B Environ. 2003;42:319–35.

    CAS  Google Scholar 

  • Kooti M, Naghdi Sedeh A. Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J Mater Sci Technol. 2013;29:34–8.

    CAS  Google Scholar 

  • Kumar SG, Devi L. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 2011;115:13211–41.

    CAS  Google Scholar 

  • Li Y, Yang W. Microwave synthesis of zeolite membranes: a review. J Membr Sci. 2008;316:3–17.

    CAS  Google Scholar 

  • Li Y, Ma M, Chen W, Li L, Zen M. Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations. Mater Chem Phys. 2011;129:501–5.

    CAS  Google Scholar 

  • Lidstrom P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis – a review. Tetrahedron. 2001;57:9225–83.

    CAS  Google Scholar 

  • Lin Z, Cai W, Jiang W, Fu C, Lic C, Song Y. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method. Ceram Int. 2013;39:8729–36.

    CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95:735–58.

    CAS  Google Scholar 

  • Liu CC, Hsieh YH, Lai PF, Li CH, Kao CL. Photodegradation treatment of azo dye wastewater by UV/TiO2 process. Dyes Pigments. 2006;68:191–5.

    CAS  Google Scholar 

  • Liu X, Wang D, Li Y. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today. 2012;7:448–66.

    CAS  Google Scholar 

  • Macario RL, Moreira ML, Andres J, Longo E. An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions. CrystEngComm. 2010;12:3612–9.

    CAS  Google Scholar 

  • Meshko V, Markovska L, Mincheva M, Rodrigues AE. Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res. 2001;35:3357–66.

    CAS  Google Scholar 

  • Moctezuma E, Leyva E, Monreal E, Viuegas N, Infante D. Photocatalytic degradation of the herbicide “Paraquat”. Chemosphere. 1999;39:511–7.

    CAS  Google Scholar 

  • Nadagouda MN, Speth TF, Varma RS. Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res. 2011;44:469–78.

    CAS  Google Scholar 

  • Nasrollahzadeh M. Application of TiO2 nanoparticles for the synthesis of N-arylureas in water at room temperature. RSC Adv. 2014;4:29089–93.

    CAS  Google Scholar 

  • Nehru LC, Sanjeeviraja C. Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method. J Adv Ceram. 2014;3:171–6.

    CAS  Google Scholar 

  • Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere. 2002;46:1173–81.

    CAS  Google Scholar 

  • Pagga U, Taeger K. Development of a method for adsorption of dyestuffs on activated sludge. Water Res. 1994;28:1051–7.

    CAS  Google Scholar 

  • Parra S, Olivero J, Pulgarin C. Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl Catal B Environ. 2002;36:75–85.

    CAS  Google Scholar 

  • Patil SS, Shinde VM. Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. Environ Sci Technol. 1988;22:1160–5.

    CAS  Google Scholar 

  • Peternel IT, Koprivanac N, Bozic AM, Kusic HM. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J Hazard Mater. 2007;148:477–84.

    CAS  Google Scholar 

  • Phani AR, Passacantando M, Santucci S. Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol–gel process assisted by microwave irradiation. J Phys Chem Solids. 2007;68:317–23.

    CAS  Google Scholar 

  • Rafols C, Barcelo D. Determination of mono- and disulphonated azo dyes by liquid chromatography–atmospheric pressure ionization mass spectrometry. J Chromatogr A. 1997;777:177–92.

    CAS  Google Scholar 

  • Rajak H, Mishra P. Microwave–assisted combinatorial chemistry: the potential approach for acceleration of drug discovery. J Sci Ind Res. 2004;63:641–54.

    CAS  Google Scholar 

  • Sagadevan S. Studies on the dielectric properties of CdS nanoparticles. Appl Nanosci. 2014;4:325–9.

    Google Scholar 

  • Sana S, Reddy KR, Rajanna KC, Venkateswarlu M, Ali MM. Mortar-pestle and microwave assisted regioselective nitration of aromatic compounds in presence of certain group V and VI metal salts under solvent free conditions. Int J Org Chem. 2012;2:233–47.

    Google Scholar 

  • Saquib M, Muneer M. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes Pigments. 2003;56:37–49.

    CAS  Google Scholar 

  • Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM. Synthesis and characterization of pure anatase TiO2 nanoparticles. J Mater Sci Mater Electron. 2011a;22:821–4.

    CAS  Google Scholar 

  • Shirke BS, Patil AA, Hankare PP, Garadkar KM. Synthesis of cerium oxide nanoparticles by microwave technique using propylene glycol as a stabilizing agent. J Mater Sci Mater Electron. 2011b;22:200–3.

    CAS  Google Scholar 

  • Simantiris NL, Riga D, Katsivela E, Mantzavinos D, Xekoukoulotakis NP. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination. 2010;250:351–5.

    Google Scholar 

  • Strickland F, Perkins S. Decolorization of continuous dyeing wastewater by ozonation. Text Chem Color. 1995;27:11–5.

    CAS  Google Scholar 

  • Suwarnkar MB, Dhabbe RS, Kadam AN, Garadkar KM. Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram Int. 2014;40:5489–96.

    CAS  Google Scholar 

  • Tachikawa T, Fujitsuka M, Majima T. Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C. 2007;111:5259–75.

    CAS  Google Scholar 

  • Tang WZ, An H. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere. 1995;31:4157–70.

    CAS  Google Scholar 

  • Tao Y, Wang H, Xia Y, Zhang G, Wu H, Tao G. Preparation of shape-controlled CeO2 nanocrystals via microwave-assisted method. Mater Chem Phys. 2010;124:541–6.

    CAS  Google Scholar 

  • Teoh WY, Scott JA, Amal R. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett. 2012;3:629–39.

    CAS  Google Scholar 

  • Tseng TK, Lin YS, Chen YJ, Chu H. A review of photocatalysts prepared by sol–gel method for VOCs removal. Int J Mol Sci. 2010;11:2336–61.

    CAS  Google Scholar 

  • Vijayalakshmi K, Sivaraj D. Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 2015;5:68461–9.

    CAS  Google Scholar 

  • Wang S, Jiang SP, Wang X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim Acta. 2011;56:3338–44.

    CAS  Google Scholar 

  • Wang Z, Zhu J, Xu W, Sui J, Peng H, Tang X. Microwave hydrothermal synthesis of perovskite BiFeO3 nanoparticles: an insight into the phase purity during the microwave heating process. Mater Chem Phys. 2012;135:330–3.

    CAS  Google Scholar 

  • Wu CH, Chang CL. Decolorization of Reactive Red 2 by advanced oxidation processes: comparative studies of homogeneous and heterogeneous systems. J Hazard Mater. 2006;128:265–72.

    CAS  Google Scholar 

  • Yang H, Zhang K, Shi R, Li X, Dong X, Yu Y. Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. J Alloys Compd. 2006;413:302–6.

    CAS  Google Scholar 

  • Zhang P, Wang M, Na Y, Li X, Jia Y, Sun L. Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe2S2] catalyst with high turnover numbers. Dalton Trans. 2010;39:1204–6.

    CAS  Google Scholar 

  • Zhang F, Sun D, Yu C, Yin Y, Dai H, Shao G. A sol–gel route to synthesize SiO2/TiO2 well-ordered nanocrystalline mesoporous photocatalysts through ionic liquid control. New J Chem. 2015;39:3065–70.

    CAS  Google Scholar 

  • Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev. 2014;114:6462–555.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Garadkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Garadkar, K.M., Kadam, A.N., Park, J. (2018). Microwave-Assisted Sol-Gel Synthesis of Metal Oxide Nanomaterials. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_107

Download citation

Publish with us

Policies and ethics