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Abstract. It is a long-standing open problem to prove the existence
of (deterministic) hard-core predicates for the Computational Diffie-
Hellman (CDH) problem over finite fields, without resorting to the
generic approaches for any one-way functions (e.g., the Goldreich-Levin
hard-core predicates). Fazio et al. (FGPS, Crypto ’13) made important
progress on this problem by defining a weaker Computational Diffie-
Hellman problem over Fp2 , i.e., Partial-CDH problem, and proving, when
allowing changing field representations, the unpredictability of every sin-
gle bit of one of the coordinates of the secret Diffie-Hellman value. In this
paper, we show that all the individual bits of the CDH problem over Fp2

and almost all the individual bits of the CDH problem over Fpt for t > 2
are hard-core.
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1 Introduction

Hard-core predicates [4,14] are central to cryptography. Of particular interest is
the hard-core predicate for the CDH problem, which is essential to establishing
the security for Diffie-Hellman (DH) key exchange protocol [7] and ElGamal
encryption scheme [9] without having to make a (potentially) much stronger DH
assumption—the Decisional Diffie-Hellman (DDH) assumption.

However, despite the generic approaches for randomized predicates work-
ing for any computationally hard problems [13,19], showing the existence of
deterministic and specific hard-core predicates for the CDH problem over finite
fields has proven elusive. This is in contrast to other conjectured hard problems
such as discrete logs, RSA, and Rabin, whose deterministic hard-core predi-
cates were discovered roughly three decades ago [2,4]. Recently, Fazio, Gennaro,
Perera, and Skeith (FGPS) [10] made a significant breakthrough by introducing
a relaxed variant of the CDH problem over finite fields Fp2 , i.e., the Partial-CDH
problem and proving the unpredictability for a large class of predicates.

Partial-CDH problem. Given a prime p, there are many different fields Fp2

which are all isomorphic to each other. Let h(x) = x2 + h1x + h0 be a monic
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irreducible polynomial of degree 2 in Fp. We know that Fp2 is isomorphic to the
field Fp[x]/(h), where (h(x)) is a principal ideal in the polynomial ring Fp[x]
and elements of Fp2 can be written as linear polynomials. Namely, if g ∈ Fp2

then g = g1x + g0 and addition and multiplication are performed as polynomial
operations modulo h. Given g ∈ Fp2 we denote by [g]i the coefficient of the
degree-i term.

Let g denote a random generator of the multiplicative group of Fp2 . FGPS
defined the following Partial-CDH problem over Fp2 [10]: the Partial-CDH prob-
lem is hard over Fp2 if given random inputs g,A = ga, B = gb ∈ Fp2 , it is
computationally hard to output K = [gab]1 ∈ Fp (i.e., the coefficient of the
degree 1 term of gab), for any representation of Fp2 .

Assuming the hardness of the Partial-CDH problem, FGPS developed the
idea of randomizing the problem representation originally suggested by Boneh
and Shparlinski [5] and proved a large class of hard-core predicates over a random
representation of the finite field Fp2 . Namely, given an oracle that predicts any bit
of K =

[
gab

]
1

over a random representation of Fp2 with non-negligible advantage,
one can recover K with non-negligible probability.

However, the Partial-CDH problem is clearly weaker than the regular CDH
problem. Given a CDH oracle, one can easily solve the Partial-CDH problem.
Note that the reason why we need hard-core predicates is exactly that we do
not want to make stronger assumptions. Without characterizing the hardness
of the Partial-CDH problem, the FGPS result can hardly be based on a firm
foundation. Thus, studying the hardness of the Partial-CDH problem is left by
FGPS as an important open problem [10, Sect. 6].

The d-th CDH problems. It is natural to generalize the Partial-CDH problem
over Fp2 to define the d-th CDH problems over Fpt for t > 1 (history and related
work coming shortly). For a prime p and an integer t > 1, there are many
different fields Fpt , but they are all isomorphic to each other. Let h(x) be a monic
irreducible polynomial of degree t in Fp. It is well known that Fpt is isomorphic
to the field Fp[x]/(h), where (h(x)) is a principal ideal in the polynomial ring
Fp[x] and elements of Fpt can be written as polynomials of degree t−1. Namely, if
g ∈ Fpt then g = gt−1x

t−1+gt−2x
t−2+· · ·+g1x+g0. Addition and multiplication

of the elements in Fpt are performed as polynomial operations modulo h. In the
following, given g ∈ Fpt we denote by [g]i the coefficient of the degree-i term,
i.e., gi = [g]i.

Let g be a random generator of the multiplicative group of Fpt and d be an
integer such that 0 ≤ d ≤ t−1. Informally we say that the d-th CDH problem is
hard in Fpt if given g, ga, gb ∈ Fpt , it is computationally hard to compute [gab]d,
for any representations of Fpt .

Prior work on hardness of d-th CDH problems: Not yet perfect.

FGPS and an earlier version of this paper did not realize that the hardness of
d-th CDH problem had already been studied in [20,22]. Verheul [22, Theorem 21]
showed that given a perfect d-th CDH problem oracle (which always returns cor-
rect answers), one can solve the CDH problem over the same fields. Concretely,
given a CDH instance (gx, gy) ∈ (Fpt)2, Verheul’s algorithm needs to run the
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d-th CDH problem oracle on (gx, gy ·gr) for at least poly(t) times, with the same

gx and gy, yet uniformly chosen r
$←−Zpt−1. For some d, say, d = �t/2�, Verheul’s

algorithm even has to run the d-th CDH oracle for at least 2t times such that
the algorithm can have exponential running time in t.

Shparlinski [20] generalized Verheul’s result to handle the case of noisy ora-
cles (which return correct answers with some probabilities). Shparlinski’s reduc-
tion uses a strategy that is the same as Verheul’s to limit the behavior of the ora-
cle. Namely, the queries given to the d-th CDH oracle have the form of (gx, gy ·gr)
with uniformly chosen r. In this case, it is not guaranteed that the noisy d-th
CDH oracle would answer this type of queries correctly. It might well be the case
that a malicious d-th CDH problem oracle (adversary) simply always returns
incorrect answers for any query of the form (X, ·), if it has previously been given
a query with the same X. Hence, Shparlinski’s reduction is problematic in the
sense it failed to prove what’s claimed in the presence of noisy oracles. (Note
that Verheul’s reduction does not suffer from the same problem, as the answers
returned by the perfect oracles are always correct.)

1.1 Our Contributions

In this paper, we show that all the individual bits of the CDH problem over Fp2

and almost all the individual bits of the CDH problem over Fpt for t > 2 are
hard-core. Let’s explain our main contributions in a bit more detail.

The hardness of d-th CDH problem. In order to characterize the hardness
of d-th CDH problem, we consider a case of noisy oracles which is more gen-
eral than those of Verheul [22] and Shparlinski [20]. In our model, to compute
the secret CDH value, we just require that the d-th CDH oracle return correct
answers at some probability. Given a CDH instance (gx, gy) ∈ (Fpt)2, we need
to run the d-th CDH oracle on inputs (gx · gr, gy · gs) with uniformly chosen r
and s. The analysis for general t turns out to take some work.

With this model, we show that the 1-th CDH problem (i.e., the Partial-CDH
problem) and 0-th CDH problem (which we call Dual-Partial-CDH problem) over
finite fields Fp2 are strictly as hard as the regular CDH problem over the same
fields. Regarding general extension fields, we are able to prove that all the d-th
CDH problems over a random representation of finite fields Fpt (with t > 1) are
as hard as the regular CDH problem over the same fields; in particular, the 0-th
CDH problem and (t− 1)-th CDH problem given any field representation are as
hard as the CDH problem. We comment that applying our approach to the case
of perfect oracles, our reduction leads to no security loss, which is in contrast to
Verheul’s, where for many d’s, the algorithm can easily have exponential running
time in t.

The case of Fp2 . At the heart of the FGPS result is the list decoding app-
roach for hard-core predicates, which was developed by Akavia, Goldwasser and
Safra [1], and extended by Morillo and Ràfols [18] and Duc and Jetchev [8]. Up
to now, the list decoding approach has only been proven successful for multi-
plicative codes [1,8,18]. It is unclear if the approach can work more generally. In
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this paper, we will work directly on a non-multiplicative code. Still assuming the
hardness of the Partial-CDH problem, we are able to prove the unpredictability
of every single bit of the other coordinate (i.e., the coefficient of the lower degree
term) of the secret CDH value, by using a careful analysis of the Fourier coef-
ficients of the function. To the best of our knowledge, this is the first positive
result that the list decoding approach can be applied to a non-multiplicative
code, a result of independent interest.

Combining all the above-mentioned results, we are able to prove our main
result for the regular CDH problem over Fp2 : given an oracle O that predicts
any bit of the CDH value over a random representation of the field Fp2 with
non-negligible advantage, we can solve the regular CDH problem over Fp2 with
non-negligible probability.

The case of Fpt . We go on to prove that assuming the hardness of the d-th
CDH problem, every single bit of the d-th CDH coordinate for d �= 0 is hard-to-
compute. FGPS [10, Sect. 6] found that their technique was not powerful enough
to solve the generalized problem. To overcome the difficulty, we identify a gen-
eral yet simplified class of isomorphisms. The isomorphisms identified generalize
those of finite field Fp2 in FGPS to the case of general finite fields Fpt for any
t > 1. More importantly, they simplify those of FGPS by adopting a more restric-
tive class of isomorphisms. We comment that it is the simplicity that is essential
to overcoming the original technical difficulty and establishing the bit security
for general finite fields. To achieve this result, we also use another idea of Boneh
and Shparlinski [5] using d-th residues modulo p.

Together with the equivalence result between all the d-th CDH problems over
Fpt (with t > 1) and the regular CDH problem, we obtain another main result
of the paper: all bits except the bits of the degree-0 term of the usual CDH
problem over a random representation of the finite field Fpt are hard-core.

1.2 Further History and Discussion

An earlier version was put online [23]. Galbraith and Shani [11] extended our
work to obtain an essentially stronger hard-core result that works for every
individual bit for any finite fields Fpt with any t. Thus, as claimed by the authors,
this improvement can allow us to consider “the case of large t, and in particular
the case of fields with small characteristic” [11, p. 264]. We certainly agree with
this point of view, but one may not understand that our reduction approach is
inherently defective. The security loss in our reduction only comes from the loss
in proving the equivalence between the d-th CDH problem and the conventional
CDH problem. If one can find a way to prove their equivalence with no security
loss, as what we did for the case of perfect oracles, our result can be equally
expressive.

As commented by Galbraith and Shani [11, Remark 25], their approach does
not work for the popular polynomial basis, while our approach deals with this
case, and therefore our result will be useful when one desires a hard-core bit in
its polynomial basis.
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Another reason that makes our paper worth attending to is that as discussed
earlier, we point out the “problem” of studying the hardness of the d-th CDH
problem in prior work by Shparlinski [20]. We regard identifying the problem
and providing a more general and correct proof as an important contribution
of the paper. However, one may not really deem Verheul’s result [22] as being
“faulty” or “flawed”; rather, it is that our result provides a stronger result for
the problem.

By the same token, with Verheul’s result, one may regard that FGPS is actu-
ally the first (though they did not notice this) to solve the open problem whether
there exists “specific” hard-core bits over finite fields: half of the individual bits
of the secret CDH value over Fp2 are unpredictable. If one is uncomfortable
about their restricted reduction from CDH to d-th CDH, our result for the case
of both perfects oracles and noisy oracles can then come into use.

2 Preliminaries

2.1 Notation

We use the standard symbols N, Z, R and C to denote the natural numbers, the
integers, the real numbers and the complex numbers, respectively. Let Z+ and R+

stand for the positive integers and reals, respectively. A function ν(l) : N → R is
negligible if for every constant c ∈ R+ there exists lc ∈ N such that ν(l) < l−c for
all l > lc. A function ρ(l) : N → R is non-negligible if there exists a constant c ∈
R+ and lc ∈ N such that ρ(l) > l−c for all l > lc. For a Boolean function f : D →
{±1} over an arbitrary domain D, denote by majf = max{b=±1} Prα∈D[f(α) = b]
the bias of f toward its majority value.

2.2 Fourier Transform

Let G be a finite abelian group. For any two functions f, g : G → C, their inner
product is defined as 〈f, g〉 = 1/|G|∑x∈G

f(x)g(x). The l2-norm of f on the
vector space C(G) is defined as ‖f‖2 =

√〈f, f〉. A character of G is a homo-
morphism χ : G → C

∗, i.e., χ(x + y) = χ(x)χ(y) for all x, y ∈ G. The set of all
characters of G forms a character group Ĝ, whose elements form an orthogonal
basis (the Fourier basis) for the vector space C(G). One can then describe any
function f ∈ C(G) via its Fourier expansion

∑
χ∈̂G f̂(χ)χ, where f̂ : Ĝ → C is

the Fourier transform of f and we have f̂(χ) = 〈f, χ〉. The coefficients f̂(χ)
in the Fourier basis {χ}χ∈̂G are the Fourier coefficients of f . The weight of a

Fourier coefficient is denoted by |f̂(χ)|2. When G = Zn (i.e., the additive group
of integers modulo n) and Ĝ = Ẑn, for each α ∈ Zn, the α-character is defined
as a function χα : Zn → C such that χα(x) = ωαx

n , where ωn = e2πi/n. If Γ is
a subset of Zn then it is natural to consider the projection of f in set Γ, i.e.,
f|Γ =

∑
α∈Γ f̂(α)χα, where f̂(α) = 〈f, χα〉. Since the characters are orthogonal,

we have ‖f‖2
2 =

∑
α∈Zn

|f̂(α)|2 and ‖f|Γ‖2
2 =

∑
α∈Γ |f̂(α)|2.
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Definition 1 (Fourier concentrated function [1]). A function f : Zn → C

is Fourier ε-concentrated if there exists a set Γ ⊆ Zn consisting of poly(log n, 1/ε)
characters, so that

‖f − f|Γ‖2
2 =

∑

α/∈Γ

|f̂(α)|2 ≤ ε.

A function f is called Fourier concentrated if it is Fourier ε-concentrated for
every ε > 0.

This and subsequent definitions can be readily made asymptotic by requiring
that ε depend on the security parameter.

Definition 2 (τ-heavy characters [1]). Given a threshold τ > 0 and an arbi-
trary function f : Zn → C, we say that a character χα is τ -heavy if the weight
of its corresponding Fourier coefficient is at least τ . The set of all τ -heavy char-
acters is denoted by

Heavyτ (f) = {χα : |f̂(α)|2 ≥ τ}.

2.3 Error Correcting Codes: Definitions and Properties

Error correcting codes can encode messages into codewords by adding redundant
data such that the message can be recovered even in the presence of noise. The
code to be discussed here encodes each element α ∈ Zn into a codeword Cα of
length n. Each codeword Cα can be represented by a function Cα : Zn → {±1}.
We now recall a number of definitions and lemmata [1,8] about codes over Zn.

Definition 3 (Fourier concentrated code). A code C = {Cα : Zn → {±1}}
is concentrated if each of its codewords Cα is Fourier concentrated.

Definition 4 (Recoverable code). A code C = {Cα : Zn → {±1}} is recov-
erable, if there exists a recovery algorithm that, given a character χ ∈ Ẑn and
a threshold τ , returns in time poly(log n, 1/τ) a list of all elements α associ-
ated with codewords Cα for which χ is a τ -heavy coefficient (i.e., {α ∈ Zn : χ ∈
Heavyτ (Cα)}).
Lemma 1 below shows that in a concentrated code C, any corrupted (“noisy”) ver-
sions C̃α of codeword Cα share at least one heavy coefficient with Cα. Lemma 2
shows that when given query access to any function f one can efficiently learn
all its heavy characters.

Lemma 1 ([1, Lemma1]). Let f, g : Zn → {±1} such that f is concentrated
and for some ε > 0,

Pr
α∈Zn

[f(α) = g(α)] ≥ majf + ε.

There exists a threshold τ such that 1/τ ∈ poly(1/ε, log n), and there exists a non-
trivial character χ �= 0 which is heavy for f and g: χ ∈ Heavyτ (f) ∩ Heavyτ (g).
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Lemma 2 ([1, Theorem6]). There is a probabilistic algorithm that, given
query access to w : Zn → {±1}, τ > 0 and 0 < δ < 1, outputs a list L of
O(1/τ) characters containing Heavyτ (w) with probability at least 1 − δ, whose

running time is Õ

(
log(n) · ln2 (1/δ)

τ5.5

)
.

2.4 Review of List Decoding Approach for Hard-Core Predicates

Informally, a cryptographic one-way function f : D → R is a function which is
easy to compute but hard to invert. Given a one-way function f and a predicate
π, we say π is hard-core if there is an efficient probabilistic polynomial-time
(PPT) algorithm that given α ∈ D computes π(α), but there is no PPT algorithm
A that given f(α) ∈ R predicts π(α) with probability majπ + ε for a non-
negligible ε.

Goldreich and Levin [13] showed hard-core predicates for general one-way
functions by providing a general list decoding algorithm for Hadamard code.
Akavia, Goldwasser, and Safra (AGS) [1] formalized the list decoding method-
ology and applied it to a broad family of conjectured one-way functions. In
particular, they proved the unpredictability of segment predicates [1] for any
one-way function f with the following homomorphic property: given f(α) and
λ, one can efficiently compute f(λα). This includes discrete logarithms in finite
fields and elliptic curves, RSA, and Rabin. Morillo and Ràfols [18] extended
the AGS result to prove the unpredictability of every individual bit for these
functions. Duc and Jetchev [8] showed how to extend to elliptic curve-based
one-way functions which do not necessarily enjoy the homomorphic property.
Their result instead requires introducing a random description of the curve, an
idea originally developed by Boneh and Shparlinski [5]. In their paper, Boneh
and Shparlinski proved for the elliptic curve Diffie-Hellman problem that the
least significant bit of each coordinate of the secret CDH value is hard-core over
a random representation of the curve. Recently, FGPS extended the Boneh and
Shparlinski idea to prove every individual bit (not merely the least significant
bit) of the elliptic curve Diffie-Hellman problem is hard-core. By extending the
same idea to the case of finite fields Fp2 , FGPS also proved for a weak CDH
problem (i.e. Partial-CDH problem) the unpredictability of every single bit of
one of the coordinates of the secret CDH value.

List decoding approach overview. Given a one-way function f : D → R
and a predicate π, one would have to identify an error-correcting code Cπ =
{Cα : D → {±1}}α∈D such that every input α of the one-way function is associ-
ated with a codeword Cα. The code needs to satisfy the following properties:
(1) Accessibility. One should be able to obtain a corrupted (“noisy”) version C̃α

of the original codeword Cα. Such a corrupted codeword must be close to the
original codeword, i.e., Prλ[Cα(λ) = C̃α(λ)] > majπ + ε for a non-negligible ε.
(2) Concentration. Each codeword Cα should be a Fourier concentrated function,
i.e., each codeword can be approximated by a small number of heavy coefficients
in the Fourier representation.
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(3) Recoverability. There exists a poly(log n, τ−1) algorithm that on input a
Fourier character χ and a threshold τ outputs a short list Lχ which contains
all the values α ∈ D such that χ is τ -heavy for the codeword Cα.

Roughly speaking, accessibility is related to both the code and the oracle,
while concentration and recoverability concern the code itself. We now show
how to invert y = f(α) with the prediction oracle Ω. Querying Ω will allow one
to have access to a corrupted codeword C̃α that is close to Cα. According to
Lemma 1, we know that there should exist a threshold τ and at least one Fourier
character that is τ -heavy for both C̃α and Cα. Applying the learning algorithm
in Lemma 2, we can find the set of all τ -heavy characters for C̃α. Due to the
recovery property, we are able to produce for each heavy character a polynomial
size list containing possible α. Note that one can identify the correct α since f
is efficiently computable.

List decoding via multiplication code. The crux of list decoding approach
is to identify the “right” code which is accessible, concentrated, and recoverable.
To this end, AGS and subsequent work either define a multiplication code, or
transform the original code to an equivalent multiplication code. (Such a mul-
tiplication code is of the form Cα(λ) = π(λα).) Indeed, as argued in [1,8], this
is at the basis of their proofs: multiplication codes can be proven to satisfy
concentration and recoverability.

In Sect. 3, we will directly work on a code that is not multiplicative. Not
surprisingly, this makes it hard to prove code concentration and recoverability.
To our knowledge, we are the first to apply the list decoding approach to the
case of a non-multiplicative code.

3 All Bits Security of the CDH Problems over Fp2

In this section, we show the following three results: (1) we show that over finite
fields Fp2 the Partial-CDH problem [10] is as hard as the regular CDH problem.
(2) assuming the hardness of the Partial-CDH problem over Fp2 , we prove the
unpredictability of every single bit of the other coordinate of the secret CDH
value; (3) we go on to prove the unpredictability of every single bit of the secret
CDH value for the regular CDH problem over Fp2 .

The Partial-CDH Assumption is Equivalent to the CDH Assumption

over Fp2 . Throughout the paper we fix a security parameter l. We consider an
instance generator G which takes as input 1l and outputs an l-bit prime p. Let
g be a random generator of the multiplicative group of Fp2 . The Partial-CDH
problem over Fp2 is a relaxed variant of the conventional CDH problem over Fp2 ,
which we formally state as follows:

Assumption 1 (The CDH assumption over Fp2). We say that the CDH
problem is hard in Fp2 if for any PPT adversary A, his CDH advantage

Advcdh
A,Fp2

:= Pr
[A(p, g, ga, gb) = gab

∣
∣p $←−G(1l); a, b

$←−{
1, · · · , p2 − 1

}]

is negligible in l.
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Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. Informally
we say that the Partial-CDH problem [10] is hard in Fp2 if for all h ∈ I2(p) no
efficient algorithm given g,A = ga, B = gb ∈ Fp2 can output

[
gab

]
1

∈ Fp.
Formally we consider the following assumption:

Assumption 2 (The Partial-CDH assumption over Fp2 [10]). We say
that the Partial-CDH problem is hard in Fp2 if for any PPT adversary A, his
Partial-CDH advantage for all h ∈ I2(p)

Advpcdh
A,h,Fp2

:= Pr
[A(p, h, g, ga, gb) =

[
gab

]
1

∣
∣p $←−G(1l); a, b

$←−{
1, · · · , p2 − 1

}]

is negligible in l.

It is easy to see that the Partial-CDH problem is weaker than the regular CDH
problem over Fp2 . The following theorem shows that in the case of noisy oracles,
the regular CDH problem can be also reduced to the Partial-CDH problem in Fp2 .

Theorem 1. Suppose A is a Partial-CDH adversary that runs in time at most
ϕ and achieves advantage Advpcdh

A,h,Fp2
for any h ∈ I2(p). Then there exists a

CDH adversary B, constructed from A in a blackbox manner, that runs in time
at most 2ϕ plus the time to perform a small constant number of group operations
and achieves advantage Advcdh

B,h,Fp2
≥ (1 − 1

p ) · (Advpcdh
A,h,Fp2

)2.

Proof: Our CDH adversary B works as follows, given input a random instance of
the CDH problem (ga, gb) ∈ (Fp2)2 and given a Partial-CDH adversary A under
the representation determined by any given polynomial h(x) = x2 + h1x + h0 ∈
I2(p).

First, adversary B chooses two random integers r, s
$←−Zp2−1, and computes

(ga+r, gb+s). For brevity, let A = a+r and B = b+s. Adversary B then runs the
Partial-CDH adversary A on the generated instance (gA, gB) to obtain

[
gAB

]
1
.

Let C = as+ br + rs. As gAB = gabgC mod h(x), we have the following equation

(
[
gC

]
0

− [
gC

]
1
h1)

[
gab

]
1

+
[
gC

]
1

[
gab

]
0

=
[
gAB

]
1

Repeating the above process, B chooses two random integers r′, s′ $←−Zp2−1 and
gets the following equation

(
[
gC′]

0
− [

gC′]
1
h1)

[
gab

]
1

+
[
gC′]

1

[
gab

]
0

=
[
gA′B′]

1
,

where A′ = a + r′, B′ = b + s′, and C ′ = as′ + br′ + r′s′.
Combining the above two equations, we obtain a linear equation set with the

unknowns
[
gab

]
1

and
[
gab

]
0
. If the coefficient matrix of the equation set has full

rank then adversary B can solve the equation set and obtain gab. The coefficient
matrix is of full rank if and only if its determinant is not zero, i.e.,

(
[
gC

]
0

− [
gC

]
1
h1)

[
gC′]

1
− (

[
gC′]

0
− [

gC′]
1
h1)

[
gC

]
1

�= 0.
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Note that [gC ]i and [gC′
]i (i = 0, 1) in the above equation are independently

and uniformly distributed at random from Fp. Hence, the probability that the
matrix is of full rank is 1 − 1/p. This completes the proof of this theorem.

We can define a dual variant of the Partial-CDH problem over Fp2 : We say
that the Dual-Partial-CDH problem is hard in Fp2 if for all h ∈ I2(p) no efficient
algorithm given g,A = ga, B = gb ∈ Fp2 can output

[
gab

]
0

∈ Fp. We can show
that the Dual-Partial-CDH problem is also as hard as the conventional CDH
problem. The formal definition and the proof can be found in our full paper [23].
Therefore, both the Partial-CDH and Dual-Partial CDH problems are as hard
as the conventional CDH problem over Fp2 .

Bit Security for the other coordinate. Let Bk : Fp → {±1} denote
the k-th bit predicate (with a 0 bit being encoded as +1). Let βk be the
bias of Bk. For all h, ĥ ∈ I2(p) there exists an easily computable isomorphism
φh,̂h : Fp[x]/(h) → Fp[x]/(ĥ). Informally we show that when given an oracle O
that predicts the k-th bit of the degree 0 coefficient of the CDH value with non-
negligible advantage, and the representation of the field, then we can break the
Partial-CDH assumption with non-negligible advantage.

Theorem 2. Under the Partial-CDH assumption over Fp2 (i.e., Assumption 2),
for any PPT adversary O, we have that for all h ∈ I2(p) the following quantity
is negligible in l:
∣
∣ Pr

[O(h, ĥ, g, ga, gb) = Bk

([
φh,̂h(gab)

]
0

)∣∣ĥ $←− I2(p); a, b
$←−{1, · · · , p2−1}]−βk

∣
∣.

We first give an informal intuition of the proof of the theorem. We aim at con-
structing a code similar to those of FGPS and Duc and Jetchev [8]. For an
element α ∈ Fp2 and a monic irreducible polynomial h ∈ I2(p), we would define
the following codeword:

Cα(ĥ) = Bk([φh,̂h(α)]0).

Similar to the code defined in FGPS, the above code is accessible using O.
However, the predicate Bk is evaluated on the other coordinate of φh,̂h(α). In
this case, it holds that [φh,̂h(α)]0 = η[α]1 + [α]0 for some η ∈ Fp, according to
FGPS [10, Lemma 5.3] (recalled in Lemma 3 below).

Lemma 3 ([10, Lemma5.3]). For any h ∈ I2(p), there exists a unique func-
tion Lh : Fp×F

∗
p → I2(p) which takes a pair (η, λ) to the polynomial ĥ = Lh(η, λ)

such that the matrix
(

1 η
0 λ

)
defines an isomorphism from Fp[x]/(h) to Fp[x]/(ĥ)

that sends [α]1x + [α]0 �→ λ[α]1x + η[α]1 + [α]0.

Intuitively, one would consider the following code: for α ∈ Fp2 and for η ∈ Fp

(and λ ∈ F
∗
p), set

Cα(η) = Bk(η[α]1 + [α]0). (1)

Unfortunately, the above code in (1) is not multiplicative. In particular, this
makes it hard to prove concentration and recoverability. This is why FGPS con-
sidered defining the Partial-CDH problem over Fp2 as outputting the coefficient
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of the degree 1 term of gab, instead of the coefficient of the degree 0 term. More
generally, the list decoding approach has only been proven successful for multi-
plicative codes so far [1,8,18]. One natural question is if it is (even) possible to
apply list decoding approach to the case of non-multiplicative codes.

With a careful analysis, we are still able to show that the code in (1) is
concentrated and recoverable. Concentration will follow from the key observation
that the Fourier transform of the code in (1) is equal to that of a multiplication
code (to be defined shortly) up to a factor of a character. This follows from a
(well-known) scaling property of the Fourier transform, as shown in Lemma4
below. Hence, the l2-norm of the Fourier transform of the code is equal to that
of the multiplication code. That is, the code in (1) is concentrated if and only if
the multiplication code is. Note that it is easy to argue that the multiplication
code is concentrated.

The goal of recoverability is to recover the secret value from the heavy char-
acters of the code Cα. We find that a character χβ is heavy for Cα if and only
if χβ is heavy for a multiplicative code C ′

α. The associated constant of a heavy
character χβ for the multiplicative code C ′

α equals the product of the secret
value and an (easily determined) factor. Therefore, one can recover the secret
value with a heavy character.

We first describe the scaling property of the Fourier transform.

Lemma 4. Let F1, F2 be functions mapping Zn to C. If for any y, F2(y) =
F1(y − σ), where σ is a constant in Zn, then we have for α ∈ Zn, F̂2(α) =
χα(σ)F̂1(α).

Proof of Theorem 2: Suppose that there exists an oracle O such that
∣
∣ Pr

η,a,b

[O(h, ĥ, g, ga, gb) = Bk

([
φh,̂h(gab)

]
0

)] − βk

∣
∣

is larger than a non-negligible quantity ε. We construct another oracle O′ that
takes as input a base representation h ∈ I2(p), a Diffie-Hellman triple g, ga, gb ∈
Fp2 , and an element of η ∈ Fp (instead of ĥ ∈ I2(p)). The new oracle selects

λ
$←−F

∗
p, constructs an isomorphism ĥ from the matrix

(
1 η
0 λ

)
as described in

Lemma 3, and returns O(h, ĥ, g, ga, gb). One can then show that
∣
∣ Pr

η,a,b

[O′(h, η, g, ga, gb) = Bk

(
η
[
gab

]
1

+
[
gab

]
0

)] − βk

∣
∣

is also larger than a non-negligible quantity.
For any element α ∈ Fp2 , we construct the following encoding of η[α]1 + [α]0

in its polynomial representation for Fp[x]/(h):

Cα : Fp → {±1} such that Cα(η) = Bk(η[α]1 + [α]0),

where, above, [α]1 and [α]0 are under the representation determined by h.

Accessibility. Accessibility proof is the same as that of FGPS. In particular,
the oracle O′ allows us to have access to a corrupted codeword C̃α of the above
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codeword defined as C̃α = O′(h, η, g, ga, gb). The code Cα(η) is conceptually the
same as the code Cα(ĥ). Therefore, if the oracle O has advantage ε then we have
|Prη[Cα(η) = C̃α(η)]| ≥ βk + ε. Accessibility of the code Cα follows.

Concentration. We now prove that the codeword Cα is a Fourier concentrated
code. To prove so, we define the following related code:

C ′
α(η) = Bk(η[α]1).

It is easy to see that C ′
α(η) = Cα(η − [α]−1

1 [α]0). According to Lemma 4, we can
obtain

χβ([α]−1
1 [α]0)Ĉα(β) = Ĉ ′

α(β).

This immediately implies |Ĉα(β)| = |Ĉ ′
α(β)|. Therefore, the code Cα(η) is con-

centrated if and only if the code C ′
α(η) is. Note that it is easy to argue that

C ′
α(η) is a multiplication code. The proof for concentration of the code C ′

α(η) is
similar to those of [10,18], and now we describe our proof in some detail.

For β ∈ Fp, if C ′
α(η) is ε-concentrated in Γα = {χβ} then Bk(η[α]1) is

ε-concentrated in the set {χη : η = β[α]−1
1 }. Thus, we just need to prove the

Fourier concentration of Bk(η[α]1). We would need to analyze the Fourier coef-
ficients of Bk : Fp → {±1}.

We define g(x) as

g(x) =
Bk(x) + Bk(x + 2k)

2
.

Morillo and Ràfols [18] notice that the Fourier transform of Bk(x) and the Fourier
transform of g(x) can be related with the following equation:

ĝ(η) =
ω2kη

p + 1
2

B̂k(η),

where η ∈ Fp and ωp = e2πi/p.
In particular, assuming η ∈ [−p−1

2 , p−1
2 ], they consider the following two

cases for η:

1. η ≥ 0, consider δη,k := 2kη − (p − 1)/2mod p and let λη,k ∈ [0, 2k−1 − 1] be
the unique integer for which 2kη = (p − 1)/2 + δη,k + pλη,k.

2. η < 0, consider δη,k := 2kη + (p + 1)/2mod p and let λη,k ∈ [0, 2k−1 − 1] be
the unique integer for which 2kη = −(p + 1)/2 + δη,k + pλη,k.

For both cases, there are unique integers μη,k ∈ [0, r], where r is the largest
integer less than p/2k+1 and rη,k ∈ [0, 2k − 1] such that ap(2kη − (p − 1)/2) =
μη,k2k + rη,k, where ap(x) = min{xmod p, p − xmod p} for xmod p being taken
in [0, p − 1]. The definition of Γτ in Sect. 3 is as follows

Γτ = {η : (λη,k, μη,k) ∈ [0, 1/τ ] × [0, 1/τ ]}.
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Here we select τ such that 1/τ = poly(log p). Morillo and Ràfols [18] obtain the
following upper bound of B̂k(η):

|B̂k(η)|2 < O(
1

λ2
η,kμ2

η,k

).

Now one can conclude that Bk(η[α]1) is Fourier concentrated.
A character χβ is τ -heavy for Cα if and only if χβ is τ -heavy for C ′

α. There-
fore, according to the discussion in FGPS, for a threshold τ > 0, the τ -heavy
characters of Cα belong to the set

Γα,τ = {χβ : β = η[α]1 for η ∈ Γτ},

where Γτ is a set containing the τ -heavy coefficients of the function Bk. For each
η ∈ Γτ , there exists a unique integer pair (ξη, ςη) ∈ [0, 1/τ ] × [0, 1/τ ]. Note that
by [18, Lemma 9], the size of Γτ is at most 4τ−2.

Recoverability. The proof for recoverability is similar to those of [10,18].
According to Lemma 1, we know that there exists a threshold τ which is polyno-
mial in the non-negligible quantity ε and at least one τ -heavy Fourier character
χ �= 0 for Cα and C̃α such that χ ∈ Heavyτ (Cα) ∩ Heavyτ (C̃α).

Given a polynomial h(x) ∈ I2(p), on input g, ga, gb ∈ Fp2 , the following
algorithm that has access to O produces a polynomial size list of elements in Fp2

which contains gab with probability 1 − δ.
Let τ be the threshold determined by Lemma 1. We write α = [α]1x+[α]0 to

denote gab ∈ Fp2 . Using the learning algorithm of AGS [1] (i.e., the algorithm
in Lemma 2), we obtain a polynomial size list Lα of all the τ -heavy Fourier
characters for C̃α. If χβ is a non-trivial τ -heavy character for Cα, we have [α]1 =
η−1β. Given χβ ∈ Lα, we define Lβ = {[α]1 : [α]1 = η−1β for η ∈ Γτ}.

Let L =
⋃

χβ∈Lα
Lβ . Note that L is of polynomial size and α ∈ L with

probability 1 − δ. Since this is a polynomial size set, we can guess a result for
[α]1 and hence get [gab]1. The theorem now follows.

Hard-core predicates for the CDH problem over Fp2 . Note that for a
given h ∈ I2(p), any element α ∈ Fp2 of length 2l can be written as [α]1x + [α]0,
i.e., [α]1 and [α]0 are the leftmost and rightmost l bits value of α, respectively.
Let B̃k : Fp2 → {±1} denote the k-th bit predicate (where 1 ≤ k ≤ 2l) and let
βk be the bias of B̃k. In the following, we prove that given an oracle O that
predicts the k-th bit of the CDH value over a random representation of the field
Fp2 with non-negligible advantage, we can solve the regular CDH problem over
Fp2 with non-negligible probability.

Theorem 3. Under the CDH assumption over Fp2 (i.e., Assumption 1), for any
PPT adversary O, we have that for all h ∈ I2(p) the following quantity is negli-
gible in l:

∣
∣ Pr

[O(h, ĥ, g, ga, gb) = B̃k

(
φh,̂h(gab)

)∣∣ĥ $←− I2(p); a, b
$←−{1, · · · , p2 − 1}] − βk

∣
∣.
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Proof Sketch: For an element α ∈ Fp2 and a given h ∈ I2(p), we define a codeword
as follows: Cα(ĥ) = B̃k(φh,̂h(α)). If k ≤ l, we have B̃k(φh,̂h(α)) = Bk([φh,̂h(α)]0).

Otherwise if k > l, we have B̃k(φh,̂h(α)) = Bk−l([φh,̂h(α)]1). Along the same lines
as the proofs of [10, Theorem 5.2] and Theorem 2, predicting any individual bit of
the secret CDH value defined above can break the Partial-CDH assumption over
Fp2 , and hence break the CDH assumption over Fp2 , as shown in Theorem 1.

4 Almost All Bits Security of the CDH Problems
over Fpt for t > 1

4.1 Hardness of the d-th CDH Assumption over Fpt

We begin with the definition of the d-th CDH problem over Fpt . For a given
prime p, there are many different fields Fpt , but they are all isomorphic to each
other. Let h(x) = xt+ht−1x

t−1+· · ·+h1x+h0 be a monic irreducible polynomial
of degree t in Fp. It is well known that Fpt is isomorphic to the field Fp[x]/(h),
where (h(x)) is a principal ideal in the polynomial ring Fp[x] and therefore
elements of Fpt can be written as polynomials of degree t − 1, i.e., if g ∈ Fpt

then g = gt−1x
t−1+gt−2x

t−2+ · · ·+g1x+g0 and addition and multiplication are
performed as polynomial operations modulo h. In the following, given g ∈ Fpt we
denote by [g]i the coefficient of the degree-i term, i.e., gi = [g]i. Let It(p) be the
set of monic irreducible polynomials of degree t in Fp, and let g be a generator of
the multiplicative group of Fpt . First, the CDH problem can be easily extended
to the case of finite fields Fpt for t > 1.

Assumption 3 (The CDH assumption over Fpt). We say that the CDH
problem is hard in Fpt for t > 1 if for any PPT adversary A, his CDH advantage

Advcdh
A,Fpt

:= Pr
[A(p, g, ga, gb) = gab

∣
∣p $←−G(1l); a, b

$←−{
1, · · · , pt − 1

}]

is negligible in l.

We say that the d-th CDH problem (where 0 ≤ d ≤ t − 1) is hard in Fpt if for
all h ∈ It(p) no efficient algorithm given g,A = ga, B = gb ∈ Fpt can output[
gab

]
d

∈ Fp. Formally we consider the following assumption:

Assumption 4 (The d-th CDH assumption over Fpt). We say that the
d-th CDH problem (where 0 ≤ d ≤ t − 1) is hard in Fpt (for t > 1) if for any
PPT adversary A, his d-th CDH advantage for all h ∈ It(p)

Advdcdh
A,h,Fpt

:= Pr
[A(p, h, g, ga, gb) =

[
gab

]
d

∣
∣p $←−G(1l); a, b

$←−{
1, · · · , pt − 1

}]

is negligible in l.
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It is well known that the probability of a random polynomial h ∈ Fp[X] of degree
t being irreducible is at least 1

2t . The following theorem asserts that the regular
CDH problem over Fpt with t > 1 can be reduced to any d-th CDH problem
(0 ≤ d ≤ t−1) over a random representation of Fpt . Therefore, all the d-th CDH
problems over a random representation of finite fields Fpt for t > 1 are as hard
as the regular CDH problem over the same fields.

Theorem 4. Let Fpt be a finite field of size l and t > 1. Suppose A is a d-th
CDH adversary that runs in time at most ϕ and achieves advantage Advdcdh

A,h,Fpt

for a monic polynomial h
$←−Fp[X] of degree t and h ∈ It(p). Then there exists

a CDH adversary B, constructed from A in a blackbox manner, that runs in
time at most tϕ plus the time to perform poly(l) group operations and achieves
advantage Advcdh

B,Fpt
≥ (1 − 1

p )t · e− 2
p−1 · (Advdcdh

A,h,Fpt
)t.

Before proceeding to the proof, we introduce a useful lemma, which claims that
if all the entries in a square matrix are independently and uniformly chosen at
random over a large finite field Fp then there is a good chance that the matrix
is nonsingular. Note that we require that the probability depends only on the
size of the finite field p, but not on the size of the matrix m. The proof of the
lemma is fairly easy and can be found in our full paper [23].

Lemma 5. Let M be an m × m square matrix over the finite field Fp. If every
element of the matrix is chosen independently and uniformly at random, then
the probability that M is nonsingular is at least e− 2

p−1 .

Proof of Theorem 4: Let h(x) = xt + ht−1x
t−1 + · · · + hx + h0 be the irre-

ducible polynomial of degree t over Fp, where its coefficients being uniformly
and independently selected at random.

Given a challenge instance (ga, gb) ∈ (Fpt)2 of the CDH problem, our CDH
adversary B works as follows. First, adversary B chooses t pairs of integers
(rι, sι)

$←− (Zpt−1)2 (ι = 0, 1, · · · , t−1), and computes (ga+rι , gb+sι). For brevity,
let Aι = a + rι and Bι = b + sι for ι = 0, 1, · · · , t − 1. Adversary B runs the d-th
CDH problem under the representation determined by h(x) on each (gAι , gBι)
to get the d-th coordinate of the CDH value

[
gAιBι

]
d

(ι = 0, 1, · · · , t − 1).
Adversary B computes gasι+brι+rιsι = (ga)sι(gb)rιgrιsι . Let Cι = asι + brι +

rιsι. It is easy to see that gAιBι = gabgCι mod h(x), i.e.,

t−1∑

k=0

[gAιBι ]kxk ≡
( t−1∑

i=0

[gab]ixi

)( t−1∑

j=0

[gCι ]jxj

)
mod h(x).

Therefore [gAιBι ]d can be written as a linear expression with the coordinates of
gab being variables and with some known coefficients eιν ∈ Fp (0 ≤ ι, ν ≤ t − 1)
such that

[gAιBι ]d =
t−1∑

ν=0

eιν [gab]ν , ι = 0, 1, · · · , t − 1.



456 M. Wang et al.

If the coefficient matrix (eιν)t×t for the above equation set has full rank, adver-
sary B can use Gaussian elimination to compute the unknowns and therefore
obtain gab, in polynomial time of l.

Indeed, we can show (with the proof in our full paper [23]) that the probability
of every element of the coefficient matrix (eιν)t×t being chosen independently
and uniformly at random is at least (1− 1

p )t, and then according to Lemma5 we
know that the probability of the coefficient matrix being nonsingular is at least
(1 − 1

p )t · e− 2
p−1 .

Therefore, running adversary A for t times and solving the equation set
obtained, adversary B can compute the desired CDH value, that runs in time at
most tϕ plus the time to perform poly(l) group operations with a non-negligible
advantage (1 − 1

p )t · e− 2
p−1 · (Advdcdh

A,h,Fpt
)t. The theorem now follows.

We comment that if an adversary A can solve the d-th CDH problem over Fpt

with respect to a monic polynomial h
$←−Fp[X] of degree t and h ∈ It(p) then we

can construct an adversary B that solves all the d-CDH problems over Fpt for
0 ≤ d ≤ t−1 regarding any h′ ∈ It(p). To see this, for h, h′ ∈ It(p), we know that
there exists an easily computable isomorphism φh,h′ : Fp[x]/(h) → Fp[x]/(h′).
When adversary B learns the CDH value with respect to h, it can easily compute
all the d-th coordinates under any representation h′.

Theorem 4 proves a slightly weaker result than that of Theorem 1. In
Theorem 1, the reduction works for any h ∈ I2(p), but in Theorem 4, it works

for a random h
$←−Fp[X] of degree t and h ∈ It(p). (It could be the case that

there exists some h ∈ It(p) such that some d-th CDH problem might not be
equivalent to the CDH problem over Fpt , although we conjecture that these two
problems are equivalent with respect to any h ∈ It(p).) However, we are able
to prove that the 0-th CDH problem and the (t − 1)-th CDH problem are both
strictly equivalent to the CDH problem with respect to any h ∈ It(p), and we
have the following theorem:

Theorem 5. Let Fpt be a finite field of size l and t > 1. Suppose A is a
0-th (resp., (t − 1)-th) CDH adversary that runs in time at most ϕ and achieves
advantage Adv0cdh

A,h,Fpt
(resp., Adv(t−1)cdh

A,h,Fpt
) for any h ∈ It(p). Then there exists a

CDH adversary B, constructed from A in a blackbox manner, that runs in time at
most tϕ plus the time to perform poly(l) group operations and achieves advantage
Advcdh

B,Fpt
≥ e− 2

p−1 · (Adv0cdh
A,h,Fpt

)t (resp., Advcdh
B,Fpt

≥ e− 2
p−1 · (Adv(t−1)cdh

A,h,Fpt
)t).

The case of perfect oracles. Applying our approach to the case of perfect
oracles, our reduction leads to no security loss and a strict equivalence result.
This is in contrast to Verheul’s [22], where for many d’s, the algorithm can easily
have exponential running time in t.

4.2 Bit Security of the CDH Problem over Fpt

We now show the following result: assuming the hardness of the d-th CDH
problem over Fpt with t > 1, if d �= 0, we prove the unpredictability of every
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single bit of the degree-d coordinate of the secret CDH value. Together with
the equivalence result, this implies that for the conventional CDH problems
over Fpt for an l-bit prime p and an integer t > 1, (t − 1)l out of tl secret CDH
bits—including every individual bit except that of the degree 0 coordinate—are
hard-core.

We begin with the definition of d-th residues modulo p. Let p be a prime and
d be an integer. We say that an element α ∈ F

∗
p is a d-th residue modulo p, if

there exists an element x ∈ Fp such that xd ≡ α mod p. Let Fd
p denote the set of

the d-th residues modulo p. The following lemma provides a well-known result
on d-th residues modulo p:

Lemma 6. Let p be a prime and d ∈ Z+. The number of the d-th residues
modulo p is (p − 1)/(d, p − 1).

We present a lemma that gives a characterization of the isomorphisms between
two representations of the fields Fpt . The isomorphisms generalize that of finite
fields Fp2 in FGPS to the case of general finite fields Fpt for any t > 1. More
importantly, they simplify that of FGPS in the sense we identify a more restric-
tive class of isomorphisms. This simplicity turns out to be essential to establish-
ing the bit security for general finite fields.

Lemma 7. For any h(x) ∈ It(p), there exists a unique function Lh : F∗
p → It(p)

which takes λ to the polynomial ĥλ = Lh(λ) = h(λx)
λt such that λ defines an

isomorphism from Fp[x]/(h) to Fp[x]/(ĥλ) that sends

t∑

i=0

[α]ixi �→
t∑

i=0

λi[α]ixi.

Proof: For any λ ∈ F
∗
p, let ĥλ(x) = h(λx)

λt . It is easy to see that ĥλ(x) is a
monic irreducible polynomial over Fp, i.e., ĥλ(x) ∈ It(p). Hence, there is an
isomorphism from Fp[x]/(h) to Fp[x]/(ĥλ). In order to specify a homomorphism
ψ from Fp[x]/(h) to another field J of characteristic p, it is both necessary and
sufficient to choose ψ(x) = y ∈ J such that h(y) = 0 in J . The definition of ĥλ

implies that x sends to λx. The lemma now follows. �

Theorem 6. Under the d-th CDH assumption over Fpt for t > 1 (i.e., Assump-
tion 4), for any PPT adversary O, if d �= 0, we have that for all h ∈ It(p) the
following quantity is negligible:

∣
∣ Pr

[O(h, λ, g, ga, gb) = Bk

([
φh,̂hλ

(gab)
]
d

)∣∣λ $←−F
∗
p; a, b

$←−{1, · · · , p2 − 1}] − βk

∣
∣.

Proof: For an element α ∈ Fpt and a monic irreducible polynomial h ∈ It(p),

λ
$←−F

∗
p, the prediction oracle O gives noisy access to the codeword Bk(λd[α]d).

Note that when d �= 1 the above code is not multiplicative. Again, this would
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make it hard to prove concentration and recoverability. In order to apply the
techniques of [1], we would need noisy access to the multiplication code

Cα : Fp �→ {±1}, defined as Cα(λ) = Bk(λ[α]d) (extended by Cα(0) = −1).

We construct another oracle O′ that takes as input a base representation
h ∈ It(p), a Diffie-Hellman triple g, ga, gb ∈ Fpt , and λ

$←−F
∗
p, and returns

O(h, rλ, g, ga, gb) if λ is a d-th residue modulo p, where rd
λ ≡ λ(mod p), oth-

erwise tosses a βk-biased coin.
Suppose that there exists an oracle O such that

∣
∣ Pr

λ,a,b

[O(h, λ, g, ga, gb) = Bk

([
φh,̂hλ

(gab)
]
d

)] − βk

∣
∣ ≥ ε (2)

where ε is a non-negligible quantity. Following the technique in Boneh and
Shparlinski [5], we now show that

∣
∣ Pr

λ,a,b

[O′(h, λ, g, ga, gb) = Bk

(
λ
[
gab

]
d

)] − βk

∣
∣ ≥ ε/d.

Let Egab be the event that O′(h, λ, g, ga, gb) = Bk

(
λ
[
gab

]
d

)
. Note that if λ is

uniform in F
d
p\{0} then rλ is uniform in F

∗
p. Therefore, we have

Pr[Egab ] =
1

(d, p − 1)
Pr[Egab |λ ∈ F

d
p] + (1 − 1

(d, p − 1)
) Pr[Egab |λ /∈ F

d
p] (Lemma 6)

≥ 1

(d, p − 1)
(βk + ε) + (1 − 1

(d, p − 1)
)βk (condition (2))

= βk +
ε

(d, p − 1)
≥ βk +

ε

d
.

Note that t > d and therefore the above quantity is non-negligible.

Accessibility. The oracle O′ allows us to have access to a corrupted codeword
C̃α of the above codeword defined as C̃α = O′(h, λ, g, ga, gb). Therefore, if the
oracle O has advantage ε then we have |Pr[Cα(λ) = C̃α(λ)]| ≥ βk + ε/d. Acces-
sibility of the code Cα follows.

Concentration. The proof is similar to that of Theorem2. For a threshold
τ > 0, the τ -heavy characters of Cα belong to the set

Γα,τ = {χβ : β = λ[α]d for λ ∈ Γτ},

where Γτ is a set containing the τ -heavy coefficients of the function Bk. For
each λ ∈ Γτ , there exists a unique integer pair (ξλ, ςλ) ∈ [0, 1/τ ] × [0, 1/τ ]. As
in Theorem 2, the proof for concentration of the code Cα(λ) is now similar to
those of [10,18].

Recoverability. First, by Lemma 1 we know that there exists a threshold τ
which is polynomial in the non-negligible quantity ε and at least one τ -heavy
Fourier character χ �= 0 for Cα and C̃α such that χ ∈ Heavyτ (Cα)∩Heavyτ (C̃α).
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Given a polynomial h(x) ∈ It(p), on input g, ga, gb ∈ Fpt , the following
algorithm that has access to O produces a polynomial size list of elements in Fpt

which contains gab with probability 1 − δ.
Let τ be the threshold determined by Lemma 1. We write α =

∑t−1
i=0[α]ixi

to denote gab ∈ Fpt . Again using the learning algorithm of AGS [1], we obtain
a polynomial size list Lα of all the τ -heavy Fourier characters for C̃α. If χβ is a
non-trivial τ -heavy character for Cα, we have [α]d = λ−1β. Given χβ ∈ Lα, we
define Lβ = {[α]d : [α]d = λ−1β for λ ∈ Γτ}.

Let L =
⋃

χβ∈Lα
Lβ , which is a set of polynomial size. Also we have α ∈ L

with probability 1 − δ. We can guess a result for [α]d and hence get [gab]d. The
theorem now follows.

Discussion. It is worth mentioning that Theorem6 proves what is slightly dif-
ferent in concept from those of FGPS and Theorem2. In FGPS and Theorem2,
it is shown that any bit prediction oracle must have negligible success probabil-
ity ranging over all representations, whereas Theorem 6 shows that the success
probability must be negligible ranging over a restricted class. However, in any
application, participants would agree upon some representation that they want
to use, and therefore our result does not limit its applicability and it is in fact
simpler.

Following from Theorems 4 and 6, we obtain the following result: almost all
individual bits of the CDH value of the traditional CDH problem over finite fields
Fpt for t > 1 are hard-core. We require that the underlying field representation h
be chosen uniformly at random (just as the generator g). Formally we have the
following theorem:

Theorem 7. Under the CDH assumption over Fpt for t > 1 (i.e., Assump-
tion 3), for any PPT adversary O, if d �= 0, the following quantity is negligible:

∣
∣ Pr

[O(h, λ, g, ga, gb) = Bk

([
φh,̂hλ

(gab)
]
d

)∣∣h $←−Fp[x] and h ∈ It(p);λ $←−F
∗
p;

a, b
$←− {1, · · · , pt − 1}] − βk

∣
∣.

Following from Theorems 5 and 6, we have the following theorem which holds
for an arbitrary field representation:

Theorem 8. Under the CDH assumption over Fpt for t > 1 (i.e., Assump-
tion 3), for any PPT adversary O and any h ∈ It(p); the following quantity is
negligible:

∣
∣ Pr

[O(h, λ, g, ga, gb) = Bk

([
φh,̂hλ

(gab)
]
t−1

)∣∣λ $←−F
∗
p; a, b

$←−{1, · · · , pt−1}]−βk

∣
∣.

5 Conclusion

In this paper, we revisited the d-th CDH problem for any 0 ≤ d ≤ t − 1 over
finite fields Fpt for t > 1 [20,22]. In contrast to prior work, we considered the
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most general case of noisy oracles. We proved that all the d-th CDH problems
over a random representation of finite fields Fpt for t > 1 are as hard as the
regular CDH problem over the same fields. In particular, the 0-th CDH problem
and (t − 1)-th CDH problem given any field representation are as hard as the
CDH problem. This latter claim applies to the special case of the Partial-CDH
and the Dual-Partial CDH problems over Fp2 .

We advanced the list decoding approach, and for the first time, we applied
it to the case of a non-multiplicative code. We proved that the Partial-CDH
problem also admits the hard-core predicates for every individual bit of the other
coordinate of the secret CDH value over a random representation of the finite
field Fp2 . By combining all these, we obtained one of our main results: given an
oracle O that predicts any bit of the CDH value over a random representation
of the field Fp2 with non-negligible advantage, we can solve the regular CDH
problem over Fp2 with non-negligible probability.

We continued to prove that over finite fields Fpt for any t > 1, each d-th CDH
problem except d �= 0 admits a large class of hard-core predicates, including every
individual bit of d-th coordinate. Hence we proved that almost all bits of the
CDH value of the traditional CDH problem over finite fields Fpt for t > 1 are
hard-core.
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15. H̊astad, J., Näslund, M.: The security of individual RSA bits. In: FOCS, pp. 510–

521 (1998)
16. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small

characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
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