
Scope: On the Side Channel Vulnerability
of Releasing Unverified Plaintexts

Dhiman Saha(B) and Dipanwita Roy Chowdhury

Crypto Research Lab, Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India

{dhimans,drc}@cse.iitkgp.ernet.in

Abstract. In Asiacrypt 2014, Andreeva et al. proposed an interesting
idea of intermittently releasing plaintexts before verifying the tag which
was inspired from various practical applications and constraints. In this
work we try to asses the idea of releasing unverified plaintexts in the
light of side channel attacks like fault attacks. In particular we show
that this opens up new avenues of attacking the decryption module. We
further show a case-study on the APE authenticated encryption scheme
and reduce its key space from 2160 to 250 using 12 faults and to 224 using
16 faults on the decryption module. These results are of particular inter-
est since attacking the decryption enables the attacker to completely
bypass the nonce constraint imposed by the encryption. Finally, at the
outset this work also addresses a related problem of fault attacks with
partial state information.

Keywords: Authenticated encryption · Releasing unverified plain-
texts · APE · Differential fault analysis

1 Introduction

In conventional security notions of Authenticated Encryption (AE), release of
decrypted plaintext is subject to successful verification. In their pioneering paper
in Asiacrypt 2014, Andreeva et al. challenged this model by introducing and
formalizing the idea of releasing unverified plaintexts (RUP) [5,6]. The idea was
motivated by a lot of practical problems faced by the classical approach like
insufficient memory in constrained environments, real-time usage requirements
and inefficiency issues. The basic idea is to separate the plaintext computation
and verification during AE decryption, so that the plaintexts are always released
irrespective of the status of the verification process. In order to assess the security
under RUP and to bridge the gap with the classical approach, the authors have
introduced two new definitions: INT-RUP (for integrity) and plaintext awareness
or PA for privacy (in combination with IND-CPA).

In this work, we try to answer the question pertaining to RUP that arises from
a side-channel view-point: Can the ability to observe unverified plaintexts serve
as a source of side-channel information? Our research reveals that the answer is
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 417–438, 2016.
DOI: 10.1007/978-3-319-31301-6 24

418 D. Saha and D.R. Chowdhury

affirmative with respect to differential fault analysis (DFA) [8,10–14,16] which
is known to be one of the most effective side-channel attacks on symmetric-key
constructions. The basic requirement of any form of fault analysis is the ability
to induce a fault in the intermediate state of the cipher and consequently observe
the faulty output. Our first observation is that in the classical approach where
successful verification precedes release of plaintexts, fault attacks are infeasible.
This is attributed to the fact that if the attacker induces a fault, the probability
of the faulty plaintext to pass the verification is negligible, thereby denying
the ability to observe the faulty output. This scenario changes in the presence
of unverified plaintexts. So the first scope that RUP provides at the hands of
the attacker is the ability to observe faulty unverified plaintexts. Our second
observation is in terms of the nonce constraint. In Indocrypt 2014, Saha et al.
studied the impact of the nonce constraint in their EscApe fault attack [15] on
the authenticated cipher APE [3]. The authors showcased the restriction that the
uniqueness of nonces imposes on the replaying criterion1 of fault analysis and
demonstrated the idea of faulty collisions to overcome it. In this work we argue
that ability to attack the decryption, provided by RUP, gives the additional
benefit of totally bypassing the nonce constraint. This follows from the very
definition of AE decryption which allows an attacker to make multiple queries
to the decryption oracle with the same nonce. Thus prospect of nonce bypass
makes fault analysis highly feasible.

Following these observations, we mount Scope: a differential fault attack
on the decryption of APE which is also one of the submissions to the on-going
CAESAR [1] competition. The choice of APE is motivated by the fact that
according to PA classification of schemes provided by Andreeva et al. in [5,6],
APE which has offline decryption , is one of the CAESAR submissions that
supports RUP. Authenticated Permutation-based Encryption [4] or APE was
introduced by Andreeva et al. in FSE 2014 and later reintroduced in CAESAR
along with GIBBON and HANUMAN and an indigenous permutation called
PRIMATE as part of the authenticated encryption family PRIMATEs [2,3]. We
studied the fault diffusion in the inverse of the internal permutation PRIMATE
of APE using random uni-word fault injections in the penultimate round. We
capitalize on properties arising out of the non-square nature of the internal
state and also the knowledge of the fault-free unverified plaintext. Our analysis
shows average key-space reduction from 2160 to 250 using 12 faults and to 224

using 16 faults. Finally, this work identifies and addresses a broader problem in
differential fault analysis: Fault analysis with partial state information. Since,
only part of the state is observable, the fault analysis presented here deviates
from the classical DFA [8,10–14,16] which generally assumes availability of the
entire state at the output. Here we showcase that even knowledge of just one-
fifth (the size of a plaintext block) of the state can be used to reconstruct the
differential state and finally reduce the key-space. Moreover, close similarity
between PRIMATE permutation and AES [9], automatically amplifies the scope

1 The replaying criterion in differential fault analysis states that the attacker must be
able to induce faults while replaying a previous fault free run of the algorithm.

Scope: On the Side Channel Vulnerability of RUP 419

of the results presented here. The contributions of this work can be summarized
as below:

– Scrutinizing the recently introduced RUP model in the light of fault attacks.
– Showing that unverified plaintext can be an important source of side-channel

information.
– Showing the feasibility of fault induction using nonce bypass.
– For the first time attacking the decryption of an AE scheme using DFA.
– Presenting Scope attack exploiting: fault diffusion in the last two rounds of

the Inverse PRIMATE permutation and the ability to observe faulty unverified
plaintexts.

– Finally, achieving a key space reduction from 2160 to 250 with 12 faults and
224 with 16 faults using the random word fault model.

– Moreover, this work also brings into focus the idea of fault analysis of AES
based constructions with partial state information.

The rest of the work is organized as follows: Sect. 2 gives a brief description
of the PRIMATE permutation and its inverse and introduces the notations used
in this work. Section 3 looks at the RUP and classical models in the light of
side-channel analysis. Some properties of APE decryption that become relevant
in the presence of faults are discussed in Sect. 4. The proposed Scope attack is
introduced in Sect. 5. Section 6 furnishes the experimental results with a brief
discussion while Sect. 7 gives the concluding remarks.

2 Preliminaries

2.1 The Design of PRIMATE

PRIMATE has two variants in terms of size: PRIMATE-80 (200-bit permutation)
and PRIMATE-120 (280-bit) which operate on states of (5 × 8) and (7 × 8)
5-bit elements respectively. The family consists of four permutations p1, p2, p3, p4
which differ in the round constants used and the number of rounds. All notations
introduced in this section are with reference to PRIMATEs-80 with the APE
mode of operation.

Definition 1 (Word). Let T = F[x]/(x5 + x2 + 1) be the field F25 used in the
PRIMATE MixColumn operation. Then a word is defined as an element of T.

Definition 2 (State). Let S = (T5)8 be the set of (5 × 8)-word matrices. Then
the internal state of the PRIMATE-80 permutation family is defined as an ele-
ment of S. We denote a state s ∈ S with elements si,j as [si,j]5,8.

s = [si,j]5,8, where

{
si,j ∈ T

0 ≤ i ≤ 4, 0 ≤ j ≤ 7
(1)

420 D. Saha and D.R. Chowdhury

In the rest of the paper, for simplicity, we omit the dimensions in [si,j]5,8 and
use [si,j] as the default notation for the 5 × 8 state. We denote a column of
[si,j] as s∗,j while a row is referred to as si,∗. We now describe in brief the
design of PRIMATE permutation. In this work we also deal with the inverse
of the PRIMATE permutation. APE instantiates p1 which is a composition of
12 round functions. The inverse permutation p−1

1 applies the round functions in
the reverse order with each component operations itself being inverted. For the
sake of consistency, in the rest of the work rounds of p−1 will be denoted w.r.t
to the corresponding rounds of p. For instance, the last round of p−1 will be
referred to as R−1

1 since functionally it is the inverse of the first round of p.

p1, p
−1
1 : S −→ S, p1 = R12 ◦ R11 ◦ · · · ◦ R1 p−1

1 = R−1
1 ◦ R−1

2 ◦ · · · ◦ R−1
12

Rr,R−1
r : S −→ S, Rr = αr ◦ μr ◦ ρr ◦ βr R−1

r = β−1
r ◦ ρ−1

r ◦ μ−1
r ◦ α−1

r

where Rr is a composition of four bijective functions on S while R−1
r denotes the

inverse round function. The index r denotes the rth round and may be dropped
if the context is obvious. Here, the component function β represents the non-
linear transformation SubBytes which constitutes word-wise substitution of the
state according to predefined S-box. The definitions extend analogously for the
inverse.

βr, β
−1
r : S −→ S, s = [si,j]

β�→[S(si,j)], s = [si,j]
β−1

�→ [S−1(si,j)]

where S : T −→ T is the S-box given in Table 1. The transformation ρ corre-
sponds to ShiftRows which cyclically shifts each row of the state based on a set
of offsets. The same applies to ρ−1 with only the direction of shift being reversed.

ρr, ρ−1 : S −→ S, s = [si,j]
ρ�→[si,(j−σ(i)) mod 8], s = [si,j]

ρ−1

�→ [si,(j+σ(i)) mod 8]

where, σ = {0, 1, 2, 4, 7} is the ShiftRow offset vector and σ(i) defines shift-offset
for the ith row. The MixColumn operation, denoted by μ, operates on the state
column-wise. μ is actually a left-multiplication by a 5 × 5 matrix (Mμ) over the
finite field T. For the InverseMixColumn (μ−1), the multiplication is carried out
using (M−1

μ).

μr : S −→ S, s = [si,j] �−→ s′ = [s′
i,j], s′

∗,j = Mμ × s∗,j

The last operation of the round function is α which corresponds to the round
constant addition. The constants are the output {B1,B2, · · · ,B12} of a 5-bit
LFSR and are xored to the word s1,1 of the state [si,j]. α is involutory implying
α = α−1.

αr : S −→ S, [si,j] �−→ [s′
i,j], s′

i,j =

{
si,j ⊕ Br if i, j = 1
si,j , Otherwise

The APE mode of operation is depicted in Fig. 1. Here, N [·] represents a Nonce
block while A[·] and M [·] denote blocks of associated data and message respec-
tively. The IVs shown in Fig. 1 are predefined and vary according to the nature

Scope: On the Side Channel Vulnerability of RUP 421

Table 1. The PRIMATE 5-bit S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

(a) APE Encryption

(b) APE Decryption

Fig. 1. The APE mode of operation

of the length of message and associated data. Figure 1a and b show the encryp-
tion and decryption modules of APE respectively. In is evident from Fig. 1b that
the decryption starts from the last ciphertext block and proceeds in the reverse
direction which implies that APE decryption is offline.

2.2 Notations

Definition 3 (Differential state). A differential state is defined as the
element-wise XOR between a state [si,j] and the corresponding faulty state [s′

i,j].

s′
i,j = si,j ⊕ δi,j , ∀ i, j (2)

δ fully captures the initial fault as well as the dispersion of the fault in the state.
In this work we assume induction of random faults in some word of a state.
Thus, if the initial fault occurs in word sI,J ∈ s, the differential state is of the
following form:

422 D. Saha and D.R. Chowdhury

δi,j =

{
f : f

R←− T \ {0}, if (i = I, j = J)
0, Otherwise

(3)

If ∃j : δi,j = 0 ∀i then δ∗,j is called a pure column, otherwise δ∗,j is referred to
as a faulty column.

Definition 4 (Hyper-column). A Hyper-column is a (5× 1) column vector
where each element is again a vector of words i.e., a subset of T. It is denoted
by H.

H =

⎡
⎢⎢⎢⎣

b0
b1
...
b4

⎤
⎥⎥⎥⎦ where bj ⊂ T, Also, H = ∅ if ∃i : bi = ∅

The Hyper-column helps to capture the candidate words for a column that result
due to the fault analysis presented here. Also a hyper-column is considered to
be empty if at least one of its component sets is empty.

Definition 5 (Hyper-state [15]). A Hyper-state of a state s = [si,j], denoted
by sh = [sh

i,j], is a two-dimensional matrix, where each element sh
i,j is a non-

empty subset of T, such that s is an element-wise member of sh.

sh =

⎡
⎢⎢⎢⎣
sh
00 sh

01 · · · sh
07

sh
10 sh

11 · · · sh
17

...
...

. . .
...

sh
40 sh

41 · · · sh
47

⎤
⎥⎥⎥⎦ where

{
sh

i,j ⊂ T, sh
i,j �= ∅

si,j ∈ sh
i,j ∀i, j

(4)

The significance of a hyper-state sh is that the state s is in a way ‘hidden’ inside
it. This means that if we create all possible states taking one word from each
element of sh, then one of them will be exactly equal to s.

The hyper-state has some interesting properties with respect to the com-
ponent transformations of the PRIMATE permutation and consequently its
inverse. For instance all the inverse operations like InverseShiftRow(ρ−1),
InverseSubByte(β−1), InverseAddRoundConstant(α−1) can be applied on a
hyper-state with little technical changes. This is possible since all these opera-
tions work word-wise and thus can be applied as a whole to each element-set of
a hyper-state too with an equivalent effect. We define the analogs of these oper-
ations on a hyper-state as hyper-state-<operation>: (ρ−1)′, (β−1)′, (α−1

r)′. The
formal definitions are provided in Appendix A. Another observation of particular
interest is that hyper-state-<operation>(sh) = (<operation>(s))h.

Scope: On the Side Channel Vulnerability of RUP 423

Definition 6 (Kernel [15]). If sh is a hyper-state of s, then Kernel of
a column sh

∗,j ∈ sh, denoted by Ksh
∗,j , is defined as the cross-product of

sh
0,j , s

h
1,j , · · · , sh

4,j.

Subsequently, Kernel of the entire hyper-state is the set of the Kernels of all of
its columns: Ksh

= {Ksh
∗,0 ,Ksh

∗,1 , · · · ,Ksh
∗,7}

Here, wT
k represents the transpose of wk, thereby implying that wk is a column

vector. One should note that s∗,j ∈ Ksh
∗,j ∀j. Thus each column of s is contained

in each element of Ksh

. We now define an operation (μ−1)′ over the Kernel of a
hyper-state which is equivalent to μ−1 that operates on a state.

Definition 7 (Kernel-InverseMixColumn).
The Kernel-InverseMixColumn transformation denoted by (μ−1)′ is the left
multiplication of M−1

μ to each element of each Ksh
∗,j ∈ Ksh

.

(μ−1)′(Ksh
∗,j) = {M−1

μ × wi, ∀wi ∈ Ksh
∗,j}

(μ−1)′(Ksh

) = {(μ−1)′′(Ksh
∗,0), (μ−1)′(Ksh

∗,1), · · · , (μ−1)′(Ksh
∗,7)}

An important implication is that (μ−1)′(Ksh

) = K(μ−1(s))h . The notion of
Hyper-state and Kernel will be used in the Outbound phase of Scope
detailed in Subsect. 5.3.

3 RUP in the Light of Side-Channels

RUP which has been argued to be a very desirable property can be a major source
for side channel information. In this work we try to study how RUP stands out in
the light of fault attacks. Our research reveals that RUP opens up an exploitable
opportunity with respect to fault analysis which would not have been possible
if verification would precede release of the plaintexts. Moreover, attacking the
decryption also allows the attacker to bypass the nonce constraint imposed by
the encryption. It has been shown that nonce based encryption has an automatic
protection against DFA and hence ability to bypass the nonce constraint exposes
the AE scheme to fault attacks. In the rest of the paper we refer to the classical
model that does not allow RUP as RVP (Release of Verified Plaintexts).
We now argue why RVP has an implicit protection against fault attacks which
makes attacking the decryption infeasible.

In order to understand the significance of the scope that the RUP model puts
at the hands of the attacker, one has to be aware of why fault analysis in the
RVP model is infeasible. According to the classical RVP model, the decryption
oracle returns the entire plaintext if the verification passes and ⊥ otherwise.

424 D. Saha and D.R. Chowdhury

Now we define the term faulty forgery as the ability of the attacker to produce
a plaintext (p∗ �= p) after inducing faults such that the verification passes. Now,
in standard fault analysis it is assumed that the attacker can induce random
faults in the state but the value of the fault is unknown. Under this scenario, the
probability of the attacker to produce a faulty forgery is negligible (Fig. 2).

Fig. 2. RVP vs RUP from the perspective of fault analysis

On the contrary RUP gives the attacker the scope of inducing random faults
while decrypting any chosen or known ciphertext and unconditionally observe
the corresponding faulty plaintexts (which would never have passed verification
in the RVP model). This power opens up the side-channel for fault analysis and
is the basis of the differential fault attack presented in this work. Moreover, the
ability to attack the decryption has the additional and important advantage of
bypassing the nonce constraint that is imposed while making encryption queries.
This magnifies the feasibility of mounting fault attacks.

In the next section, we look at some of the features of APE decryption and
the inverse PRIMATE permutation p−1 that gain importance from a fault attack
perspective. Finally, building upon these observations we introduce the Scope
attack where for the first time we show how the decryption can also be attacked
under RUP to retrieve the entire internal state of p−1 leading to recovery of the
key with practical complexities.

4 Analyzing APE Decryption in the Presence of Faults

In this section we look at certain properties of APE decryption that become
relevant in the context of RUP and from the prospect of fault induction. We
first look at a property which by itself is of no threat to the security of APE but
becomes exploitable in the presence of faults in the RUP scenario.

4.1 The Block Inversion Property

The Block Inversion Property is purely attributed to the APE mode of opera-
tion. This property allows the attacker to retrieve partial information about the
contents of the state matrix after the last round InverseMixColumn operation.

Scope: On the Side Channel Vulnerability of RUP 425

Property 1. If the state after μ−1
1 in R−1

1 (the last round of p−1) be represented
as t = [ti,j] and the released plaintext block and next ciphertext block be p and c
respectively, then t0,∗ is public by the following expression:

t0,i = S(vi) where,

{
vi ∈ (p ⊕ c),
S → PRIMATE Sbox (Table 1)

Analysis: By virtue of the APE mode of operation and the SPONGE [7] con-
struction it follows, the rate part (top row of the state) after R−1

1 of p−1 is
released after XORing with the next ciphertext block as the plaintext block
(which can be observed unconditionally under RUP). If the state after R−1

1 be
s = [si,j] then p ⊕ c gives back s0,∗. We can now invert this block to get inside
R−1

1 despite partial knowledge of the state. This becomes possible since β oper-
ates word-wise and ρ operates row-wise. Moreover, ρ can be ignored for it has
no effect on top row as the shift-offset is zero. Thus applying β on s0,∗ we get
the value of t0,∗. However, the inversion stops here since μ operates column-wise
and only word of each column is known. �

Later in this work we show how the Scope attack can exploit the Block
Inversion Property along with RUP and use both faulty and fault-free plain-
texts to reconstruct differential state after μ−1

2 in R−1
2 . We now study the fault

induction and diffusion in the state of p−1 which is vital to understanding of the
attack presented here.

4.2 Fault Diffusion in the Inverse PRIMATE Permutation

In this section we describe the induction and diffusion of faults in the inverse
(p−1) of the PRIMATE permutation during APE decryption. In fact, our inten-
tion is to study the fault diffusion in the differential state of p−1 which we exploit
to formulate a fault attack on APE Decryption. The fault induction and subse-
quent differential plaintext block formation are illustrated in Fig. 3. One can see
from Fig. 3 that the fault is induced in the input of the penultimate round R−1

2

of p−1. The logic behind this will be clear from the following important property
of fault diffusion in the internal state of p−1.

Property 2. If a single column is faulty at the start of R−1
r+1 then there are

exactly three fault-free words in each row of the differential state after R−1
r .

Analysis: This property surfaces because in two rounds the fault does not
spread to the entire state matrix. This is primarily attributed to the fact that
the state matrix is non-square. To visualize this we need to first look at fault
diffusion in the R−1

r+1 round. Let us denote the differential state at the input of
R−1

r+1 as s = [si,j]. This analysis takes into account the structural dispersion of
the fault and is independent of the actual value of s. At the beginning of R−1

r+1

only one column s∗,j is faulty. The operation α−1 is omitted from analysis since
round-constant addition has no effect on the differential state.

426 D. Saha and D.R. Chowdhury

Fig. 3. Fault induction in APE decryption before releasing unverified plaintext and
the unverified differential plaintext block

– Fault diffusion in R−1
r+1

• μ−1
r+1 : Intra-column diffusion. Fault spreads to entire column s∗,j .

• ρ−1
r+1 : No diffusion, fault shifts to the words {si,(j+σ(i)) mod 8 : 0≤i<|σ|}.

• β−1
r+1 : No diffusion, fault limited to the same words as after ρ−1

r+1.

s∗,j

μ−1
r+1−−−→ s∗,j

β−1
r+1◦ρ−1

r+1−−−−−−−→ {si,(j+σ(i)) mod 8} (5)

– Fault diffusion in Rr

• μ−1
r : Fault spreads to each column s∗,(j+σ(i)) mod 8.

• ρ−1
r : No diffusion, fault shifts to the words {si,(j+σ(i)+σ(k)) mod 8 :

0≤i,k<|σ|}.
• β−1

r : No diffusion, fault limited to the same words as after ρ−1
r .

{si,(j+σ(i)) mod 8} μ−1
r−−→ s∗,(j+σ(i)) mod 8

β−1
r ◦ρ−1

r−−−−−−→ {si,(j+σ(i)+σ(k)) mod 8}
(6)

From (5) and (6) we have the following relation between the faulty column s∗,j

at the start R−1
r+1 and the faulty words after R−1

r .

s∗,j

R−1
r ◦R−1

r−1−−−−−−−→ {
si,(j+σ(i)+σ(k)) mod 8 : 0≤i,k<|σ|

}
(7)

For PRIMATE-80, σ = {0, 1, 2, 4, 7}, implying that
∣∣σ∣∣ = 5. From (7), we have∣∣{si,(j+σ(i)+σ(k)) mod 8}

∣∣ = 25. Thus a single faulty column before R−1
r+1 results

in 25 faulty words at the end of R−1
r . Moreover, for each value of i we have∣∣{si,(j+σ(i)+σ(k)) mod 8 : 0≤k<5}∣∣ = 5 implying that each row has 5 faulty words

and respectively 8 − 5 = 3 fault-free words at the end of R−1
r . An illustration of

the above analysis with the source fault in column s∗,3 is depicted in Fig. 4. �

Scope: On the Side Channel Vulnerability of RUP 427

Fig. 4. 2-round fault diffusion with a uni-word fault in column s∗,3

4.3 The Bijection Lemma

This lemma stems out of the property mentioned above and is pivotal in increas-
ing the efficiency of the Scope attack. Again it is a direct consequence of the
non-square nature of the internal state of p−1.

Lemma 1. If fault is induced in the jth column of the state at the input of
R−1

r+1, then the fault-free words in the differential plaintext block released after
R−1

r are ((j + 3), (j + 5), (j + 6)) mod 8.

Proof. This directly follows from relation (7). One can recall that for APE
decryption under RUP, the first row of the state is released after XORing with
next ciphertext block. However, since we are considering a differential here, the
effect of the ciphertext block is nullified. Now, for i = 0, from relation (7) we
have {s0,(j+σ(0)+σ(k)) mod 8 : 0≤k<5} = {s0,j , s0,j+1, s0,j+2, s0,j+4, s0,j+7} which
signifies the set of faulty words in the differential plaintext block. Hence, the
complement of this set w.r.t the set of all the words in the plaintext block is
{s0,j+3, s0,j+5, s0,j+6}, which signify the fault-free words. �

The implication of this lemma is that there exists a bijection between the
positions of the fault-free words in the differential plaintext block released after
R−1

r and position of the column in which the fault was induced before R−1
r+1.

This is vital to the analysis presented in this work and shows that by looking
at the unverified differential plaintext block the attacker can ascertain the col-
umn position of the fault. This makes the attack 8 times faster. However, this
information is not sufficient to guess the row position since all faults in the same
column will produce the same pattern for the fault-free words.

In case of p−1, r = 1 and the Bijection Lemma implies that by looking at
the unverified differential block (Fig. 3) released after R−1

1 , the attacker can
ascertain in which column the fault was induced before R−1

2 . With knowledge
of all these characteristics of the APE mode of operation as well as p−1, we are
now in a place to finally introduce the differential fault attack developed in this
work: Scope.

428 D. Saha and D.R. Chowdhury

5 Scope: Differential Fault Analysis of APE Decryption
(Exploiting Release of Unverified Plaintexts)

The first task is to run APE decryption and observe the released unverified
plaintexts. Next the attacker queries the decryption with same set of inputs.
Recall, that nonce constraint can be bypassed by definition. Every time, while
replaying the decryption, he induces a random uni-word fault at the input of R−1

2

of p−1 during the processing of the same ciphertext block. By RUP principle,
the attacker can observe the corresponding faulty plaintext blocks. The fault-free
plaintext block (p) along with each corresponding faulty plaintexts block (p′

i) are
stored. Now using the Bijection Lemma every differential plaintext block (p⊕p′

i)
is analyzed to get the faulty column before R−1

2 . The information is stored in the
fault count vector (F) which is an array keeping count of the number of faults
traced back to each column before R−1

2 . For each unverified faulty plaintext, the
Inbound phase is initiated to get back a set of hyper-columns. The process is
detailed in the next subsection.

5.1 The Inbound Phase

The main aim of this phase is to reduce the number of candidate words for the
column to which the fault was traced back. Let the state after μ−1

1 for the fault-
free case be s = [si,j] and for the faulty case be s′ = [s′

i,j]. Now, by virtue of
the Block Inversion Property, s0,∗ and s′

0,∗ are known to the attacker. He now
exploits the relation between the differential state before and after μ−1

1 that arises
from the fault diffusion to reconstruct the entire differential state after R−1

1 .
To be more precise, the attacker is interested in the nature of the differential
block (s0,∗ ⊕s′

0,∗). Due to the InverseMixColumn operation every non-zero word
(s0,∗⊕s′

0,∗) is a multiple of the non-zero word in the corresponding column before
μ−1
1 and the relation is governed by the InverseMixColumns matrix. Thus if the

source fault is in column 4, (s0,∗⊕s′
0,∗) is of the following form: {0, 0, x1×F5, x2×

F1, x3×F2, x4×F3, 0, x5×F4}. Now to get back each Fi from the differential row,
the attacker makes use of the Factor Matrix given in Table 2. As one can notice
the Factor Matrix is a circulant matrix. The ith row corresponds to the factors
to be used if the source fault is in the ith column. The ‘*’ represents the positions
of the zero values of the corresponding differential row. So, the attacker retrieves
each Fi by word-wise Galois Field division of the differential row (s0,∗ ⊕ s′

0,∗) by
using the appropriate row from the Factor Matrix. The method of generating
the Factor Matrix is detailed in Appendix D.

The attacker now has the entire differential state after R−1
2 . He cannot invert

further deterministically since β is nonlinear. However, as ρ and β are commu-
tative, he can apply ρ before β. By virtue of the fault diffusion described in
Property (2), the differential state after β−1

2 has only one non-zero column and
it is the same column where the fault was induced. The attacker now solves dif-
ferential equations involving the same column at the input of β−1

2 which arise due
the InverseMixColumns of R−1

2 . However, these equations are characterized by

Scope: On the Side Channel Vulnerability of RUP 429

Table 2. The Factor Matrix

6 22 31 * 1 * * 15

15 6 22 31 * 1 * *

* 15 6 22 31 * 1 *

* * 15 6 22 31 * 1

1 * * 15 6 22 31 *

* 1 * * 15 6 22 31

31 * 1 * * 15 6 22

22 31 * 1 * * 15 6

the row in which the initial fault was induced. One can recall that from Lemma 1,
that the information available is not sufficient to ascertain the exact row. For
instance, the fault invariants2 for different rows of column 4 is shown in Fig. 5.
So, the attacker solves the five sets of equations assuming all the possibilities.
Out of these one set corresponds to the actual row that was affected. Solving the
equations results in significant reduction in column space. The candidate words
that satisfy the equations are stored into hyper-columns (Definition 4). So each
row guess results in a different hyper-column and hence there can be maximum
of 5 hyper-columns. However, one may encounter a lot of wrong candidate words
getting accepted as they satisfy the wrong set of equations arising from the incor-
rect row guess. We refer to all accepted words other than the legitimate ones as
Noise. Thus one run of the Inbound Phase returns a set of hyper-columns with
a maximum cardinality of 5. The phase, is repeated for each faulty unverified
plaintext and corresponding set of hyper-columns appropriately stored in a set
of sets of hyper-columns: H. After all faulty plaintexts have been processed, the
set H along with the fault count vector F are passed on to the Noise handling
phase.

5.2 Noise Handling

Here the attacker takes the advantage of the fact that while he induces random
uni-word faults in input of R−1

2 , there is a high probability that some faults get
induced in the same column. Thus he will have multiple sets of hyper-columns
from the Inbound phase that reduced the column space for the same column
before R−1

2 . On the contrary, it might so happen that only one fault gets induced
for a particular column. The worst-case scenario occurs if none of the induced
faults affects some specific column. The former cases are dealt with in the next
subsections while for the later case the attacker is left with exhaustive search
implying that Noise handling phase will return a hyper-column that spans the
entire column space.
2 A discussion on the generation and nature of the fault invariants is furnished in

Appendix C.

430 D. Saha and D.R. Chowdhury

Fig. 5. Generation of hyper-columns using a word-fault at the beginning of R−1
2

(a) Noise Inclusion if Only One Fault
Traced back to a Column

(b) Noise Reduction if Multiple Faults
Traced back to the same Column

Fig. 6. The Noise handling phase

Noise Inclusion. When the attacker traces only one fault back to a column,
he faces an ambiguity regarding the source row. In this scenario, he has no other
option but to include all the hyper-columns for the next phase of the attack.
So he includes all the Noise in the final step. So Noise Inclusion corresponds
to word-wise union of all hyper-columns as depicted in Fig. 6a. Noise Inclusion,
definitely, increases the column-space, however, computer simulations show that
the final cardinality is still much better that brute force.

Noise Reduction. When the attacker traces multiple faults to the same col-
umn, he can significantly reduce the column space by eliminating Noisy hyper-
columns. For e.g. if two faults are traced back to column x, then the attacker
has two sets of hyper-columns. He now takes the cross-product of these two
sets. Every element of the cross-product is a pair of hyper-columns. He now
takes the set intersection between each such pair. The result is again a hyper-
column with the cardinality of its component sets highly reduced. However, if the

Scope: On the Side Channel Vulnerability of RUP 431

hyper-column turns out to be empty3, it is discarded. Experiments show that
most of the elements from the cross-product get eliminated due to this and the
attacker is left with a single final hyper-column. In case multiple hyper-columns
remain, a element-wise union is taken to form the final hyper-column.

This Noise handling phase is repeated for all the columns and returns a set
of eight hyper-columns for the last phase of the attack.

1: procedure HandleNoise(F , H) �

∣∣∣∣ F → Fault count vector
H → Set of all sets of hyper-columns

∣∣∣∣
2: HU = {b0, b1, b2, b3, b4}T , where bi = {0, 1, · · · , 31}

� HU → Exhaustive Hyper-column
3: for i = 0 : 7 do
4: if F(i) = 0 then � If no fault traced to column i
5: Hi = HU � Set hyper-column to be exhaustive

6: else if F(i) = 1 then �

{
If only one fault traced back
to column i: Noise Inclusion

7: Hi =
⋃

Hi,1 � Take union over the hyper-column set

8: else if F(i) > 1 then �

{
If multiple faults traced back
to column i: Noise Reduction

9: C = Hi,1 × Hi,2 × · · · × Hi,F(i) �

{
Take cross-product over
all sets of hyper-columns

10: j = 0

11: for ∀d ∈ C do �

{
Each element d ∈ C is a set of
hyper-columns and |d| = F(i)

12: Hj
temp =

⋂
d �

{
Take intersection over
each set of hyper-columns

13: if Hj
temp �= ∅ then �

{
Recall (Definition 4)
H = ∅ if ∃i : bi = ∅, bi ∈ H

14: j = j + 1
15: end if
16: end for

17: Hi =
⋃ Hj

temp �

{
Take union over the set of
all non-empty hyper-columns

18: end if
19: end for
20: return {H0,H1, · · · ,H7}

� Each Hi has candidate words for the ith column in the state after
μ−1
2 .

21: end procedure
3 Recall, that by Definition 4, a hyper-column is empty if any of its components is

empty.

432 D. Saha and D.R. Chowdhury

5.3 The Outbound Phase

The Outbound phase of Scope is inspired from the Outbound phase of the
EscApe [15] attack proposed by Saha et al. in Indocrypt 2014 and closely follows
it. It borrows the idea of a Hyper-state and Kernel from there. The input to this
phase is the set of eight hyper-columns. Since none of the hyper-columns are
empty, they can easily be combined structurally to form the hyper-state of the
state after μ−1

2 . Let us denote the state by s = [si,i] and then the hyper-state
is sh. This hyper-state sh captures the reduced state-space for the state s that
has been generated using the last two phases. In this phase we want to further
reduce the state-space using knowledge of the fault-free plaintext block by again
employing the Block Inversion property. This phase is called Outbound since
it tries to move outward from μ−1

2 . We start by propagating further into R−1
2

and then move into R−1
1 by applying some hyper-state-<operations> on sh. The

steps of the Outbound phase are enlisted below.

1. The attacker starts the Outbound phase by applying Hyper-state Inverse-
ShiftRow transformation (Definition 8) on sh followed by Hyper-state Invers-
eSubByte (Definition 9) on sh. This completes R−1

2 propagation.

sh (ρ−1)′
−−−−→ (ρ−1

2 (s))h (β−1)′
−−−−→ (β−1

2 (ρ−1
2 (s)))h → vh(say)

2. We now move forward into the last round of p−1 : R−1
1 . Let us denote the

state β−1
2 (ρ−1

2 (s)) as v. We now apply Hyper-state InverseAddRoundConstant
(Definition 10): (α−1

1)′ on the hyper-state vh. The next step is to compute
the Kernel for (α−1

1 (v))h : K(α−1
1 (v))h .

vh (α−1
1)′

−−−−→ (α−1
1 (v))h Compute Kernel−−−−−−−−−−→ K(α−1

1 (v))h

3. Then the attacker applies the Kernel-InverseMixColumn transformation on
the Kernel K(α−1

1 (v))h

K(α−1
1 (v))h (μ−1)′

−−−−→ K(μ−1
1 (α−1

1 (v)))h

4. Next comes the reduction step. It can be noted that K(μ−1
1 (α−1

1 (v)))h represents
the kernel for the hyper-state of (μ−1

1 (α−1
1 (v))). i.e., the state just before the

application of ρ−1
1 . Now let t = (μ−1

1 (α−1
1 (v))). Then by the Block Inver-

sion property, the actual value of t0,∗ is known. This knowledge is used to
reduce the size of each Kth∗,j ∈ Kth . This reduction algorithm is almost simi-
lar to ReduceKernel given in [15] and is restated in Appendix B for easy
reference.

A pictorial description of the Outbound phase is furnished in Fig. 7. Thus,
after the Outbound phase we get a reduced Kernel for the state at the end
of μ−1

1 . Every element of the cross-product of Kernels of each column is a can-
didate state. Finally, applying ρ−1

1 and β−1
1 on each candidate state produces

Scope: On the Side Channel Vulnerability of RUP 433

the reduced state-space at the end of R−1
1 of p−1. This reduced state-space

directly corresponds to the key-space of the state since recovering the internal
state implies recovery of the key. The overall Scope attack is summarized by
the following algorithm:

6 Experimental Results and Discussion

Scope was verified by extensive computer simulations. The experimental results
confirm large scale reduction in the state-space and consequently the key-space.
Average case analysis reveals that with 12 random uni-word faults at the input
of R−1

2 , the state-space at the end of R−1
1 reduces from 2160 to 250 while

16 faults give a reduced state-space of 224. It is interesting to note that the
fault distribution had a direct impact on state(key)-space reduction. To high-
light the impact we look at two different fault distributions with 12 faults. Let
the fault count vectors be F1 = {1, 2, 3, 0, 2, 2, 1, 1} and F2 = {2, 2, 2, 0, 2, 2, 1, 1}.

434 D. Saha and D.R. Chowdhury

Fig. 7. Final reduction in state-space using fault-free unverified plaintext block

The average reduction with these distributions are 245 and 228 respectively. This
extreme variance in the reduced key-spaces is attributed firstly to the fact that
F2 is a more uniform distribution. Secondly, F1 has three columns which get just
one fault. Thus, Noise reduction cannot be applied to them. While for F2 such
cases are two which leads to a better Noise reduction in the Noise handling
phase and hence the better reduction in overall key-space. To conclude, it can be
said that best results are obtained when fault distribution is such that maximum
number of columns receive at least two faults.

It might be argued that in comparison to EscApe attack by Saha et al.
Scope requires more faults. However, it must be kept in mind that Scope
works with only partial state information while EscApe has the full state at
its disposal. Moreover, since Scope attacks APE decryption it can bypass the
nonce constraint and hence also avoid the need of faulty collisions which are
inevitable for EscApe. Overall, Scope shows an interesting case-study where
an AES-like construction is analyzed using faults with partial state information
available to the attacker.

7 Conclusion

In this work we explore the scope provided by the RUP model with regards to
fault analysis. We argue that ability to observe unverified plaintext opens up
the fault side channel to attackers which is otherwise unavailable or available
with negligible probability. In this work for the first time we show how the
decryption of APE, an AE scheme that supports RUP, becomes vulnerable to
DFA. Experiments reveal that using the random word fault model the key-space
can be reduced from 2160 to 250 using 12 faults while 16 faults reduce it to 224. An
important implication of the ability to attack the decryption using RUP is that
the attacker can totally bypass the nonce constraint imposed by the encryption.
Finally, this work shows that though RUP is a desirable property addressing a
lot of practical problems, it provides a unique scope to the attacker for mounting
the Scope fault attack.

Scope: On the Side Channel Vulnerability of RUP 435

A Some More Definitions

Definition 8 (Hyper-state InverseShiftRow). This transformation, de-
noted by (ρ−1)′, corresponds to cyclically right shifting each row of sh based
on the predefined set of offsets σ.

It is interesting to note that, every word in the state ρ−1(s) will be a member
of the corresponding element of (ρ−1)′(sh), thereby implying that (ρ−1)′(sh) =
(ρ−1(s))h.

Definition 9 (Hyper-state InverseSubByte). This transformation, denoted
by (β−1)′, corresponds to word-wise substitution of each word of each element-set
of sh based on the inverse of the PRIMATE Sbox.

(β−1)′ : w �−→ S−1(w), ∀w ∈ sh
i,j , ∀i, j

Definition 10 (Hyper-state InverseAddRoundConstant). This transfor-
mation, denoted by (α−1

r)′, corresponds to appropriate round constant addition
to all words of element-set sh

1,1 of the hyper-state sh.

(α−1
r)′ : w �−→ w ⊕ Br, ∀w ∈ sh

1,1

B ReduceKernel Algorithm [15]

1: procedure ReduceKernel(Kth , t0,∗)
2: for j = 0 : 7 do
3: for all {e0, e1, e2, e3, e4}T ∈ Kth∗,j do
4: if e0 �= t0,j then
5: Kth∗,j = Kth∗,j − {e0, e1, e2, e3, e4}T

6: end if
7: end for
8: end for
9: Kth

red = Kth

10: return Kth

red

11: end procedure

C A Discussion on the Fault Invariants After µ−1
2 in R−1

2

The formation of the fault invariants due to a uni-word fault in the input of R−1
2

is completely governed by the InverseMixColumn Matrix (M−1
μ). It is worth

436 D. Saha and D.R. Chowdhury

mentioning that the fault-invariants are unique w.r.t to the row in which the
fault was induced in the state before R−1

2 and are independent of the column.
This implies that fault-invariants are fixed for a particular row irrespective of
which column the faulty word belonged to. Let the differential state before μ−1

2

be s = [si,j] and the one after μ−1
2 be t = [ti,j]. Also let the differential fault

value be f . Figure 8 depicts an example of fault invariant formation in t∗,7 for
a word-fault in s4,7. It can be noted that value of the invariant given in t∗,7 is
same for any word-fault in s4,∗ i.e. the fifth row of s. However, the position of
the invariant is due the column position of the fault which is the eighth column
of s. Table 3 gives the exhaustive list of fault invariants exploited in Scope and
their relation to the row location of the induced word fault.

Fig. 8. Formation of fault invariant. Value of the fault invariant determined by M−1
μ

and the row position of the word-fault before R−1
2 . Position of fault invariant deter-

mined by column position of the word-fault.Formation of fault invariant. Value of the
fault invariant determined by M−1

μ and the row position of the word-fault before R−1
2 .

Position of fault invariant determined by column position of the word-fault.

Table 3. Fault invariants exploited in Scope attack and the rows they correspond to.

Row position of fault 0 1 2 3 4

Fault invariant value

⎡
⎢⎢⎢⎢⎢⎢⎣

6 × f

15 × f

20 × f

11 × f

18 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

22 × f

19 × f

5 × f

3 × f

2 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

31 × f

8 × f

30 × f

19 × f

2 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f

f

5 × f

8 × f

18 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

15 × f

20 × f

11 × f

18 × f

f

⎤
⎥⎥⎥⎥⎥⎥⎦

D Constructing the Factor State

The factor state as stated earlier gives us the factors with which the differen-
tial row computed using the Block Inversion property needs to be divided to

Scope: On the Side Channel Vulnerability of RUP 437

reconstruct the state at the end of R−1
2 . The pseudo-code for generating the

factor matrix is given below:

1: procedure GenerateFactorMatrix
2: Take state s = [si,j]
3: for col = 0 : 7 do
4: si,j = 0, ∀ i, j
5: s∗,col = [1, 1, 1, 1, 1]T

6: s = μ−1(ρ−1(s))
7: factorMatcol,∗ = s1,∗
8: end for
9: return factorMat

10: end procedure

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Wang,
Q., Yasuda, K.: PRIMATEs v1 (2014). http://competitions.cr.yp.to/round1/
primatesv1.pdf

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Wang, Q., Yasuda, K.: PRIMATEs v1.01 (2014). http://primates.ae/wp-content/
uploads/primatesv1.01.pdf

4. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B.,
Mouha, N., Yasuda, K.: APE: Authenticated Permutation-Based Encryp-
tion for Lightweight Cryptography. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 168–186. Springer, Heidelberg (2015).
https://lirias.kuleuven.be/handle/123456789/450105

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to Securely Release Unverified Plaintext in Authenticated Encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014)

6. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. Cryptology
ePrint Archive, Report 2014/144 (2014). http://eprint.iacr.org/

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions. http://sponge.noekeon.org/CSF-0.1.pdf

8. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

10. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. IACR
Cryptology ePrint Archive 2003, 10 (2003). http://eprint.iacr.org/2003/010

11. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/primatesv1.pdf
http://competitions.cr.yp.to/round1/primatesv1.pdf
http://primates.ae/wp-content/uploads/primatesv1.01.pdf
http://primates.ae/wp-content/uploads/primatesv1.01.pdf
https://lirias.kuleuven.be/handle/123456789/450105
http://eprint.iacr.org/
http://sponge.noekeon.org/CSF-0.1.pdf
http://eprint.iacr.org/2003/010

438 D. Saha and D.R. Chowdhury

12. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

13. Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced Encryption
Standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

14. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique Against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

15. Saha, D., Kuila, S., Chowdhury, D.R.: EscApe: Diagonal Fault Analysis of APE.
In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
197–216. Springer, Heidelberg (2014)

16. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A Diagonal Fault Attack on
the Advanced Encryption Standard. Cryptology ePrint Archive, Report 2009/581
(2009). http://eprint.iacr.org/

http://eprint.iacr.org/

	Scope: On the Side Channel Vulnerability of Releasing Unverified Plaintexts
	1 Introduction
	2 Preliminaries
	2.1 The Design of PRIMATE
	2.2 Notations

	3 RUP in the Light of Side-Channels
	4 Analyzing APE Decryption in the Presence of Faults
	4.1 The Block Inversion Property
	4.2 Fault Diffusion in the Inverse PRIMATE Permutation
	4.3 The Bijection Lemma

	5 Scope: Differential Fault Analysis of APE Decryption (Exploiting Release of Unverified Plaintexts)
	5.1 The Inbound Phase
	5.2 Noise Handling
	5.3 The Outbound Phase

	6 Experimental Results and Discussion
	7 Conclusion
	A Some More Definitions
	B ReduceKernel Algorithm [15]
	C A Discussion on the Fault Invariants After -12 in R-12
	D Constructing the Factor State
	References

